
Extracting Maximal Exact Matches on GPU

Anas Abu-Doleh†‡, Kamer Kaya†

†Dept. of Biomedical Informatics
‡Dept. of Electrical and Computer Eng.

The Ohio State University
abudoleh.1@osu.edu,
kamer@bmi.osu.edu

Mohamed Abouelhoda

Faculty of Engineering
Cairo University, Giza, Egypt

mabouelhoda@yahoo.com

Ümit V. Çatalyürek

Dept. of Biomedical Informatics
Dept. of Electrical and Computer Eng.

The Ohio State University
umit@bmi.osu.edu

Abstract—The revolution in high-throughput sequencing
technologies accelerated the discovery and extraction of various
genomic sequences. However, the massive size of the generated
datasets raise several computational problems. For example,
aligning the sequences or finding the similar regions in them,
which is one of the crucial steps in many bioinformatics
pipelines, is a time consuming task. Maximal exact matches
have been considered important to detect and evaluate the
similarity. Most of the existing tools that are designed and
developed to find the maximal matches are based on advanced
index structures such as suffix tree or array. Although these
structures triggered the development of efficient search al-
gorithms, they need large indexing tables which yield large
memory footprint for the software using them and bring
significant overhead. In this article, we introduce a novel tool
GPUMEM which effectively utilizes the massively parallel GPU
threads while finding maximal exact matches inside two genome
sequences using a lightweight indexing structure. The index
construction, which is also handled in GPU, is so fast that
even by including the index generation time, GPUMEM can
be faster in practice than a state-of-the-art tool that uses a
pre-built index.

Keywords-maximal exact matches; GPUs; parallel program-
ming; indexing;

I. INTRODUCTION

In the last decade, there have been exciting advancements
in high-throughput sequencing technologies which massively
improved the size of the sequencing data and reduced
the costs. However, these also yield new computational
problems for the researchers who are interested in pro-
cessing this data. Today, evaluating and/or quantifying the
similarity of the sequences and aligning them with each
other is considered as a highly computation-intensive task
in many bioinformatics pipelines [7]. Hence, there has been
a growing interest on solving this problem.

Finding the optimum similarity, e.g., the best local align-
ment via Smith-Waterman [15], may not be possible for large
sequence datasets. For this reason, heuristic approaches have
been proposed along-with novel techniques to improve their
speed and accuracy. In general, these heuristic approaches
extract the shared regions from the sequences and use them
as anchors for the next step of a full alignment process.

For example, BLAST [3] extracts fixed-size seeds that are
common in the sequences. However, using a fixed seed
length can be problematic because a massive amount of
seeds can be generated from a single long sub-sequence that
exists in all the sequences. This problem has attracted more
attention, and another approach, using maximally matched
regions in the sequences have been investigated.

The problem of extracting a maximal unique
match (MUM) was introduced in [6] and a tool MUMmer
has been made available to public. A MUM is a sub-
sequence which appears only once in both sequences (i.e.,
unique) and cannot be extended to either directions without
having a mismatch (i.e., maximal). Other forms of the
problem such as extracting maximal rare matches have
also been studied [14]. The problem we will study on in
this paper is the maximal exact match (MEM) extraction
when a reference and a query sequence are given. In this
variant, the uniqueness (or rareness) is not a constraint.
The problem is interesting especially when the number
of MUMs is low, which is usually the case in practice,
extracting all the MEMs is sufficient to produce anchors
between two sequences. Furthermore, finding MEMs is an
essential task while solving various bioinformatics problems
such as mapping long reads [13], genomic assembly [10],
and whole genome comparison [5].

In this paper, we introduce a very fast GPU-based tool
GPUMEM whose good matching performance is based on
the efficient utilization of the massively parallel threads.
Instead of complex and large index structures employed
by the existing tools, GPUMEM uses a lightweight GPU-
based parallel indexing technique which is more suitable for
memory restricted devices. Experiments on real-life genomic
sequences show that the GPU-based parallel indexing is so
fast that the combined indexing and matching method is
faster than a state-of-the-art tool that uses an already pre-
built index. To alleviate the memory restriction problem, the
tool partitions the 2D (reference/query) search space into
equally sized regions and first solves these subproblems
by employing a novel load balancing heuristic. To the
best of our knowledge, GPUMEM is the first GPU-based



Table I
NOTATION USED IN THE PAPER

R Reference sequence
Q Query sequence
(r, q, λ) A maximal exact match of length λ in R and Q

Rr · · ·Rr+λ−1 = Qr · · · Qq+λ−1

L Minimum length of an exact match
`s Indexing seed length
∆s Indexing step size
nr #row tiles in 2D work partitioning
nc #column tiles in 2D work partitioning
`tile size of a (square) tile
nblock #blocks in a tile
`block width of block
τ #threads
w #query locations per thread

tool designed and developed for the maximal exact match
extraction problem.

The rest of the paper is organized as follows: Section II
introduces the notation, formally defines the MEM extrac-
tion problem, and provides necessary information on the
existing tools and techniques. The proposed method is de-
scribed in Section III. Section IV evaluates the performance
of GPUMEM by comparing it with existing tools in the
literature. Section V concludes the paper and discusses
possibilities for future work.

