
Masher: Mapping Long(er) Reads with Hash-based
Genome Indexing on GPUs

Anas Abu-Doleh†‡ Erik Saule† Kamer Kaya† Ümit V. Çatalyürek†‡

†Dept. of Biomedical Informatics
‡Dept. of Electrical and Computer Engineering

The Ohio State University
abudoleh.1@osu.edu, {esaule,kamer,umit}@bmi.osu.edu

ABSTRACT
Fast and robust algorithms and aligners have been developed
to help the researchers in the analysis of genomic data whose
size has been dramatically increased in the last decade due
to the technological advancements in DNA sequencing. It
was not only the size, but the characteristics of the data have
been changed. One of the current concern is that the length
of the reads is increasing. Although existing algorithms can
still be used to process this fresh data, considering its size
and changing structure, new and more efficient approaches
are required. In this work, we address the problem of accu-
rate sequence alignment on GPUs and propose a new tool,
Masher, which processes long (and short) reads efficiently
and accurately. The algorithm employs a novel indexing
technique that produces an index for the 3, 137Mbp hg19

with a memory footprint small enough to be stored in a
restricted-memory device such as a GPU. The results show
that Masher is faster than state-of-the-art tools and obtains
a good accuracy/sensitivity on sequencing data with various
characteristics.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
D.1.3 [Software]: Programming Techniques—Parallel Pro-
gramming

General Terms
Algorithms, Experimentation, Performance

Keywords
Sequence alignment, parallel programming, GPUs, indexing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

BCB’13, September 22 - 25 2013, Washington, DC, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-2434-2/13/09...$15.00.
http://dx.doi.org/10.1145/2506583.2506641

1. INTRODUCTION
There is a wide interest in efficient and accurate mapping

of the genomic sequences which are generated by next gener-
ation sequencing (NGS) devices. Due to the improvements
in the NGS technology, the length of the reads obtained
from these machines is continuously increasing: for exam-
ple, Roche 454 machines produce 400-500bp reads today.
As a result, the focus moved from mapping reads with less
than 100 bases to mapping longer reads [15].

Alignment is a computationally expensive process and var-
ious tools and techniques have been developed to find high
quality alignments while decreasing the alignment time: For
example, Bowtie2 uses a Burrows-Wheeler Transform (BWT)
index [3] and dynamic programming [10, 11]. GASSST
uses filtering in order to eliminate some candidate align-
ments [25]. SeqAlto employs a compact hash indexing tech-
nique and the Needleman-Wunsch algorithm [24]. SHRiMP2
indexes the genome with spaced seeds and applies Smith-
Waterman (SW) [29] for the candidate locations [6, 26].
CUSHAW2 uses the BWT to reduce the search space and
achieve high alignment quality [18]. BFAST uses multiple
independent indexes and SW with gaps to support small in-
del detection [8]. These tools were designed to map short
reads and they perform that task adequately. However, their
performance degrades when the reads get longer.

Manycore architectures such as Graphical Processing Units
(GPU) can handle a herculean task in parallel and in a short
time which make them desirable for sequence mapping. In
theory, since there exist a huge amount of reads, the task of
mapping is pleasingly parallel. That is, one can process a sin-
gle read by a single GPU thread (or a group of threads) and
easily obtain a good speedup on the alignment time since a
GPU can execute thousands of threads concurrently. How-
ever, in practice, there are two main limitations: first, al-
though GPUs (and similar accelerator architectures such as
Intel Xeon Phi) provide a significant computational power,
they have less memory than a CPU-based architecture. And
second, to obtain the best performance, the computations
within a warp (a set of threads being executed concurrently
by the same processor) must be as homogeneous as possible
because, the threads in the same warp are serialized if they
are executing different instructions.

Recently, many of the popular alignment tools such as
Bowtie2 and CUSHAW2 employ BWT to generate an in-
dex and align the reads. A BWT-based index such as the
FM-index [7] is proved to be very efficient in practice. In
fact, its memory footprint can be 10–20x smaller than other
popular alternatives such as the suffix array. Its small size

ACM-BCB 2013 341

allows to fit it in memory restricted architectures such as
GPUs. However, its small size does not make it a one size
fits fit all solution for all the architectures. When the reads
do not exactly match to the reference, BWT-based solutions
use techniques like backtracking and branching to handle in-
exact matchings, which cause serialized execution in GPUs.
Hence, especially with the increasing read length, the use
of BWT-based solutions for GPUs arguably causes major
performance issues.

In this work, we introduce and experimentally evaluate a
GPU-based mapping tool Masher which uses a hash-based
scheme to align long (as well as short) reads to a reference
genome. The tool uses a novel lossy indexing technique
which is memory efficient and allow interesting time-memory
tradeoff to map the reads to the reference genome accurately
and efficiently.

We evaluate Masher with the 3, 137Mb human genome
hg19 whose index fits to GPU. The results show that the
proposed algorithm is an order of magnitude faster than
some of the state of the art tools on read whose length
is greater than 500 (and similar or better performance on
smaller reads). Despite using a lossy index, it obtains a
good accuracy and sensitivity.

The rest of the paper is organized as follows: Section 2
summarizes some relevant mapping literature. The details
of the proposed tool Masher are given in Section 3. Section 4
presents the experimental results, and Section 5 concludes
the paper.

2. BACKGROUND
Although many short-read alignment tools have been de-

veloped in the past, there are only three main approaches
they use: The first is based on hashing, the second is based
on the suffix trees or the BWT-based FM-index, and the last
approach is based on merge sorting which is very rare [20,
21]. For a survey and the details of these approaches, see [15].

All suffix-tree- and BWT-based approaches use the ref-
erence genome to build the index. On the other hand, the
hash-based tools either use the reference or reads to build the
hash index. This choice depends on the size and structure
of the input and a design rationale. The GPU-based tool
Masher proposed in this work uses the reference for index
construction. Here, we first start with a short description of
the GPU architecture and then, we briefly discuss the exist-
ing alignment tools which support a form of parallelism.

