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Abstract

Significant computational resources are required to train Graph Neural Networks
(GNNs) at a large scale, and the process is highly data-intensive. One of the most
effective ways to reduce resource requirements is minibatch training coupled with
graph sampling. GNNs have the unique property that items in a minibatch have
overlapping data. However, the commonly implemented Independent Minibatching
approach assigns each Processing Element (PE) its own minibatch to process,
leading to duplicated computations and input data access across PEs. This amplifies
the Neighborhood Explosion Phenomenon (NEP), which is the main bottleneck
limiting scaling. To reduce the effects of NEP in the multi-PE setting, we propose
a new approach called Cooperative Minibatching. Our approach capitalizes on the
fact that the size of the sampled subgraph is a concave function of the batch size,
leading to significant reductions in the amount of work per seed vertex as batch sizes
increase. Hence, it is favorable for processors equipped with a fast interconnect to
work on a large minibatch together as a single larger processor, instead of working
on separate smaller minibatches, even though global batch size is identical. We
also show how to take advantage of the same phenomenon in serial execution by
generating dependent consecutive minibatches. Our experimental evaluations show
up to 4x bandwidth savings for fetching vertex embeddings, by simply increasing
this dependency without harming model convergence. Combining our proposed
approaches, we achieve up to 64% speedup over Independent Minibatching on
single-node multi-GPU systems.

1 Introduction

Graph Neural Networks (GNNs) have become de facto deep learning models for unstructured
data, achieving state-of-the-art results on various application domains involving graph data such
as recommendation systems (Wu et al., 2020; Ying et al., 2018), fraud detection (Liu et al., 2022;
Patel et al., 2022), identity resolution (Xu et al., 2019), and traffic forecasting (Jiang & Luo, 2022).
However, as the usage of technology continues to increase, the amount of data generated by these
applications is growing exponentially, resulting in large and complex graphs that are infeasible or
too time-consuming to train on a single processing element (Ying et al., 2018; Zhu et al., 2019). For
example, some social media graphs are reaching billions of vertices and trillions of interactions (Ching
et al., 2015). Efficient distributed training of GNNs is essential for extracting value from large-scale
unstructured data that exceeds the cost of storing and processing such data.

Due to the popularity of Deep Neural Networks (DNNs) and the need to support larger models and
datasets, a great deal of research has focused on increasing the scale and efficiency of distributed
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DNN training. Techniques such as data parallelism (Ginsburg et al., 2017; Goyal et al., 2018),
pipelining (Narayanan et al., 2019), and intra-layer parallelism (Dean et al., 2012) have been employed.
Following the success of traditional distributed DNN training, the same techniques have also been
adapted to GNN training, such as data parallelism (Gandhi & Iyer, 2021; Lin et al., 2020; Zheng
et al., 2021; Zhu et al., 2019) and intra-layer parallelism (Tripathy et al., 2020).

The parallelization techniques mentioned earlier are used to scale both full-batch and minibatch
training in a distributed setting. Minibatch training (Bertsekas, 1994) is the go-to method to train
DNN models as it outperforms full-batch training in terms of convergence (Allen-Zhu & Hazan, 2016;
Li et al., 2014; Keskar et al., 2016; Wilson & Martinez, 2003), and more recently has been shown
to also offer the same benefit for GNNs (Zheng et al., 2021). In the distributed setting, minibatch
training for DNNs using data parallelism is straightforward. The training samples are partitioned
across the Processing Elements (PE) and they compute the forward/backward operations on their
minibatches. The only communication required is an all-reduce operation for the gradients.

Unfortunately, minibatch training a GNN model is more challenging than a usual DNN model. GNNs
turn a given graph encoding relationships into computational dependencies. Thus in an L-layer
GNN model, each minibatch computation has a different structure as it is performed on the L-hop
neighborhood of the minibatch vertices. Real-world graphs usually are power law graphs (Artico
et al., 2020) with small diameters, thus it is a challenge to train deep GNN models as the L-hop
neighborhood grows exponentially w.r.t. L, reaching almost the whole graph within a few hops.

Very large GNN datasets necessitate storing the graph and node embeddings on slower storage
mediums. To enable GNN training efficiently in such a setting, several techniques have been
proposed (Park et al., 2022; Waleffe et al., 2022). These studies assume that the graph and its features
are stored on disks or SSDs and design their systems to reduce data transfers. The methods proposed
in this paper directly apply to these settings by reducing bandwidth requirements, as seen in Section 4.