II. NOTATION AND BACKGROUND

Let R be a (reference) sequence of the letters in the
alphabet Σ. Let Q be another (query) sequence also on Σ
and L be an integer. The maximal exact match extraction
problem is defined as follows: given R, Q, and L, we want
to find all triplets (r, q, λ) such that
• Rr+i = Qq+i for i = {0, · · · , λ− 1} and λ ≥ L,
• Rr−1 6= Qq−1 and Rr+λ 6= Qq+λ,

where Ri ∈ Σ (Qi ∈ Σ) denotes the i-th letter of R (Q). In
this work, we are interested in genomic sequences. Hence,
for the rest of the paper we assume the base pairs are coming
from Σ = {A, C, T, G}. The notation we use in the paper is
summarized in Table I.

A. Related Work

Searching and aligning sequences or finding their com-
mon sub-sequences have been extensively studied in the
literature and efficient data structures and algorithms have
been proposed. The well known suffix tree has been con-
sidered as one of these structures and linear algorithms to
search the matches between sequences by using a suffix
tree already exist [4]. In general, all the existing MEM
extraction algorithms index the reference sequence and use
this index to efficiently find MEMs between the reference
and a query sequence. One of the first examples of efficiently
using the suffix tree to find maximal matches is presented
in [6]. However, the major drawback of this approach is

the large indexing tables. Reformulating the suffix tree in
order to reduce the memory usage is also introduced in
the literature and an enhanced suffix array data structure
has been proposed [2]. Another data structure, sparse suffix
array has been proposed for the same purpose [11].

In addition to the data structures, several publicly available
tools that improve the MEM extraction speed now exist for
practical purposes. MUMmer [6], which is a well-known
suffix-array-based alignment tool, has been enhanced to find
MEMs [12]. Another tool sparseMEM uses the sparse suffix
array to reduce its memory footprint [11]. But this reduc-
tion also introduces more computational work. To improve
the performance of sparseMEM, a similar tool essaMEM
uses auxiliary sparse data structures [16]. Furthermore, the
parallel (shared memory) performance of essaMEM is sig-
nificantly better than sparseMEM. Another maximal exact
match extraction tool slaMEM uses the backward search
method employed in the well-known FM-Index [9] while
searching longest common prefixes [8].

B. GPU architecture

A graphical processing unit (GPU) is a highly parallel
device built to speed up the execution of the massively
computational applications. The single instruction-multiple
threads (SIMT) architecture of the GPU is based on that
all threads in the same core execute the same instruction
in parallel. In a GPU, a thread defines the finest compu-
tational granularity throughout the execution. Each thread
has a relatively large number of registers and some thread
local (off-chip) memory in case registers are not enough.
The threads are grouped within blocks, and all the threads
in a single block can access the same shared memory. The
maximum number of threads a block can contain is limited.
A grid of blocks is responsible form whole kernel execution.
Thus, during the computation, each thread has a unique ID
in a block, and each block has a unique ID within a grid.

A GPU is composed of streaming multiprocessors (SM)
and each block is assigned to an SM (having 192 CUDA
cores) within the SM’s execution capacity. A group of
threads that physically run in parallel is called a warp. The
number of such threads, i.e., the warp size, is currently 32
for cutting-edge GPU architectures. Each thread in a warp
usually operates on a different data but they execute the same
instruction in parallel. Hence, to obtain the best performance,
the distribution of the work assigned to the threads in a warp
need to be balanced. In addition, the computations within
a warp must be as homogeneous as possible because, the
threads in the same warp are serialized if they are executing
different instructions. When the kernel has ‘if’s and ‘else’s,
i.e., when the computation is branched (also called divergent
in GPU computing), the threads are serialized, concurrency
decreases and performance degrades.



Figure 1. A high-level structure of GPUMEM’s MEM extraction algorithm (right) and its simple index structure containing two basic arrays (left).

III. FINDING MAXIMAL EXACT MATCHES IN GPU

GPUMEM effectively utilizes the massively parallel GPU
threads while indexing the reference and extracting maximal
exact matches in two sequences without employing complex
indexing tables. A high-level structure of GPUMEM is
shown in Figure 1; given R and Q, it partitions the 2D
reference/query space, which is the memory layout with R
as the y-axis and Q as the x-axis, into multiple `tile × `tile
square tiles, which correspond to smaller sub-problems, to fit
the problem to GPU memory. While searching for MEMs,
starting from the lowest tile-row, GPUMEM processes all
the tiles in a row with an index constructed only from the
corresponding reference region. That is only a partial index
is created for `tile base pairs of reference, loaded into the
memory, and used until all the tiles in that row are processed.

As the figure shows, GPUMEM also divides each tile
into nblock rectangular blocks with dimensions `tile×`block.
Hence `tile = nblock×`block. Each of these blocks will be as-
signed to a single GPU block where each thread is originally
responsible for w consecutive query locations/seeds. Hence,
`block = τ × w and the query seeds at location i < w will
be concurrently processed with the query seeds at locations
i + kw for 1 ≤ k ≤ b`tile/wc. The variable i incremented
by one when each set of τ query locations are processed.
Here, we describe the steps taken during execution in detail.