2.1 GPU architecture
A graphical processing unit (GPU) is a highly parallel de-

vice built to speed up the execution of the massively compu-
tational applications. The single instruction-multiple threads
(SIMT) architecture of the GPU is based on that all threads
in the same core execute the same instruction in parallel. In
a GPU, a thread defines the finest computational granular-
ity throughout the execution. Each thread has a relatively
large number of registers and some thread local (off-chip)
memory in case registers are not enough. The threads are
grouped within blocks, and all the threads in a single block
can access the same shared memory. The maximum number
of threads a block can contain is limited. A grid of blocks is
responsible form whole kernel execution. Thus, during the
computation, each thread has a unique ID in a block, and
each block has a unique ID within a grid. The structure is
given in Figure 1.

A GPU is composed of streaming multiprocessors (SM in
NVIDIA Fermi or SMX in NVIDIA Kepler) and each block is
assigned to an SM within the SM’s execution capacity. Each
SM and SMX has 32 and 192 CUDA cores, respectively. A
group of threads that physically run in parallel is called a
warp. The number of such threads, i.e., the warp size, may
change in the future, but currently it is 32 for cutting-edge
GPU architectures. Each thread in a warp usually operates
on a different data but they execute the same instruction in
parallel. Hence, to obtain the best performance, the com-
putations within a warp must be as homogeneous as possi-
ble because, the threads in the same warp are serialized if
they are executing different instructions. When the kernel
has ‘if’s and ‘else’s, i.e., when the computation is branched
(also called divergent in GPU computing), the threads are
serialized, concurrency decreases and performance degrades.

As shown in Figure 1, in a GPU there are different mem-
ory types with different access scope and speed. Hence,
taking the hierarchical memory structure into consideration
can be very important to improve efficiency. These mem-
ory types are grouped into on-chip and off-chip: Registers,
shared memory, and cached constant memory are on-chip
memory where the access time is very fast. On other hand,
global memory, local memory, uncached constant memory,
and texture memory are off-chip memory where the access
time is slower by 100x times than on-chip memory.

Figure 1: GPU architecture and CUDA memory
model.

2.2 Hash-based methods
To cope with the massive sequencing data, several hash-

based tools were enhanced and parallelized, and even re-
designed. For example, SHRiMP2 [6], whose predecessor
SHRiMP [26] was using the reads to build hash-based in-
dex, employs the reference for index construction to achieve
a better parallelism. This redesigning made SHRiMP2 faster
than BFAST [8], which also uses the genome to build the
hash index [6].

GNUMAP is a popular tool which uses a probabilistic ap-
proach to align short reads. Although, the initial version
does not have a concurrency support [5], it has been ex-
tended to employ thread-level parallelism [4]. GNUMAP
uses the genome to build the index and the threads are
assigned to different reads. The major drawback of this

ACM-BCB 2013 342

approach is the large memory footprint when the genome
is large which is the case for human genomes. Another
hash-based alignment tool RMAP indexes the short reads
instead of the genome [28]. Aji et al. proposed the tool
GPU-RMAP which executes RMAP’s algorithm on a GPU
using CUDA [1].

In addition to shared memory parallelism, to cope with
the memory barrier and to obtain a faster tool, many re-
searchers used distributed memory architectures. For ex-
ample, GNUMAP has the option to distribute the reference
genome among the nodes in a network. Since each node
indexes a part of the genome, the memory requirement per
node is reduced significantly. Other tools, such as Novoalign
and rNA also have versions that support both distributed
and shared memory parallelism, namely, NovoalignMPI and
mrNA. A similar sequential tool FANGS [23] evolved to
pFANGS [22] where a pure distributed-memory approach
was found to be more scalable. There exist similar hash-
based tools which rely on genome partitioning over a dis-
tributed memory to deal with the size of the genome. Vari-
ous indexing and data distribution strategies for MPI based
parallelization of short-read alignment algorithms were in-
vestigated by [2].

GPUs have much less memory than a CPU-based system
or a distributed memory computer. Hence, they may not be
able to store a conventional hash-based genome index. The
techniques we propose in this work uses a lossy hash-based
genome index. It is engineered in a way that significantly
reduces its size and makes it small enough to fit into memory
restricted architectures such as GPUs. Still, the alignments
produced retain a high quality.

2.3 Suffix-tree and BWT-based methods
Instead of a hash-based index, a suffix tree [30] can be con-

structed from the reference genome. MUMmer, which is de-
signed for the exact alignment problem, is the first tool that
uses a suffix tree for sequence alignment [9]. Schatz et al.
parallelized MUMmer by using CUDA and developed MUM-
merGPU for the exact alignment on the GPUs [27]. To
cope with the memory challenge, MUMmerGPU uses sev-
eral smaller but overlapping suffix trees instead of one big
tree. Although the proposed tree layout is desirable for short
queries, when the queries get longer, there is a dramatic re-
duction on the performance due to more cache access time
and the divergence of thread loads.

Another index structure closely related to the suffix tree
is the FM-index [7], which is constructed with the Burrows-
Wheeler transform [3]. There exist several popular BWT-
based alignment tools for short and long reads such as Bowtie
and Bowtie2 [10, 11], BWA [13, 14], and SOAP3 [16]. A
BWT index is small: 3GB memory is sufficient to store the
index created from a human genome, whereas even a suffix
array for the same genome consumes more than 12GB mem-
ory. Since all the BWT-based algorithms create the index
from the genome, while aligning the reads, a massive paral-
lelism is possible. In fact, when Bowtie was first proposed,
it was already more than 30 times faster than most of the
non-BWT tools [11].