A single epoch of full-batch GNN training requires computation proportional to the number of layers
L and the size of the graph. However, minibatch training requires more operations to process a
single epoch due to repeating calculations in the 2nd through Lth layers. As the batch size decreases,
the number of repeated calculations increases. This is because the vertices and edges have to be
processed each time they appear in the L-hop neighborhood. Thus, it is natural to conclude that using
effectively larger batch sizes in GNNs reduces the number of computations and data accesses of an
epoch in contrast to regular DNN models. Our contributions in this work utilizing this important
observation can be listed as follows:

• Investigate work vs. batch size relationship and present theorems stating the cost of process-
ing a minibatch is a concave function of the batch size (Theorems 3.1 and 3.2).

• Utilize this relationship by combining data and intra-layer parallelism to process a minibatch
across multiple PEs for reduced work (Section 3.1), with identical global batch size. We call
this new approach Cooperative Minibatching.

• Use the same idea to generate consecutive dependent minibatches to increase temporal vertex
embedding access locality (Section 3.2). This approach can reduce the transfer amount of
vertex embeddings up to 4×, without harming model convergence.

• Show that the two approaches are orthogonal. Together, the reduced work and decreased
cache miss rates result in up to 1.64× speedup over Independent Minibatching with identical
global batch size.

2 Background

A graph G = (V,E) consists of vertices V and edges E ⊂ V × V along with optional edge weights
Ats > 0,∀(t → s) ∈ E. Given a vertex s, the 1-hop neighborhood N(s) is defined as N(s) =
{t|(t→ s) ∈ E}, and it can be naturally expanded to a set of vertices S as N(S) = ∪s∈SN(s).

GNN models work by passing previous layer embeddings (H) from N(s) to s, and then combining
them using a nonlinear function f (l) at layer l, given initial vertex features H(0):

H(l+1)
s = f (l)(H(l)

s , {H(l)
t | t ∈ N(s)}) (1)
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If the GNN model has L layers, then the loss is computed by taking the final layer L’s embeddings
and averaging their losses over the set of training vertices Vt ⊂ V for full-batch training. In L-layer
full-batch training, the total number of vertices that needs to be processed is L|V |.

2.1 Minibatching in GNNs

In minibatch training, a random subset of training vertices, called Seed Vertices, is selected, and
training is done over the (sampled) subgraph composed of L-hop neighborhood of the seed vertices.
On each iteration, minibatch training computes the loss on seed vertices, which are random subsets
of the training set Vt.

Given a set of vertices S, we define l-th layer expansion set, or the l-hop neighborhood Sl as:

S0 = S, S(l+1) = Sl ∪N(Sl) (2)

For GNN computations, Sl would also denote the set of the required vertices to compute (1) at each
layer l. Using the same notation, {s}l denotes l-layer expansion set starting from single vertex s ∈ V .

For a single minibatch iteration, the total number of vertices that need to be processed is
∑L

l=1 |Sl|.
There are |V |

|S0| minibatches assuming Vt = V . Since each |Sl| ≥ |S0|, and a single epoch of
minibatch training needs to go over the whole dataset, the work W (|S0|) for a single epoch is:

W (|S0|) = |V |
|S0|

L∑
l=1

E[|Sl|] ≥ |V |
|S0|

L∑
l=1

|S0| = L|V |

where E[|Sl|] is the expected number of sampled vertices in layer l and |S0| is the batch size. That is,
the total amount of work to process a single epoch increases over full-batch training. The increase in
work due to minibatch training is thus encoded in the ratios E[|Sl|]

|S0| , 1 ≤ l ≤ L.

Next, we will briefly present some of the sampling techniques. When sampling is used with
minibatching, the minibatch subgraph may potentially become random. However, the same argument
for the increasing total amount of work holds for them too, as seen in Figure 2.

2.2 Graph Sampling

Below, we review three different sampling algorithms for minibatch training of GNNs. Our focus in
this work is samplers whose expected number of sampled vertices is a function of the batch size. All
these methods are applied recursively for GNN models with multiple layers.

2.2.1 Neighbor Sampling (NS)

Given a fanout parameter k and a batch of seed vertices S0, NS by (Hamilton et al., 2017) samples
the neighborhoods of vertices randomly. Given a batch of vertices S0, a vertex s ∈ S0 with degree
ds = |N(s)|, if ds ≤ k, NS uses the full neighborhood N(s), otherwise it samples k random
neighbors for the vertex s.