A. Index construction

To generate its lightweight index, GPUMEM uses seeds
of length `s and simply stores the seed locations in the
reference. As the bottom-left part of Figure 1 shows, the
index contains two arrays: an array locs which stores the
locations of indexed seeds in sorted order, and another

one ptrs which stores the prefix-sum of the number of
occurrences for each seed, i.e., the start location for each
seed in the locs array. The last element of ptrs is |locs|.
Hence, all the locations of a seed s are the locations in
between locs[ptrs[s]] and locs[ptrs[s+ 1] - 1].

With a simple approach using a full index, a seed can
start anywhere in R, hence there are |R| locations that
need to be stored. Assuming each location value is 32
bits, with a 1Gbp (base pairs) reference, we need 4GB
memory only for the locs array to store all the locations.
Obviously, this is a burden for a restricted memory device.
In addition to its memory footprint, the index construction
time can also be a problem especially for one-time-use long
reference sequences. To alleviate these problems, similar
to the spareness factor used in sparseMEM and essaMEM,
GPUMEM uses a sparsification parameter, step size, denoted
by ∆s to reduce the index size and construction time. The
step size is a distance between the indexed seeds of R.
Note that one cannot increase the step size unlimitedly: to
guarantee the existence of at least one matched seed location
for all the maximal exact matches of length at least L, we
need

∆s ≤ L− `s + 1, (1)

where L is the parameter that sets the threshold on the
length of desired MEMs. We use the maximum possible
value for ∆s. With this optimization, the number of lo-
cations one needs to store reduces to |R|/∆s from |R|.
Hence, when ∆s = 1, GPUMEM uses a full index. Note
that using distanced seeds will also incur a computational
overhead since GPUMEM needs to expand each matched
seed location for maximality. However, it also reduces the
number of matched points where many will overlap and will



be unneccesary. As the experiments will show, the proposed
approach will perform well thanks to the massive parallelism
of this overhead provided by the device.

As Figure 1 shows, GPUMEM does not construct and store
all its index structure at once in the memory. Instead, it par-
titons the 2D-search space into multiple tiles, and at a time,
it only uses the index of reference region corresponding to
the current row. Hence, only nlocs = d`tile/∆se locations
are stored in the locs array at once where `tile is the width
and height of a square tile. Hence, the locs array can be
stored in nlocs × dlog2 `tilee bits. To represent the seeds,
each base is represented by 2 bits (i.e., A = 00, C = 01,
G = 10, and T = 11). Hence, each seed is represented by
2 × `s bits and the number of entries in the ptrs array is
22`s = 4`s . So in theory, the total memory required for ptrs
is 4`sdlog2 nlocse.

Algorithm 1 shows the pseudocode for GPU-based index
construction which is done in four steps: the first step is
counting the occurrences of the indexed seeds and fill-
ing the ptrs array. To avoid conflicts, GPUMEM uses the
atomicAdd(mem, val) operation which atomically in-
creases the content of mem by val and returns the old value.
In the second step, a prefix-sum operation is performed over
ptrs to find the start point of each seed in the locs array
which is filled in the next step by using a temporary array
temp. This time, atomic increments on temp are used to
reserve a place on locs. Since, the array is filled in parallel,
probably, the seed locations will not be fully sorted. In the
last step GPUMEM sorts them by assigning a thread for each
seed.

B. Extracting MEMs inside the blocks

As described above, each `tile×`block block is assigned to
a GPU block during the execution. The blocks are processed
in four steps: first, a proactive heuristic is performed to
balance the work of GPU threads during the MEM extraction
process. Second, each thread generates and expands the
exact matches associated with the query location (seed)
they are responsible for. Then, a parallel combine algorithm
is applied to merge consecutive matches. Finally, a filter
operation is performed in order to generate two types of
exact matches: in-block MEMs which do not touch the
block boundaries, out-block MEMs which touch them. Note
that an in-block MEM is a real maximal exact match
however, an out-block MEM is only maximal within the
block boundaries and can be expanded further when the
boundaries are passed.

1) Proactive load-balancing heuristic: There are three
main tasks performed by each GPU thread: generating,
expanding, and combining exact matches. The workload
due to expansion is usually well-balanced among the GPU
threads. However, the amount of the work for generating
and combining the exact matches varies since it depends
on the occurrence of the query seed associated with each

Algorithm 1: Partial index construction
input : R, start, end
output: ptrs [.], locs [.]

Step 1: Compute seed counts
for each seed s in parallel do

ptrs[s] ← 0

for each location l ∈ [start, end] of R in parallel do
s← (Rl,Rl+1, · · · ,Rl+`s−1)
atomicAdd(ptrs[s+ 1], 1)

Step 2: Prefix-sum over the ptrs array
GPUPrefixSum(ptrs)

Step 3: Fill the locs array
for each seed s in parallel do

temp[s] ← ptrs[s]

for each location l ∈ [start, end] of R in parallel do
s← (Rl,Rl+1 · · · ,Rl+`s−1)
index← atomicAdd(temp[s], 1)
locs [index] ← l

Step 4: Sort the locations in locs
for each seed s in parallel do

sort(locs [ptrs[s], · · · ,ptrs[s+ 1]− 1])

thread location. Since these sequences are not random, i.e.,
the bases in the sequences are not chosen from a uniform
random distribution, the number of appearances for two
query seeds inside the indexed reference region can be
significantly different. Furthermore, without load balancing,
some threads can stay idle because the corresponding query
seed does not exist in the index.