The reduction on the index size induced by the BWT-
based algorithms enables using GPUs for alignment. Fur-
thermore, the speedups obtained by the GPU-based paral-
lelization can be spectacular especially when the reads (al-
most) exactly match to the reference genome. In this case,

the instruction patterns of two different threads processing
two different reads are similar throughout the alignment.
That is even the data are different, the computation pat-
terns resemble each other. However, when the number of
mismatches increases, the computation branches, i.e., devi-
ates from the generic scheme, and a significant amount of
backtracking [11] is needed to traverse the search space for
accuracy. On a GPU, this branching can easy result in the
threads of the same warp being sequentialized and wait for
each other in different branches. Hence, considering the va-
riety and different characteristics of the HPC architectures
available to the researchers, a BWT-based index is not a
one size fit all solution for efficiency. Yet, it is still a very
powerful and useful technique for sequence mapping.

In our experiments, we used three popular and fast align-
ers to evaluate and compare Masher’s performance: a CPU-
based tool, Bowtie2, and two GPU-based tools, SOAP3-
dp [19] and CUSHAW2-GPU. We experimented with Bowtie2
both in sensitive and fast mode. We chose to use SOAP3-dp
instead of SOAP3 since it is reported to improve SOAP3 in
terms of both speed and sensitivity by using dynamic pro-
gramming on a GPU, a technique we also employ in Masher.

3. MASHER
The workflow of Masher is shown in Figure 2. After ob-

taining the genome, Masher first constructs the index to be
used for the alignment. Then it seeds each read (and also
its reversed and complemented form) and use the index to
locate the seeds in the genome. The seed locations are then
converted to base locations for the corresponding read. By
using a merge operation, the base locations which are close
to each other are merged, and the candidate locations are
sorted w.r.t. their quality, i.e., the number of base locations
they correspond. Starting with a batch which contains the
promising locations, a local alignment is performed to score
each candidate location until one with a score above the
minimum desired score is found. Masher processes multiple
reads on GPU in batches and in parallel. Here, we describe
each step in detail.

3.1 Index construction
Masher uses a novel indexing scheme. Let L and ` be the

read and seed lengths, respectively. In the current version of
Masher, ` is set to 15bp. Each base is represented by 2 bits
(i.e., A = 00, C = 01, G = 10, and T = 11)1, so each seed
can be represented by a value encoded as a 30-bit integer
(in memory, a 32 bit integer is used). Let |x| = dlog2 xe be
the number of bits required to represent x and let N be the
length of the reference genome.

A regular index uses two arrays: an array locs which stores
the locations of each seed in sorted order and requires N |N |
bits of memory. And another array ptrs which stores the
index of the first location of each seed in locs and requires
4`|N | bits of memory. For hg19, the genome we used in
the experiments has N = 3, 137 × 109 nucleotides and we
need 11.7GB and 4GB of memory to store locs and ptrs,
respectively. This typically does not fit in the memory of a
GPU.

In order to minimize the size of the index, as Figure 3
shows, Masher leaves a space, the indexing step, between

1We replaced each N in the genome with A.

ACM-BCB 2013 343

Figure 2: The workflow of Masher.

the seeds whose size is denoted by ∆G. That is assuming
the first location is 0, only the seeds that start from the lo-
cations divisible by ∆G are indexed. Hence for a genome of
size Nbp, only dN/∆Ge locations are taken in the account.
locs now requires dN/∆Ge|N | bits of memory and ptrs takes
4`|dN/∆Ge| bits. Masher uses ∆G = 4, and the total mem-
ory requirement is around 2.9GB for locs and 4GB for ptrs
which is still larger than the available memory in many cut-
ting edge GPUs. A similar technique has been used to gener-
ate a sparse k-mer graph for de novo genome assembly [31].

Figure 3: Seeding for index construction in Masher:
the seed length ` and the indexing step size ∆G are
set to 15 and 4, respectively.

To further reduce the memory footprint, Masher also em-
ploys a time-memory tradeoff and uses a two-level access
structure as shown in Figure 4: the seed values are grouped
by δ in their natural (lexicographic) order, and the ptrs ar-
ray is constructed not for the individual seeds but only for
the seed groups. That is, given a seed s, one can compute
its group id by bs/δc and access the group’s first entry in
locs whose location is stored in ptrs. This makes ptrs’ size
d4`/δe|dN/∆Ge|. Masher uses δ = 8 and ptrs now takes
0.5GB in memory for hg19.

To access seed s’s actual first entry in locs, Masher uses
another array counts of size 4`, which stores the number of
entries in locs for each possible seed. Hence, with O(δ) ad-
dition, the position of the first location where the value of
s appears is reached. With this scheme, the memory foot-
print of counts is 4`|dN/∆Ge| since there are dN/∆Ge pos-

sible locations. However, we observed that for many seeds,
the number of locations a seed appears is much smaller. To
keep the index in GPU memory, we store at most 255 loca-
tions. Hence, each entry in counts can be stored by using
one byte of memory, and the whole array can be stored with
4` bytes. When a seed appears in more than 255 locations,
Masher randomly (uniformly) chooses 255 of them. counts
take 1GB of memory. With these parameters and tech-
niques, the genome index can be stored in modern GPUs
like C2070 or K20/K20x by using only 4.4GB. For GPUs
with smaller memory, one can choose larger values of ∆G

and δ at the expense of increased execution time. Masher
currently uses a sequential implementation of the index con-
struction but it can be easily parallelized.

Figure 4: The index structure used in Masher con-
taining three arrays locs, ptrs, and counts. Let j be an
integer and i = δ× j. If seed i+4 is accessed, Masher
first computes the group id by j ← b(i+4)/δc. Group
j’s first entry in locs (actual location entry for seed i)
is found via ptrs. By using the counts array, Masher
jumps within the group entries and finds the first
location entry for seed i+ 4.