One way to sample k edges from ds options is to use the reservoir algorithm (Vitter, 1985). In this
algorithm, the first k edges are included in the reservoir. For the rest of the ds − k edges, the ith edge
(t→ s) rolls the uniform random integer 0 ≤ rts ≤ i and replaces the item in slot rts if rts < k.

2.2.2 LABOR Sampling

Given a fanout parameter k and a batch of seed vertices S0, LABOR-0 (Balın & Çatalyürek, 2023)
samples the neighborhoods of vertices as follows. First, each vertex rolls a uniform random number
0 ≤ rt ≤ 1. Given batch of vertices S0, a vertex s ∈ S0 with degree ds = |N(s)|, the edge (t→ s)
is sampled if rt ≤ k

ds
. Since different seed vertices ∈ S0 end up using the same random variate rt for

the same source vertex t, LABOR-0 samples fewer vertices than NS in expectation.

The LABOR-* algorithm is the importance sampling variant of LABOR-0 and samples an edge
(t → s) if rt ≤ csπt, where π is importance sampling probabilities optimized to minimize the

3
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Figure 1: Minibatches of two processing elements
may share edges in the second layer and vertices
starting in the first layer. For independent mini-
batching, the solid green edges shared by both
processing elements represent duplicate work, and
input nodes B through G are duplicated along with
the directed endpoints of green edges. However for
cooperative minibatching, the vertices and edges
are partitioned across the PEs with no duplication,
and the edges crossing the line between the two
PEs necessitate communication.

expected number of sampled vertices and cs is a normalization factor. LABOR-* samples fewer
vertices than LABOR-0 in expectation.

Note that, choosing k ≥ maxs∈V ds corresponds to training with full neighborhoods for both NS
and LABOR methods.

2.2.3 RandomWalk Sampling

Given a walk length o, a restart probability p, number of random walks a, a fanout k, and a batch of
vertices S0, a vertex s ∈ S0, a Random Walk (Ying et al., 2018) starts from s and each step picks
a random neighbor s′ from N(s). For the remaining o− 1 steps, the next neighbor is picked from
N(s′) with probability 1− p, otherwise it is picked from N(s). This process is repeated a times for
each seed vertex and lastly, the top k most visited vertices become the neighbors of s for the current
layer.

Notice that random walks correspond to weighted neighbor sampling from a graph with adjacency
matrix Ã =

∑o
i=1 A

i, where the weights of Ã depend on the parameters a, p and k. Random walks
give us the ability to sample from Ã without actually forming Ã.

2.3 Independent Minibatching

Independent minibatching is commonly used in multi-GPU, and distributed GNN training frame-
works (Cai et al., 2023; Gandhi & Iyer, 2021; Lin et al., 2020; Zheng et al., 2021; Zhu et al., 2019) to
parallelize the training and allows scaling to larger problems. Each Processing Element (PE, e.g.,
GPUs, CPUs, or cores of multi-core CPU), starts with their own S0 of size b as the seed vertices, and
compute S1, . . . , SL along with the sampled edges to generate minibatches (see Figure 1). Computing
S1, . . . , SL depends on the chosen sampling algorithm, such as the ones explained in Section 2.2.

Independent minibatching has the advantage that doing a forward/backward pass does not involve
any communication with other PEs after the initial minibatch preparation stage at the expense of
duplicate work (see Figure 1).

3 Cooperative Minibatching

In this section, we present two theorems that show the work of an epoch will be monotonically
nonincreasing with increasing batch sizes. We provide their proofs in Appendices A.1 and A.2. After
that, we propose two algorithms that can take advantage of this monotonicity.

Theorem 3.1. The work per epoch E[|Sl|]
|S0| required to train a GNN model using minibatch training is

monotonically nonincreasing as the batch size |S0| increases.

Theorem 3.2. The expected subgraph size E[|Sl|] required to train a GNN model using minibatch
training is a concave function of batch size, |S0|.
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Algorithm 1 Cooperative minibatching