To make the extraction process more efficient, GPUMEM
applies a proactive load-balancing technique which fairly
assigns all the idle threads to the query locations with a large
workload. Hence, a group of threads will be assigned to a
single query location and all the work due to that location
will be divided among them as evenly as possible. Figure 2
shows an example of how GPUMEM reassigns the threads
according to the work distribution among the query seeds.

The pseudocode of the load-balancing heuristic is given
in Algorithm 2. GPUMEM uses two temporary arrays of
size τ ; task and load. Consider the threads are numbered
from 1 to τ ; after the prefix-sum operations in the algorithm,
the value task[i] is the number of threads whose thread
ids are at most i and whose corresponding seeds (due to
original thread/seed assignment) appear in the index at least
once. The value load[i] is the total load, i.e., total number of
match locations, for these threads. By using these auxiliary
arrays, the load-balancing heuristic fills two arrays assign
and group of size τ + 1 and τ , respectively, in parallel.



Figure 2. A toy example for proactive load balancing: the original
straightforward thread/query-seed assignment is given above. Below, the
distribution after the load-balancing heuristic is given. Note that a single
thread will be responsible for only a single query location.

Let Tidle = τ− task[τ ] be the number of threads that will
remain idle due the original assignment. Let Tload = load[τ ]
be the total load. Algorithm 2 cleverly and concurrently
assigns the idle threads to the seeds in parallel by using the
cumulative distribution of the overall work upto the current
task/seed, i.e., load[.]/Tload. It fills an array assign such
that assign[k + 1] − assign[k] for the kth seed in the
current block. That is if assign[k] = 5 and assign[k + 1]
= 7 thread 5 and thread 6 will work for the corresponding
seed which was originally assigned to thread k+1. After the
assignment is done, each thread tid finds its assigned seed,
i.e., group[tid] by using a binary search on the assign in
parallel.

Algorithm 2: Proactive load-balancing heuristic
output: assign: prefix-sum array of balanced workload

for each thread tid in parallel do
s← the query seed originally assigned to tid
load [tid] ← ptrs[s+ 1] − ptrs[s]
if load[tid] > 0 then

task[tid] ← 1

else
task[tid] ← 0

GPUPrefixSum (load)
GPUPrefixSum (task)
Tload ← load[τ ]
Tidle ← τ − task[τ ]

assign[0] ← 1
for each thread tid in parallel do

offset← Tidle × (load[tid]/Tload)
assign[tid+ 1] ← task[tid] + offset

for each thread tid in parallel do
group[tid] ← binarySearch(assign, tid)

2) Generating exact match triplets: After the load bal-
ancing heuristic, each thread group has an assigned query
seed/location q which is in a distance of a multiple of w
from the next thread group’s location. The threads generate
the initial match triplets (r, q, λ) where r is the reference
location, and λ is the length of the match. Initially, λ is set
to `s, i.e., the size of a seed, for all the exact match triplets.

To make the connections between the triplets of two
consecutive thread groups and combine them later, if `s <
w, GPUMEM extends the match triplets to right. That is
for a triplet (r, q, `s), a pairwise seed-by-seed comparison
is performed starting with the reference and query seeds
generated from the locations Rr+λ and Qq+λ, respectively.
If the seeds match an additional `s is added to λ and the
process continues. The extension stops when a mismatch is
found or the triplet length reaches w. To extract all the valid
MEMs and not to extract a MEM more than once, GPUMEM
uses w = ∆s.

3) Combining exact match triplets: After generating the
triplets, GPUMEM combines them by checking the pair-wise
overlaps between the triplets of two thread groups. Two
triplets (r, q, λ) and (r′, q′, λ′) overlap if

0 < (r′ − r) = (q′ − q) ≤ λ.

If this is the case, the first triplet (r, q, λ) is replaced by
(r, q, r′−r+λ′) and the second triplet is deleted (in practice
GPUMEM just sets λ′ to zero). The combining process is
performed in parallel as shown in Algorithm 3.

As explained above, after the load balancing, each GPU
thread is a member of a group corresponding to a query
seed that appears at least once in the index. There can
be many exact match triplets for that seed. GPUMEM
uniformly assigns these triplets to the threads in the group
and each thread is responsible from its own triplets during
the combine process. The overlapping triplets are combined
as explained above in a pair-wise manner.

To avoid possible conflicts due to parallelization, the
process works in 2k − 1 iterations where k = log2 τ . Let
s0, s1, · · · , sτ−1 be the seeds being processed in the current
block and let |i−j| be the distance between the seeds si and
sj . At each iteration, only a subset of the thread groups (or
seeds) are active, and the triplets of an active seed si will
be combined only with the triplets of the seed si+d. The
combine process starts with d = 1 at iteration 1, and till the
kth iteration, d is doubled. After that, d is halved when an
iteration is completed. Hence, for the last one, i.e., 2k− 1th
iteration, d = 1. The selection of the active seeds also follow
a similar pattern: for the first k iterations, the seeds sis where
i mod 2d = 0 are active. For the rest of the process, an si is
active if and only if i > d and i mod 2d = d. It is not hard
to verify that all the overlapping match triplets are found
and reduced to a single triplet that starts from the left most
location when the process is completed. Figure 3 shows an
example of the combining pattern for 16 seeds/threads.