3.2 Finding candidate locations

ACM-BCB 2013 344

Figure 5: Generation of seeds from a read: in the
example, the seed length ` and the read step size ∆R

are set to 15 and 10, respectively.

Given an Lbp read, Masher generates multiple seeds of
length `. The seed generation process is described in Fig-
ure 5. Assuming the first location is 0, the aligner uses only
the seeds starting from the read locations

{i : i mod ∆R < ∆G, i < L− `}

where ∆R is the read step size. Starting from location 0, ∆G

consecutive seeds form a group, and the distance between
the first seed of a group and that of next one is ∆R. And the
second condition i < L− ` is required to avoid seeds shorter
than `bp. Hence, for each read, Masher uses approximately
s = ∆Gd(L− `)/∆Re seeds.

Consider a read which exactly matches with a region in
the reference. Since the seeds in a group are generated from
consecutive locations and there are ∆G of them, at least one
seed in each group must have been used during the index
construction phase. Note that the index is generated from
the seeds starting from every other ∆Gth reference location.
For each location of a seed in the locs array, a base location,
the one for the first nucleotide of the read in case of a match,
is obtained by using the position of the seed in the read.
Hence, when there is an exact match between a read and
the reference, the base location corresponds to at least b(L−
`)/∆Rc seed locations in the locs array. And when ∆R is
small, this number increases.

After the seeds are generated, Masher finds the locations
where they appear in the genome as previously described in
Figure 4. This is performed in two steps: first, the counts
array is visited for each seed, the total number of seed lo-
cations is obtained, and the memory which will be used to
store these locations is allocated in the GPU. Second, the
ptrs and counts arrays are used to access the first entry in
locs of each seed. By using the positions of the seeds on
the read, the values in the index are converted to base loca-
tions and brought to the memory. For efficiency purposes,
the seeds which appear in more than ω reference locations
are ignored in both steps where ω is an integer parameter
smaller than or equal to 255. In the current implementation
of Masher, we use ω = 60. That is the seeds which have
more than 60 locations are ignored. And for the remaining
reads, which are not aligned at the end of local alignment,
the whole alignment process is repeated with ω = 255. An
example snapshot of the memory is given in Figure 6(a).
In the example, the base locations for two seed groups are
given where ∆G = 4.

Finding and storing the candidate base locations is exe-

cuted in parallel on the GPU with two kernels, each responsi-
ble from one of the steps described above. Masher processes
the reads in batches where the batches contain 16, 384 reads.
This number is chosen by considering the memory Masher
requires with L = 1000. For each kernel, a read is processed
by a single GPU block where the block size, i.e., the number
of threads in a block is set to s. Thus, a seed is processed
by a single thread.

Figure 6: The memory snapshot of the candidate
locations for a read. (a) The locations are grouped
with respect to their seeds and each group is already
sorted (as they are stored in the index). Initially, the
weights are set to 1. (b) The merged location array
is constructed and the weights are combined. The
arrays are sorted w.r.t. the weights. Only a prefix
of the location array in (a) is given.

As Figure 6 shows, each candidate location entry is ini-
tially weighted with 1. A location can appear in the mem-
ory more than once. In fact, if the read is matched with the
reference genome the corresponding base location appears
many times. To distinguish the good and bad candidate
base locations, the locations are merged and their weights
are combined by an algorithm similar to mergesort. For each
seed, the base locations are already sorted (since the exact
seed locations are stored in-order in the index). Starting
from these sorted location sets, Masher performs merge op-
erations on pairs of sets. These operations are executed in
parallel by processing a read with a GPU block with s/2
threads, i.e., the maximum number of pairs. Hence, each
merge operation is performed by a single thread. The merge
operation of Masher is slightly different than the one used
by mergesort: if the values of two locations are the same (or
close to each other) Masher adds the weight of the second
to the weight of the first. And the next entry in the second
set is visited. In the current implementation, the locations
which has at most 28 bases between them are considered
close. After processing the last pair, the final set is sent to
CPU and sorted with respect to seeds’ weights as shown in
Figure 6(b).

3.3 GPU-accelerated local alignment
After obtaining the candidate locations and sorting them

with respect to their weights for all the reads in parallel,
Masher chooses a batch of promising read/location pairs,
(e.g., all the ones with the best 5 weights), and executes
a local alignment for each pair. For each read, the best
location (w.r.t. a scoring scheme) is chosen from the cur-
rent batch and reported. The remaining reads for which a
valid alignment cannot be found in the current batch are
processed in the next batch(es).

Masher uses a parametrized variant of the well-known

ACM-BCB 2013 345

Smith-Waterman algorithm which is based on dynamic pro-
gramming and employs a cost matrix [29]. We used the
scoring scheme of [17] to calculate the values in the ma-
trix and support affinity gap scoring. Given a parameter k,
the modified SW algorithm uses a banded search space, and
only the matrix cells (i, j) where |i− j| ≤ k are visited and
scored. For efficiency purposes, Masher does two passes on
the read/location pairs and sets k to 4 and 16 in the first and
the second pass, respectively. Hence, in the first pass, only
the alignments with a few number of errors are looked for.
And if a read is not aligned in the first pass, alignments with
more number of errors are considered in the second one.

The local alignment phase is run on the GPU where a
GPU block performs multiple SWs in parallel and each SW
is performed also in parallel by using k threads. At each
step of the algorithm, the k matrix cells each computed by
a different thread form a line which is parallel to the anti-
diagonal of the dynamic programming matrix. During this
phase, these intermediate cell scores are kept in shared mem-
ory for efficiency. Thanks to the synchronicity of GPUs, only
k dynamic programming scores need to be kept in shared
memory for a given SW computation. Therefore, using a
small k (first 4, then 16) really helps fitting the data of
many SW computations in the shared memory which is a
very scarce resource. This allows to run a large amount of
SWs concurrently on the GPU. In addition to shared mem-
ory, Masher uses the global memory to store the predecessor
of each matrix cell, which is less critical since in this phase,
it is only written but not read.