Input: seed vertices S0
p for each PE p ∈ P , # layers L

for all l ∈ {0, . . . , L− 1} do {Sampling}
for all p ∈ P do in parallel

Sample next layer vertices S̃l+1
p and edges El

p for Sl
p

all-to-all to redistribute vertex ids for S̃l+1
p to get Sl+1

p

for all p ∈ P do in parallel {Feature Loading}
Load input features HL

p from Storage for vertices SL
p

all-to-all to redistribute HL
p to get H̃L

p

for all l ∈ {L− 1, . . . , 0} do {Forward Pass}
for all p ∈ P do in parallel

if l + 1 < L then
all-to-all to redistribute H l+1

p to get H̃ l+1
p

Forward pass on bipartite graph S̃l+1
p → Sl

p with edges El
p, input H̃ l+1

p and output H l
p

for all p ∈ P do in parallel
Compute the loss and initialize gradients G0

p

for all l ∈ {0, . . . , L− 1} do {Backward Pass}
for all p ∈ P do in parallel

Backward pass on bipartite graph Sl
p → S̃

(l+1)
p with edges El

p, input Gl
p and output G̃l+1

p
if l + 1 < L then

all-to-all to redistribute G̃l+1
p to get Gl+1

p

3.1 Cooperative Minibatching

As explained in Section 2, Independent Minibatching (I.M.) can not take advantage of the reduction
in work with increasing global batch sizes and number of PEs, because it uses separate small batches
of sizes b on each PE for each step of training. On the other hand, one can also keep the global batch
size constant, bP = |S0|, and vary the number of processors P . As P increases, I.M. will perform
more and more duplicate work because the local batch size is a decreasing function, b = |S0|

P , of P .

Here, we propose the Cooperative Minibatching method that will take advantage of the work reduction
with increasing batch sizes in multi-PE settings. In Cooperative Minibatching, a single batch of size
bP will be processed by all the P PEs in parallel, eliminating any redundant work across all PEs.

We achieve this as follows: we first partition the graph in 1D fashion by logically assigning each
vertex and its incoming edges to PEs as Vp and Ep for each PE p. Next, PE p samples its batch seed
vertices Sl

p from the training vertices in Vp for l = 0 of size b. Then using any sampling algorithm,
PE p samples the incoming edges El

p from Ep for its seed vertices. Each PE then computes the set
of vertices sampled S̃l+1

p = {t | (t→ s) ∈ El
p}. Note that, S̃l+1

p has elements residing on different
PEs. The PEs exchange the vertex ids S̃l+1

p so that each PE receives the set Sl+1
p ∈ Vp. This process

is repeated recursively for GNN models with multiple layers by using Sl+1
p as the seed vertices for

the next layer. The exchanged information is cached to be used during the forward/backward passes.

For the forward/backward passes, the same communication pattern used during cooperative sampling
is used to send and receive input and intermediate layer embeddings before each GNN layer invocation.
Algorithm 1 details cooperative sampling and cooperative forward/backward passes for a single
GNN training iteration. Independent minibatching works the same except that it lacks the all-to-all
operations and has Ãl+1

p = Al+1
p for any given variable A instead. The redistribution of vertices

during sampling happens according to the initial graph partitioning and the rest of the redistribution
operations follow the same communication pattern, always converting a variable Ãl+1

p into Al+1
p

during the forward pass and Al+1
p into Ãl+1

p during sampling and the backward passes for any variable
A. We refer the reader to Appendix A.3 for the complexity analysis of Cooperative and Independent
Minibatching approaches, and to Appendix A.7 to see the relation between the approach proposed
here and the work of Jia et al. (2020) on redundancy-free GCN aggregation.
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3.2 Cooperative Dependent Minibatching

Just as any parallel algorithm can be executed sequentially, we can reduce the number of distinct data
accesses by having a single PE process b-sized parts of a single κb-sized minibatch for κ iterations.
In light of Theorems 3.1 and 3.2, consider doing the following: choose κ ∈ Z+, then sample a
batch S0 of size κb, i.e., κb = |S0| to get S0, . . . , SL. Then sample κ minibatches S0

i , of size
b = |S0

i | from this batch of size κb to get S0
i , . . . , S

L
i ,∀i ∈ {0, . . . , κ − 1}. In the end, all of the

input features required for these minibatches will be a subset of the input features of the large batch,
i.e. Sj

i ⊂ Sj ,∀i, j. This means that the collective input feature requirement of these κ batches will
be |SL|, the same as our batch of size κb. Hence, we can now take advantage of the concave growth
of the work in Theorem 3.2 and Figure 2.

Note that, if one does not use any sampling algorithms and proceeds to use the full neighborhoods,
this technique will not give any benefits, as by definition, the l-hop neighborhood of a batch of size
κb will always be equal to the union of the l-hop neighborhoods of batches of sizes b. However for
sampling algorithms, any overlapping vertex sampled by any two batches of sizes b might end up
with different random neighborhoods resulting in a larger number of sampled vertices. Thus, having a
single large batch ensures that only a single random set of neighbors is used for any vertex processed
over a period of κ batches.