Algorithm 3: Combining exact match triplets

d← 1
k ← log2 τ
for iter = 1 to 2k − 1 do

for each thread tid in parallel do
src← group[tid]
ctrl← src
if iter ≥ k then

ctrl← ctrl − d
if ctrl ≥ 0 and ctrl mod 2d = 0 then

trgt← src+ d
if trgt < τ then
S: the triplets of the seed ssrc
Stid: the triplets in S assigned to tid
T : the triplets of the seed strgt
for each (r, q, λ) ∈ Stid do

for each (r′, q′, λ′) ∈ T do
δr = r′ − r
if δr = q′ − q and δr ≤ λ then
S ← S \ {(r, q, λ)}
T ← T \ {(r′, q′, λ′)}
S ← S ∪ {(r, q, δr + λ′)}

if iter < k then
d← d× 2

else
d← d/2

In the proposed approach, the distance between two active
seeds is always 2d at each iteration. Considering the combine
distance is d, the selection of active seeds guarantees that
each overlapping triplet will be either modified or deleted
but these cases cannot be at the same iteration. Hence, there
cannot be a read/write conflicts during the parallel execution.

After finishing the combine process, GPUMEM expands
the remaining triplets with a positive length to the left using a
seed-by-seed comparison within the reference and the query.
The expansion process is similar to the one explained above
which does the same to the right.

4) Finding in-block and out-block MEMs: After the
matches are combined for each execution, the sets of in-
block and out-block MEMs are constructed. In this step,
each GPU thread processes a triplet and expands it to the
right and the left seed by seed until a mismatch is found or
the block boundaries are reached. Then the triplets of length
at least L are filtered and the in-block and out-block MEMs
are constructed. The first set is transferred to the host for
reporting and the second is kept on the device for further
processing.

Figure 3. A toy combine example with 16 seeds/threads and hence 7
iterations: each combine operation is shown with an arrow where the arrow
goes from the active seed to the target seed whose triplets will be merged
with the active threads triplets. Each such seed pair is colored with different
color at each iteration.

C. Finding in-tile and out-tile MEMs

Similar to the previous step, the in-tile and out-tile MEMs
are generated in this phase. The input of the process is the
union of the out-block MEMs constructed obtained from the
blocks of the current tile.

1) Combining out-block MEMs: In this step, two over-
lapping match triplets are combined as also described in
Section III-B3. Although the mathematical equations used
to detect an overlap and perform the combine operation are
the same, the algorithm is different. In this part, for each
`tile×`block block, GPUMEM first performs a parallel sort on
their out-block MEMs; each triplet (r, q, λ) is sorted in the
increasing order of the r− q values. In case of equality, the
value q is used to sort the triplets. This operation places the
overlapping triplets in each `tile×`block block consecutively
in the sorted order. Each thread is assigned to `tile × `block
block and performs the combine operation. After that the in-
tile and out-tile MEMs are constructed. The in-tile MEMs
are moved to the host for reporting. The out-tile triplets
are inserted to a global list which contains all the out-tile
triplets found during scanning the whole reference and query
sequence.

2) Combining out-tile triplets: We observed that the
number of out-tile triplets is much less considered to out-
block ones. Considering the size of a tile is 1K×τ×∆s, this
is expected. The short list of out-tile triplets is transferred
to the host CPU and a sequential merge-sort operation is
performed to sort the list with respect to the r− q values as
we did before. GPUMEM performs a simple scan over this
list to obtain the final (and the longest) MEMs.

IV. EXPERIMENTAL RESULTS

For GPUMEM experiments, we used a machine equipped
with an Intel core i7-960 CPU clocked at 3.2Ghz hav-
ing 4 cores and 24GB of memory. The machine has an
NVIDIA Tesla K20c GPU featuring 13 Streaming Multipro-
cessors (SM), 192 cores per SM clocked at 700 MHz (for a
total of 2496 CUDA cores), and 4.8GB of global memory
clocked at 2.6 GHz. ECC is enabled. On the software side,



the machine runs CentOS 5.8 with Linux 2.6.18. The code
was compiled using CUDA 5.0 and gcc 4.2.4.

To run the CPU-based tools, we used a machine with dual
Intel Xeon E5520 Quad-core CPUs (with 2-way Simultane-
ous Multithreading, and 8MB of L3 cache per processor)
and 48GB of main memory. To parallelize sparseMEM and
essaMEM, we used up to 8 threads (single thread/core, i.e.,
no HyperThreading). The tools were run on CentOS 6, and
compiled with GCC 4.5.2 using the -O2 optimization flag.

We used several genomic sequences to evaluate
GPUMEM’s performance and compare it with that of the
existing, publicly available tools. These sequences have also
been used in the literature in studies which focus on the
MEM extraction problem, e.g., [1]. The sequences, their
lengths, and explanations are given in Table II. To represent
and store the sequences in memory, we apply a common
technique as described in the previous section and encode
the sequences using 2 bit per base.