4. EXPERIMENTAL RESULTS
All the experiments run on a machine equipped with an

Intel core i7-960 CPU clocked at 3.2 Ghz. There are 4
Hyper-Threading cores (8 threads in total) and 24GB of
DDR3 memory. The machine is equipped with an NVIDIA
Tesla K20c GPU featuring 13 Streaming Multiprocessors (SM),
192 cores per SM clocked at 700 MHz (for a total of 2496
CUDA cores), and 4.8GB of global memory clocked at 2.6 GHz.
ECC is enabled. On the software side, the machine runs
CentOS 5.8 with Linux 2.6.18. The code was compiled us-
ing CUDA 5.0 and gcc 4.2.4.

The human genome we used in the experiments is hg19

which hasN = 3.137×109 bases. We used the wgsim simula-
tor [12] to generate the reads with L ∈ {100, 300, 500, 1000}
and error rate ε ∈ {2%, 4%, 6%, 8%}. For the simulator,
the fraction of indels is 15% and the probability of an indel
extension is 30%. For each of these configurations, we gen-
erated 100K single-end reads and evaluate the performance
of Masher by comparing it with Bowtie2 (sensitive and fast
modes), SOAP3-dp, and CUSHAW2-GPU. For Bowtie2 and
Bowtie2-fast, we used shared memory parallelism with 8
threads. For the other tools/modes, we used Tesla K20.
The amount of the memory on K20, which is a cutting edge
GPU, was not sufficient for CUSHAW2-GPU to align reads
longer than 320bp. Hence, we do not present its results
for the configurations with L ∈ {500, 1000}. We experi-
mented with two modes of Masher: the first one, Masher,
uses ∆R = 0.7

√
L. The second one, Masher-fast, uses a

larger read step size ∆R =
√
L. It also uses smaller candi-

date base location batches during the local alignment phase
to reduce the number of SWs performed.

We used three metrics for comparison: the first metric,
sensitivity, is the percentage of the aligned reads. The sec-

0.5$

0.6$

0.7$

0.8$

0.9$

1$

1$ 6$ 11$ 16$ 21$ 26$ 31$ 36$ 41$ 46$ 51$ 56$

Pr
(c
ou

nt
)<
=)
x)
)

Figure 7: The cumulative distribution function for
the number of appearances of a seed in the reference.
To draw the plot, only the seeds used during the
indexing phase, i.e., the ones which appear at least
one location divisible by ∆G of the reference genome,
are taken into the account. A point (x, y) on the plot
shows that a random seed (in the used seed set)
exists in at most x locations of the genome with y
probability.

ond metric, accuracy, is the ratio of the number of correctly
aligned reads to the number of aligned reads. Hence, the
product of sensitivity and accuracy gives the percentage of
the correctly aligned reads. We assume that a read is cor-
rectly aligned if the left most position is within 50bp of the
simulated location. The third metric is the execution time:
to be fair with all the tools, we only measured the align-
ment time and excluded all other operations such as I/O.
The time spent for index construction is also not included.

We tried to be as consistent as possible while setting the
parameters for each tools. For index construction, their
default parameters are used. While computing the over-
all alignment score, a match is awarded with 2 points. On
the other hand, each mismatch, gap, and gap extension are
penalized with -1, -2, and, -1 points, respectively. The same
values are used for Masher, Bowtie2, and SOAP3-db. For
CUSHAW2-GPU, we use the default configuration. The
lower bound for a valid alignment score is set to

scoreLB = L ∗ (2− 0.1× (1 + ε/0.02)).

This score is used for Bowtie2 and SOAP3-db in addition
to Masher. We keep the default value for CUSHAW2-GPU
since its results were much better when used in the default
configuration.

We first analyze how our restriction and limitation on the
number of maximum seed locations affect Masher. The lim-
itation arises from GPU’s memory bottleneck: to reduce
the size of the index, the maximum number of locations
indexed/stored per seed is set to 255. And the restriction
arises from our efficiency concerns: Masher ignores the seeds
with more than ω = 60 locations in the first alignment pass.
Note that in the second pass, for the remaining, unaligned
reads, ω is set to 255, hence all the locations in the index are
used. As Figure 7 shows, the percentage of the seeds which
appear at more than 60 reference locations is insignificant.
In fact, even with ω = 20, Masher may not have an accuracy
problem in its first pass. As explained in the previous sec-

ACM-BCB 2013 346

tion, in many of our GPU kernels, each seed is processed by
a single thread and the amount of work a thread performs is
proportional to the number of locations stored in the index
for that seed. As explained in Section 2.1, the threads in a
warp wait for each other even if they remain idle. Hence,
ignoring the seeds with high location counts can be promis-
ing to reduce the load imbalance and improve the parallel
performance obtained by a GPU.

Figure 8 shows the two metrics, accuracy and sensitivity,
and their product for each read length/error rate configu-
ration. As expected, the values of these metrics drop when
the error rate increases. And they (usually) increase with
the read length. Considering the percentage of the accu-
rately aligned reads (the third part of each table), Masher,
Bowtie2, and CUSHAW2-GPU perform better for L = 100
and L = 300 (we present the maximum value and the ones
in its 2% neighborhood as bold). For longer reads, Masher
and Bowtie2 continues to perform well. SOAP3-dp also per-
forms good for small error rates. However, when the error
rate increases, its sensitivity , the percentage of the reads it
aligns, drops significantly. When the read length increases,
there is not much difference between the normal and -fast
versions of Masher and Bowtie2. It may be expected since
the good and bad candidate locations can be distinguished
easier when L is large. For example, for long reads, Masher
uses more seeds and the maximum weight a candidate base
location can have also increases. Hence, the weight spectrum
will be larger. This will make the things easier for Masher
that starts from the good end of this spectrum while per-
forming local alignments. Overall, the quality of Masher’s
alignment is on-par or better than the other tested tools.