The approach described above has a nested iteration structure and the minibatches part of one κ group
will be significantly different than another group and this might slightly affect convergence. In Ap-
pendix A.4, we propose an alternative smoothing approach that does not require two-level nesting
and still takes advantage of the same phenomenon for the NS and LABOR sampling algorithms.

The main idea of our smoothing approach is as follows: each time one samples the neighborhood of
a vertex, normally it is done independently of any previous sampling attempts. If one were to do it
fully dependently, then one would end up with an identical sampled neighborhood at each sampling
attempt. What we propose is to do something inbetween, so that the sampled neighborhood of a
vertex changes slowly over time. The speed of change in the sampled neighborhoods is 1

κ , and after
every κ iterations, one gets fully independent new random neighborhoods for all vertices. We will
experimentally evaluate the locality benefits and the overall effect of this algorithm on convergence
in Sections 4.2 and 4.3.1, and more details on our smoothing approach are discussed in Appendix A.4.

4 Experiments

Table 1: Traits of datasets used in experiments: numbers of vertices, edges, avg. degree, features,
cached vertex embeddings, and training, validation and test vertex split. The last column shows the
number of minibatches in an epoch during model training with 1024 batch size including validation.

Dataset |V | |E| |E|
|V | # feats. cache size train - val - test (%) # minibatches

flickr 89.2K 900K 10.09 500 70k 50.00 - 25.00 - 25.00 65
yelp 717K 14.0M 19.52 300 200k 75.00 - 10.00 - 15.00 595

reddit 233K 115M 493.56 602 60k 66.00 - 10.00 - 24.00 172
papers100M 111M 3.2B 29.10 128 2M 1.09 - 0.11 - 0.19 1300
mag240M 244M 3.44B 14.16 768 2M 0.45 - 0.06 - 0.04 1215

Setup: In our experiments, we use the following datasets: reddit (Hamilton et al., 2017), pa-
pers100M (Hu et al., 2020), mag240M (Hu et al., 2021), yelp and flickr (Zeng et al., 2020), and their
details are given in Table 1. We use Neighbor Sampling (NS) (Hamilton et al., 2017), LABOR Sam-
pling (Balın & Çatalyürek, 2023) and Random Walks (RW) (Ying et al., 2018) to form minibatches.
We used a fanout of k = 10 for the samplers. In addition, Random Walks used length of o = 3, restart
probability p = 0.5 and number of random walks from each seed a = 100. All our experiments
involve a GCN model with L = 3 layers (Hamilton et al., 2017), with 1024 hidden dimension for
mag240M and papers100M and 256 for the rest. Additionally, papers100M and mag240M datasets
were made undirected graphs for all experiments and this is reflected in the reported edge counts
in Table 1. Input features of mag240M are stored with the 16-bit floating point type. We use the
Adam optimizer (Kingma & Ba, 2014) with 10−3 learning rate in all the experiments.
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Implementation: We implemented5 our experimental code using C++ and Python in the DGL
framework (Wang et al., 2019) with the Pytorch backend (Paszke et al., 2019). All our experiments
were repeated 50 times and averages are presented. Early stopping was used during model training
runs. So as we go to the right along the x-axis, the variance of our convergence plots increases
because the number of runs that were ongoing is decreasing.

We first compare how the work to process an epoch changes w.r.t. to the batch size to empirically
validate Theorems 3.1 and 3.2 for different graph sampling algorithms. Next, we show how dependent
batches introduced in Section 3.2 benefits GNN training. We also show the runtime benefits of
cooperative minibatching compared to independent minibatching in the multi-GPU setting. Finally,
we show that these two techniques are orthogonal, can be combined to get multiplicative savings.

4.1 Demonstrating monotonicity of work

Figure 2: Monotonicity of the work. x-axis shows the batch size, y-axis shows E[|S3|]
|S0| (see Theo-

rem 3.1) for node prediction (top row) and E[|S3|] (see Theorem 3.2) for edge prediction (bottom
row), where E[|S3|] denotes the expected number of sampled vertices in the 3rd layer and |S0|
denotes the batch size. RW stands for Random Walks, NS for Neighbor Sampling, and LABOR-0/*
for the two different variants of the LABOR sampling algorithm described in Section 2.2.