Table II
DATA FILES USED IN THE EXPERIMENTS. SEQUENCE LENGTHS ARE

GIVEN IN MILLION BASE PAIRS (MBP).

Name Length Description
chr2h 242.97Mbp Human chromosome 2
chrI 233.10Mbp Saccharomyces cerevisiae chrI
chr1m 195.75Mbp Mouse chromosome 1
chrXh 154.12Mbp Human chromosome X
chrXc 133.55Mbp Chimpanzee chromosome X
dmelanogaster 23.30Mbp Drosophila melanogaster chr. 2L
EcoliK12 4.71Mbp Escherichia coli chromosome K12
chrXII 1.09Mbp Saccharomyces cerevisiae chrXII

A. Performance analysis of GPUMEM

We first investigate how GPUMEM’s MEM extraction per-
formance changes with respect to the problem parameters,
i.e., query size and L, respectively. As Fig. 4 shows, the
extraction time increases linearly with the query size. This
is somehow expected since the number of possible match
start location pairs, i.e., the problem size, is |R| × |Q|. Yet,
it is still questionable if the increase on the MEM extraction
time is due to the increase on the query size or the number
of MEMs extracted by GPUMEM that also increases with
|Q|. Indeed, when |Q| increases, as the figure shows (on
the right y-axis), the number of actual MEMs also increases
proportional to the execution time.

To further investigate its performance, we run GPUMEM
on the same reference/query pair but with different L values.
Figure 5 shows the results of this experiment. Since |R| and
|Q| stay constant, as L increases, the decrease on the MEM
extraction time can be explained by the decrease on number
MEMs extracted. However, as the figure shows, these two
values do not decrease with the same pace: although the
decrease on the execution time for L = 20 and L = 30 is
faster compared to the decrease on the number of extracted
MEMs, after L = 50, the latter is faster than the former.

0"

1"

2"

3"

4"

5"

6"

0"
1"
2"
3"
4"
5"
6"
7"
8"
9"
10"

0" 50" 100" 150" 200" 250" 300"

#m
at
ch
es
)(m

ill
io
ns
))

M
at
ch
in
g)
2m

e)
(s
ec
)))

Query)size)(MB))

Execu1on"1me"
#matches"

Figure 4. MEM extraction of GPUMEM with respect to the query size:
chr1m is used as the reference and the first 50Mbp, 100Mbp, 150Mbp,
200Mbp of chr2h as well as the whole 242.97Mbp sequence are used
to generate the data points. In the figure, the first y-axis (left) shows the
execution time (blue marker). The second one (right) shows the number of
extracted MEMs by GPUMEM with L = 50 (red line).

Hence, we can conclude that the MEM extraction time is
affected by both the input size (reference/query length), and
the output size (the number of MEMs extracted).

0.00001$
0.0001$
0.001$
0.01$
0.1$
1$
10$
100$
1000$
10000$

1$

2$

4$

8$

16$

32$

64$

0$ 20$ 40$ 60$ 80$ 100$ 120$ 140$ 160$

#m
at
ch
es
)(x
)1
00
00
0)
)

M
at
ch
in
g)
3m

e)
(s
ec
)))

L)

Execu/on$/me$
#matches$

Figure 5. MEM extraction performance of GPUMEM with respect to
L: chr1m and chr2h are used as the reference and query sequences,
respectively, with L ∈ {20, 40, 50, 100, 150}. In the figure, the first y-
axis (left) shows the execution time (blue line). The second axis (right)
shows the number of extracted MEMs (red line). Both axis are in log-scale.

B. Comparing GPUMEM with the existing tools

We compared the performance of GPUMEM with that of
four state-of-the-art tools; sparseMEM [11], essaMEM [16],
MUMmer [6], [12], and slaMEM [8]. Among these tools,
sparseMEM and essaMEM support shared-memory paral-
lelism and we run them for τ = 1, 4, and 8 threads. The
I/O times for all these tools are not included in the tables.
Although the input and output, i.e., reference/query and the
MEMs, should be the same, the implementions to read the
input and write the output, hence the I/O times, can vary.
Obviously, they are not related with the MEM extraction
performance.

Table III shows the index generation times of the tools
in seconds for nine different reference, query, and L con-
figurations. The first three columns of the table describe the
configuration. As the table shows, for the reference chr1m



Table III
INDEX GENERATION TIMES (SECS) OF THE TOOLS USED IN THE EXPERIMENTS FOR VARIOUS REFERENCE/QUERY PAIRS AND L VALUES. THE SEED

LENGTH `s = 13 FOR GPUMEM EXCEPT THE LAST ROW WHERE `s = 10 IS USED. I/O TIMES ARE NOT INCLUDED.