Figure 9 shows the alignment times (in seconds) of the
tools in log scale for 100K reads and each read length/error
rate configuration. Our first observation is similar to the one
we have for the previous comparison for accuracy and sensi-
tivity: when the reads get long enough, e.g., L = 1000, there
is not much difference between the normal and fast modes of
Masher. On the other hand, for short reads, e.g., L = 100 or
300, the fast modes are indeed faster. Another similar ob-
servation is, Masher’s normal mode is affected by the error
rate more than its fast mode (see for example the trend for
L = 300 and L = 500). That is when ε increases both
Masher’s and Masher-fast’s alignment time also increase.
However, the increase is less for the fast mode.

As Figure 9 shows, for L = 100, the performance of the
tools are close to each other. Still, Masher-fast and Bowtie2-
fast are the fastest tools. For this setting, SOAP3-dp is
faster than Bowtie2. And when L = 300 it is even faster
than Masher and Bowtie2-fast. However, it is still 1.7 to
2.2 times slower than Masher-fast. When L increases, the
difference between Masher and other tools becomes more
clear. For example, when L = 1000, Masher and Masher-
fast are around 22–23 times better than Bowtie2-fast which
is the fastest non Masher-based tool in this setting. Hence,
we can argue that for long(er) reads, Masher performs much
faster than the other state-of-the-art tools we tested.

Figure 10(a) shows the changes on the alignment time of
Masher when L and ε increases. As expected, the align-
ment time increases with the error rate. And it also in-
creases with the read length except for a few cases. As
we mentioned before, when L gets larger for a fixed ε, it
can be easier to distinguish the good and bad candidates.
As the figure shows, when L increases from 500 to 1000,

Masher’s alignment time reduces from 32 seconds to 22 sec-
onds for ε = 0.08. This reduction indeed is correlated with
the reduction on the number of local alignments performed.
For the configuration (L = 500, ε = 0.08), Masher performs
around 3, 000K SW operations whereas this number is only
330K for (L = 1000, ε = 0.08). Although it is less visi-
ble, for ε = 0.04, the alignment time also reduces from 24
to 20 seconds. Again, the reason is the reduction on the
number of SW operations; this time from 1, 800K to 368K.
These numbers show that the number of local alignments
performed is the main bottleneck when we want to achieve
a higher a throughput. Masher can be tuned to reduce the
number of SWs without significantly reducing the accuracy.
In fact, this is what we aimed while setting the parame-
ters for the fast mode whose alignment time plot is shown
in Figure 10(b). As expected, using smaller batches of the
candidate base locations prevents the fast mode to perform
a large amount of local alignments. As a result, the align-
ment time of Masher-fast increase with L. To be precise,
for ε = 0.08, the number of SWs performed is between 300K
and 400K for both L = 500 and L = 1000.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduced Masher, a fast and accurate

short/long read mapper, which uses a novel alignment algo-
rithm and memory efficient indexing scheme to reduce the
size of a human genome index and to make it fit to the
memory of a GPU. The results show that Masher produces
accurate alignments. Its speed is competitive with the tested
state-of-the-art tools for reads of length less than 300 and
an order of magnitude faster when the reads are longer than
500.

In the close future, we aim to make the software publicly
available. In addition, we want to improve Masher’s per-
formance further by using GPU-specific optimizations and
with a better CPU/GPU pipelining. We also want to add
new features such as a support for paired-end sequences or
fastq format.

6. ACKNOWLEDGMENTS
This work was partially supported by the NHI/NCI grant

R01CA141090 and NSF grant CNS-0643969. We also thank
to NVIDIA for providing us the K20 card used in the exper-
iments.

7. REFERENCES
[1] A. M. Aji, Z. Liqing, and W. Feng. GPU-RMAP:

accelerating short-read mapping on graphics
processors. In Proc. CSE 2010, pages 168–175, Dec.
2010.

[2] D. Bozdağ, C. C. Barbacioru, and U. V. Çatalyürek.
Parallel short sequence mapping for high throughput
genome sequencing. In Proc. IPDPS 2009. IEEE
Computer Society, May 2009.

[3] M. Burrows and D. J. Wheeler. A block-sorting
lossless data compression algorithm. Technical Report
124, Digital Systems Research Center, 1994.

[4] N. L. Clement, M. J. Clement, Q. Snell, and W. E.
Johnson. Parallel mapping approaches for GNUMAP.
In Proc. IPDPSW 2011, pages 435–443. IEEE
Computer Society, May 2011.

ACM-BCB 2013 347

Error Masher Masher Bowtie2 Bowtie2 SOAP3 CUSHAW2
rate -fast -fast -dp -GPU

Sensitivity (Percentage)
2% 99.23 97.55 98.80 98.00 98.50 99.90
4% 99.44 96.81 98.00 94.63 92.50 99.90
6% 99.36 94.50 96.00 88.80 81.70 98.80
8% 98.87 89.83 93.15 80.60 67.70 96.20

Accuracy (Percentage)
2% 95.01 95.49 95.20 95.00 96.20 95.20
4% 93.82 94.44 94.00 93.78 95.50 94.30
6% 92.42 93.07 92.60 91.70 94.50 93.20
8% 90.84 91.49 91.10 89.47 93.00 91.90

Sensitivity × Accuracy (Percentage)
2% 94.28 93.15 94.06 93.10 94.76 95.10
4% 93.29 91.43 92.12 88.74 88.34 94.21
6% 91.83 87.95 88.90 81.43 77.21 92.08
8% 89.81 82.19 84.86 72.11 62.96 88.41

(a) Read length = 100

Error Masher Masher Bowtie2 Bowtie2 SOAP3 CUSHAW2
rate -fast -fast -dp -GPU

Sensitivity (Percentage)
2% 99.92 99.78 99.90 99.70 99.80 100.00
4% 99.84 99.55 99.80 99.24 99.40 100.00
6% 99.75 99.17 99.60 97.70 97.40 99.90
8% 99.54 98.22 99.20 93.90 91.10 99.70

Accuracy (Percentage)
2% 97.19 97.62 97.90 97.70 98.40 97.90
4% 96.83 97.25 97.60 97.50 99.30 97.40
6% 96.33 96.88 97.50 97.00 97.60 96.40
8% 95.58 96.37 97.10 96.30 97.00 94.80

Sensitivity × Accuracy (Percentage)
2% 97.11 97.41 97.80 97.41 98.20 97.90
4% 96.68 96.81 97.40 96.76 98.70 97.40
6% 96.09 96.08 97.11 94.77 95.06 96.30
8% 95.14 94.65 96.32 90.43 88.37 94.52

(b) Read length = 300

Error Masher Masher Bowtie2 Bowtie2 SOAP3
rate -fast -fast -dp

Sensitivity (Percentage)
2% 99.89 99.89 99.90 99.90 99.20
4% 99.84 99.78 99.90 99.80 94.30
6% 99.74 99.51 99.90 99.34 75.30
8% 99.62 98.93 99.90 97.70 48.60

Accuracy (Percentage)
2% 97.69 97.78 98.20 98.10 98.80
4% 97.20 97.19 98.00 97.80 98.50
6% 96.83 96.83 97.80 97.60 98.30
8% 96.25 96.15 97.40 97.00 98.00

Sensitivity × Accuracy (Percentage)
2% 97.58 97.67 98.10 98.00 98.01
4% 97.04 96.98 97.90 97.60 92.89
6% 96.58 96.36 97.70 96.96 74.02
8% 95.88 95.12 97.30 94.77 47.63

(c) Read length = 500

Error Masher Masher Bowtie2 Bowtie2 SOAP3
rate -fast -fast -dp

Sensitivity (Percentage)
2% 100.00 99.80 99.99 99.90 99.30
4% 100.00 99.73 99.90 99.90 98.70
6% 100.00 99.53 99.90 99.80 91.40
8% 100.00 98.93 99.80 99.50 68.90

Accuracy (Percentage)
2% 98.50 98.25 98.50 98.50 98.90
4% 98.28 97.78 98.30 98.10 98.50
6% 97.86 97.24 97.50 97.30 97.80
8% 97.41 96.66 96.43 96.10 96.00

Sensitivity × Accuracy (Percentage)
2% 98.50 98.05 98.49 98.40 98.21
4% 98.28 97.52 98.20 98.00 97.22
6% 97.86 96.78 97.40 97.11 89.39
8% 97.41 95.63 96.24 95.62 66.14

(d) Read length = 1000

Figure 8: Evaluation of the result quality of the tools used in the experiments for various (L, ε) configurations.
For each configuration, 100K reads are used. Sensitivity is the percentage of the reads aligned by the tool
within the 100K reads. Accuracy is the percentage of the correctly mapped reads within the aligned reads.
Hence, the product of accuracy and sensitivity is equal to the percentage of the correctly aligned reads
within whole read set. For each configuration, the maximum value of the product and the ones in its 2%
neighborhood are shown in bold. By using the 4.8GB memory in K20, CUSHAW2-GPU can only process at
most 320bp. Hence, it is not included in tables (c) and (d) for read lengths 500bp and 1000bp, respectively.

ACM-BCB 2013 348

1"

10"

100"

2%" 4%" 6%" 8%"

Ex
ec
u&

on
)&
m
e)
(s
ec
.))
in
)lo
g)
sc
al
e)

Error)rate)

Masher" Masher/fast" Bow5e2"

Bow5e2/fast" SOAP3/dp" CUSHAW2/GPU"

(a) Read length = 100bp

1"

10"

100"

1,000"

2%" 4%" 6%" 8%"

Ex
ec
u&

on
)&
m
e)
(s
ec
.))
in
)lo
g)
sc
al
e)

Error)rate)

Masher" Masher0fast" Bow6e2"

Bow6e20fast" SOAP30dp" CUSHAW20GPU"

(b) Read length = 300bp

1"

10"

100"

1,000"

10,000"

2%" 4%" 6%" 8%"

Ex
ec
u&

on
)&
m
e)
(s
ec
.))
in
)lo
g)
sc
al
e)

Error)rate)

Masher" Masher0fast" Bow6e2"

Bow6e20fast" SOAP30dp"

(c) Read length = 500bp

1"

10"

100"

1,000"

10,000"

100,000"

2%" 4%" 6%" 8%"

Ex
ec
u&

on
)&
m
e)
(s
ec
.))
in
)lo
g)
sc
al
e)

Error)rate)

Masher" Masher0fast" Bow6e2"

Bow6e20fast" SOAP30dp"

(d) Read length = 1000bp

Figure 9: Log-scaled execution times (in seconds) of the aligners used in the experiments for various (L, ε)
configurations. For each configuration, 100K reads are used. By using the 4.8GB memory in K20, CUSHAW2-
GPU can align the reads with length at most 320. Hence, it is not included in the last two figures for read
length 500 and 1000.

0"

5"

10"

15"

20"

25"

30"

35"

0" 200" 400" 600" 800" 1000" 1200"

Ex
ec
u&

on
)&
m
e)
(s
ec
.))

Read)length)

2%" 4%"

6%" 8%"

(a) Masher

0"

5"

10"

15"

20"

25"

30"

35"

0" 200" 400" 600" 800" 1000" 1200"

Ex
ec
u&

on
)&
m
e)
(s
ec
.))