sparseMEM essaMEM MUMmer slaMEM GPUMEM
Reference Query L τ = 1 τ = 4 τ = 8 τ = 1 τ = 4 τ = 8

chr1m chr2h
100

73.84 37.17 28.51 75.08 41.67 30.68 99.58 278.32
1.41

50 2.51
30 5.58

chrXc chrXh 50 48.78 24.84 18.37 49.72 27.70 19.87 66.42 169.95 1.74
30 3.11

dmelanogaster EcoliK12 20 7.74 3.66 2.38 8.34 4.27 2.69 10.73 39.71 1.20
15 3.19

chrXII chrI 20 0.22 0.09 0.10 0.31 0.13 0.13 0.26 1.68 0.38
10 0.05

Table IV
EXECUTION TIMES (SECS) OF THE MATCHER TOOLS USED IN THE EXPERIMENTS TO FIND MAXIMAL EXACT MATCHES FOR VARIOUS

REFERENCE/QUERY PAIRS AND L VALUES. THE SEED LENGTH `s = 13 FOR GPUMEM EXCEPT THE LAST ROW WHERE `s = 10 IS USED. I/O TIMES
ARE NOT INCLUDED.

sparseMEM essaMEM MUMmer slaMEM GPUMEM
Reference Query L τ = 1 τ = 4 τ = 8 τ = 1 τ = 4 τ = 8

chr1m chr2h
100 163.75 444.72 502.00 161.91 14.49 10.14 159.17 84.56 5.38
50 164.42 443.24 499.13 161.00 59.29 34.89 161.86 84.86 9.24
30 213.32 460.08 507.95 211.70 116.12 32.00 312.28 100.16 20.19

chrXc chrXh 50 70.19 187.22 223.38 68.78 42.99 24.91 78.65 52.36 5.86
30 111.79 197.61 232.65 110.13 83.13 25.58 163.58 80.77 11.22

dmelanogaster EcoliK12 20 3.22 7.32 4.76 3.21 0.36 0.32 2.68 1.54 0.08
15 3.25 7.57 6.46 3.24 0.71 2.68 2.75 1.57 0.24

chrXII chrI 20 0.08 0.13 0.08 0.08 0.01 0.01 0.08 0.06 0.01
10 0.13 0.25 2.34 0.13 0.08 2.19 0.14 0.11 0.02

and query chr2h, GPUMEM’s index generation is 20.2, 11.4,
and 5.2 times faster when L = 100, 50, and 30, respectively,
compared to the essaMEM with 8 threads, which is the best
CPU-based tool for overall execution time in almost all the
experiments. As the table shows, the index generation of
GPUMEM becomes slower as L decreases since the step
size ∆s, hence the number of necessary index locations to
extract all MEMs increases. The only exception to this is the
last row of the table that happens due to reduction of `s from
13 to 10 since it is necessary to use a smaller or equal length
seeds when L = 10. Unlike GPUMEM, the index generation
time for the existing CPU-based tools is not affected by L.
However, for all the configurations in the table, GPUMEM’s
index construction takes less than 5.6 seconds whereas the
state-of-the-art tools can take up to hundreds of seconds
(especially if they have no support for parallelism).

The MEM extraction performance of GPUMEM is com-
pared with the existing CPU-based tools in Table IV for
the same nine reference/query/L configurations. In short,
GPUMEM is significantly faster than all the tools in our
experimental setting. As expected, when L decreases, the
MEM extraction time usually increases not only for the
GPU-based tool but also the CPU-based tools. Although
the impact of L on the extraction time seems to be more
for GPUMEM, even with this, for the reference/query se-
quences chrXc/chrXh, the proposed tool is 4.3 and 2.3

times faster than the best existing tool (essaMEM with 8
threads) with L = 50 and 30, respectively. Furthermore,
thanks to the simplicity of indexing and its suitability to the
GPU, the difference between the MEM extraction time of
GPUMEM and essaMEM is larger than the index generation
time of GPUMEM for (relatively) longer reference/query
sequences (the first 5 configurations). Hence, for these cases,
GPUMEM even both with indexing and extraction is faster
than an existing tool using a prebuilt index.

Although essaMEM and sparseMEM are based on similar
algorithms, the main focus of sparseMEM is decreasing the
memory footprint of the MUMmer. sparseMEM exploits
the multi-core CPUs to reduce the index size which yields
an increase on the MEM extraction time as also shown
in [11]. Hence, the input to sparseMEM with different τ
values are not the same, i.e., when τ increases, the index
gets smaller and the problem becomes harder. Note that
GPUMEM already uses a lightweight index with a memory
footprint low enough to fit in a memory-restricted device
such as a GPU.

C. Impact of load balancing

We investigated the impact of load balancing on the MEM
extraction performance of GPUMEM. Figure 6 shows the
number of seeds that appear at a given number of locations
for the reference sequence chr1m and query sequence chr2h.
As it can be seen from the figure, there are over 10 million



seeds that appear in only one location and over 2 million
seeds that appear in six locations which is still a significant
portion. Hence, without load balancing, i.e., if a thread are
statically allocate for a seed, the load imbalance may yield
an insufficient performance. Thus, the figure clarifies our
motivation behind the load balancing.

0"

2"

4"

6"

8"

10"

12"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"

#s
ee
ds
%(m

ill
io
ns
)%

#appeareances%

Figure 6. The number of seeds that appear at a given number of locations
for the reference sequence chr1m and query sequence chr2h.

As Figure 7 shows, especially for the large sequences (the
first five configurations), the proposed load balancing heuris-
tic increases the performance 1.6 to 4.4 times. Furthermore,
the speedup increases for smaller L values, i.e., for relatively
harder problems. For example, for the configuration with
chr1m and chr2h as the reference and query sequences,
respectively, and L = 30, GPUMEM extracts MEMs in 88.87
seconds without load balancing which in fact is worse than
the time essaMEM spends with τ = 8 threads. Yet, with
load balancing, GPUMEM becomes 1.6 times faster than
essaMEM.