Read)length)

2%" 4%"

6%" 8%"

(b) Masher-fast

Figure 10: Alignment time of Masher w.r.t. various (L, ε) configurations.

ACM-BCB 2013 349

[5] N. L. Clement, Q. Snell, M. J. Clement, P. C.
Hollenhorst, J. Purwar, B. J. Graves, B. R. Cairns,
and W. E. Johnson. The GNUMAP algorithm:
unbiased probabilistic mapping of oligonucleotides
from next-generation sequencing. Bioinformatics,
26(1):38–45, 2010.

[6] M. David, M. Dzamba, D. Lister, L. Ilie, and
M. Brudno. SHRiMP2: sensitive yet practical short
read mapping. Bioinformatics, 2011.

[7] P. Ferragina and G. Manzini. Opportunistic data
structures with applications. In Proc. FOCS 2000,
pages 390–. IEEE Computer Society, 2000.

[8] N. Homer, B. Merriman, and S. F. Nelson. BFAST: an
alignment tool for large scale genome resequencing.
PLoS ONE, 4(11):e7767, Nov. 2009.

[9] S. Kurtz, A. Phillippy, A. Delcher, M. Smoot,
M. Shumway, C. Antonescu, and S. Salzberg. Versatile
and open software for comparing large genomes.
Genome Biology, 5(2):R12, 2004.

[10] B. Langmead and S. L. Salzberg. Fast gapped-read
alignment with Bowtie2. Nature Methods, 9:357–359,
2012.

[11] B. Langmead, C. Trapnell, M. Pop, and S. L.
Salzberg. Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome
Biology, 10(3):R25+, 2009.

[12] H. Li. wgsim. Accessed, May 2013.

[13] H. Li and R. Durbin. Fast and accurate short read
alignment with Burrows-Wheeler transform.
Bioinformatics, 25(14):1754–1760, July 2009.

[14] H. Li and R. Durbin. Fast and accurate long read
alignment with Burrows-Wheeler transform.
Bioinformatics, 26(5):589–595, Mar. 2010.

[15] H. Li and N. Homer. A survey of sequence alignment
algorithms for next-generation sequencing. Briefings
in Bioinformatics, 11(5):473–483, Sept. 2010.

[16] C.-M. Liu, T.-W. Lam, T. Wong, E. Wu, S.-M. Yiu,
Z. Li, R. Luo, B. Wang, C. Yu, X. Chu, K. Zhao, and
R. Lil. SOAP3: GPU-based compressed indexing and
ultra-fast parallel alignment of short reads. In Proc.
MASSIVE 2011, June 2011.

[17] Y. Liu, D. L. Maskell, and B. Schmidt. CUDASW++:
optimizing Smith-Waterman sequence database
searches for CUDA-enabled graphics processing units.
BMC Research Notes, 2(1):73+, 2009.

[18] Y. Liu and B. Schmidt. Long read alignment based on
maximal exact match seeds. Bioinformatics,
28(18):i318–i324, 2012.

[19] R. Luo, T. Wong, J. Zhu, C.-M. Liu, E. Wu, L.-K. Lee,
H. Lin, W. Zhu, D. W. Cheung, H.-F. Ting, S.-M. Yiu,
C. Yu, Y. Li, R. Li, and T.-W. Lam. SOAP3-dp: fast,
accurate and sensitive GPU-based short read aligner.
Technical Report 1302.5507v2, arXiv, Feb. 2013.

[20] N. Malhis, Y. S. N. Butterfield, M. Ester, and S. J. M.
Jones. Slider-maximum use of probability information
for alignment of short sequence reads and snp
detection. Bioinformatics, 25(1):6–13, 2009.

[21] N. Malhis and S. J. M. Jones. High quality snp calling
using illumina data at shallow coverage.
Bioinformatics, 26(8):1029–1035, 2010.

[22] S. Misra, R. Narayanan, W.-K. Liao, A. N.

Choudhary, and S. Lin. pFANGS: Parallel high speed
sequence mapping for next generation 454-roche
sequencing reads. In Proc. IPDPSW 2010. IEEE
Computer Society, 2010.

[23] S. Misra, R. Narayanan, S. Lin, and A. N. Choudhary.
FANGS: high speed sequence mapping for next
generation sequencers. In Proc. SAC 2010, pages
1539–1546, 2010.

[24] J. C. Mu, H. Jiang, A. Kiani, M. Mohiyuddin,
N. Bani Asadi, and W. H. Wong. Fast and accurate
read alignment for resequencing. Bioinformatics,
28(18):2366–2373, Sept. 2012.

[25] G. Rizk and D. Lavenier. Gassst: global alignment
short sequence search tool. Bioinformatics,
26(20):2534–2540, 2010.

[26] S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume,
A. Sidow, and M. Brudno. SHRiMP: Accurate
mapping of short color-space reads. PLoS Comput
Biology, 5(5):e1000386+, May 2009.

[27] M. C. Schatz, C. Trapnell, A. L. Delcher, and
A. Varshney. High-throughput sequence alignment
using graphics processing units. BMC Bioinformatics,
page 474, 2007.

[28] A. D. Smith, Z. Xuan, and M. Q. Zhang. Using
quality scores and longer reads improves accuracy of
solexa read mapping. BMC Bioinformatics, 9(1):128+,
Feb. 2008.

[29] T. Smith and M. Waterman. Identification of common
molecular subsequences. J. Molecular Biology,
147:195–197, 1981.

[30] P. Weiner. Linear pattern matching algorithms. In
Proc. SWAT 1973, pages 1–11, Oct. 1973.

[31] C. Ye, Z. Ma, C. Cannon, M. Pop, and D. Yu.
Exploiting sparseness in de novo genome assembly.
BMC Bioinformatics, 13(Suppl 6):S1, 2012.

ACM-BCB 2013 350