9.07%

19.87%

88.87%

10.00%

24.59%

0.08% 0.23% 0.01%

0.05%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

L%=%100% L%=%50% L%=%30% L%=%50% L%=%30% L%=%20% L%=%15% L%=%20% L%=%10%

chr1m/chr2h% chrXc/chrXh% dmel./EcoliK12% chrXII/chrI%

sp
ee
du

p&
du

e&
to
&lo
ad

&b
al
an

ci
ng
&

Figure 7. MEM extraction times of GPUMEM without load balancing (in
seconds, over the bars) for the nine configurations in our experiments
and their ratio to the time with load balancing, i.e., speedup due to load
balancing.

V. CONCLUSION AND FUTURE WORK

We proposed a novel tool GPUMEM for the maximal
exact match extraction problem which, to the best of our
knowledge, is the first GPU-based tool. The proposed tool
uses a lightweight index structure that is suitable for memory
restricted devices and easy to generate with thousands of
threads in parallel. Our experiments show that the proposed
tool is faster than the state-of-the-art CPU-based tools in
our experimental setting. GPUMEM partitions the 2D (refer-
ence/query) search space into smaller blocks and solve each
block separately in a memory-restricted GPU device.

In future work, we are planning to investigate the variants
of the maximal exact match extraction problem such as
unique and rare exact match extraction. Furthermore, we will
study on novel GPU-based indexing techniques which can
increase the performance of the extraction phase. Although
we believe that the improvements will be better, we also
want to evaluate the performance of GPUMEM with newer
GPUs such as Tesla K40.

VI. ACKNOWLEDGMENTS

This work was partially supported by the NHI/NCI grant
R01CA141090. This publication was made possible by
NPRP grant #4-1454-1-233 from the Qatar National Re-
search Fund (a member of Qatar Foundation). The state-
ments made herein are solely the responsibility of the
authors. We also thank to NVIDIA for providing us the K20
card used in the experiments.

REFERENCES

[1] M. Abouelhoda and S. Seif. Efficient distributed computation
of maximal exact matches. In Recent Advances in the Mes-
sage Passing Interface, Lecture Notes in Computer Science,
pages 214–223. Springer Berlin Heidelberg, 2012.

[2] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing
suffix trees with enhanced suffix arrays. Journal of Discrete
Algorithms, 2(1):53–86, 2004. The 9th International Sympo-
sium on String Processing and Information Retrieval.

[3] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.
Basic local alignment search tool. J Mol Biol, 215:403–410,
1990.

[4] W. Chang and E. Lawler. Sublinear approximate string
matching and biological applications. Algorithmica, 12(4-
5):327–344, 1994.

[5] J.-H. Choi, H.-G. Cho, and S. Kim. Game: A simple and
efficient whole genome alignment method using maximal
exact match filtering. Computational Biology and Chemistry,
29(3):244 – 253, 2005.

[6] A. Delcher, S. Kasif, R. Fleischmann, J. Peterson, O. White,
and S. Salzberg. Alignment of whole genomes. Nucleic Acids
Res, 27:2369–2376, 1999.



[7] D. Edwards and K. Holt. Beginner’s guide to comparative
bacterial genome analysis using next-generation sequence
data. Microbial Informatics and Experimentation, 3(1):2,
2013.

[8] F. Fernandes and A. T. Freitas. slaMEM: efficient retrieval of
maximal exact matches using a sampled LCP array. Bioin-
formatics, 2013.

[9] P. Ferragina and G. Manzini. Opportunistic data structures
with applications. In Proc. FOCS 2000, pages 390–. IEEE
Computer Society, 2000.

[10] S. Garcia, J. Rodrigues, S. Santos, D. Pratas, V. Afreixo,
C. Bastos, P. Ferreira, and A. Pinho. A genomic distance
for assembly comparison based on compressed maximal
exact matches. Computational Biology and Bioinformatics,
IEEE/ACM Transactions on, 10(3):793–798, 2013.

[11] Z. Khan, J. S. Bloom, L. Kruglyak, and M. Singh. A
practical algorithm for finding maximal exact matches in large
sequence data sets using sparse suffix arrays. Bioinformatics,
2009.

[12] S. Kurtz, A. Phillippy, A. Delcher, M. Smoot, M. Shumway,
C. Antonescu, and S. Salzberg. Versatile and open software
for comparing large genomes. Genome Biology, 5(2):R12,
2004.

[13] Y. Liu and B. Schmidt. Long read alignment based on
maximal exact match seeds. Bioinformatics, 28(18):i318–
i324, 2012.

[14] E. Ohlebusch and S. Kurtz. Space efficient computation
of rare maximal exact matches between multiple sequences.
Computational Biology, 15(4):357–377, 2008.

[15] T. Smith and M. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology,
147(1):195–197, 1981.

[16] M. Vyverman, B. De Baets, V. Fack, and P. Dawyndt.
essaMEM: finding maximal exact matches using enhanced
sparse suffix arrays. Bioinformatics, 29(6):802–804, 2013.