We use three sampling approaches, NS, LABOR, and RW, to demonstrate that the work to process
an epoch decreases as the batch size increases for the L = 3 layer case across these three different
classes of sampling algorithms. We carried out our evaluation in two problem settings: node and
edge prediction. For node prediction, a batch of training vertices is sampled with a given batch size.
Then, the graph sampling algorithms described in Section 2.2 are applied to sample the neighborhood
of this batch. The top row of Figure 2 shows how many input vertices is required on average to
process an epoch, specifically E[|S3|]

|S0| . For edge prediction, we add reverse edges to the graph making
it undirected and sample a batch of edges. For each of these edges a random negative edge (an edge
that is not part of E) with one endpoint coinciding with the positive edge is sampled. Then, all of the
endpoints of these positive and negative edges are used as seed vertices to sample their neighborhoods.
The bottom row of Figure 2 shows E[|S3|].
We can see that in all use cases, datasets and sampling algorithms, the work to process an epoch is
monotonically decreasing (see Appendix A.1 for the proof). We also see the plot of the expected
number of vertices sampled, E[|S3|], is concave with respect to batch size (proof in Appendix A.2).

Another observation is that the concavity characteristic of E[|S3|] seems to differ for different
sampling algorithms. In increasing order of concavity we have RW, NS, LABOR-0 and LABOR-*.
The more concave a sampling algorithm’s E[|SL|] curve is, the less it is affected from the NEP and

5Source code is available in the supplementary material.
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more savings are available through the use of the proposed methods in Sections 3.1 and 3.2. Note
that the differences would grow with a larger choice of layer count L.

4.2 Dependent Minibatches

Figure 3: The validation F1-score with the full neighborhoods for LABOR-0 sampling algorithm with
1024 batch size and varying κ dependent minibatches, κ =∞ denotes infinite dependency, meaning
the neighborhood sampled for a vertex stays static during training. See Figure 4a for cache miss rates.
See Figure 6 for the validation F1-score with the dependent sampler and the training loss curve.

(a) Cache sizes were taken from Table 1 and a single
PE was used.

(b) 4 cooperating PEs were used with each having a
cache of size 1M.

Figure 4: LRU-cache miss rates for LABOR-0 sampling algorithm with 1024 batch size per PE and
varying κ dependent minibatches, κ =∞ denotes infinite dependency.

We vary the batch dependency parameter κ introduced in Section 3.2 for the LABOR-0 sampler with
a batch size of 1024. Our expectation is that as consecutive batches become more dependent on each
other, the subgraphs used during consecutive steps of training would start overlapping with each
other, in which case, the vertex embedding accesses would become more localized. We attempted to
capture this increase in temporal locality in vertex embedding accesses by implementing an LRU
cache to fetch them, the cache sizes used for different datasets is given in Table 1. Note that the cache
miss rate is proportional to the amount of data that needs to be copied from the vertex embedding
storage. The Figure 4a shows that as κ increases, the cache miss rate across all datasets drops. On
reddit, this is a drop from 64% to 16% on, a 4x improvement. We also observe that the improvement
is monotonically increasing as a function of |E|

|V | given in Table 1. Figure 3 shows that training is
not negatively affected across all datasets up to κ = 256 with less than 0.1% F1-score difference,
after which point the validation F1-score with w/o sampling starts to diverge from the κ = 1 case.
Runtime benefits of this approach can be observed by comparing the Cache and Cache, κ columns
in Table 2. Appendix A.5 has additional discussion about the effect of varying κ and the last column
of Table 1 shows the number of minibatches in an epoch during training.

4.3 Cooperative Minibatching

We use our largest datasets, mag240M and papers100M, as distributed training is motivated by
large-scale graph datasets. We present our runtime results on systems equipped with NVIDIA
GPUs, with 4 and 8 A100 80 GB (NVIDIA, 2021) and 16 V100 32GB (NVIDIA, 2020b), all with
NVLink interconnect between the GPUs (600 GB/s for A100 and 300 GB/s for V100). The GPUs
perform all stages of GNN training and the CPUs are only used to launch kernels for the GPUs.
Feature copies are performed by GPUs as well, accessing pinned feature tensors over the PCI-e using
zero-copy access. In cooperative minibatching, both data size and computational cost are shrinking

8



Table 2: Cooperative vs independent minibatching runtimes per minibatch (ms) on three different
systems with 4 and 8 NVIDIA A100 80 GB GPUs, and 16 NVIDIA V100 32GB GPUs. I/C denotes
whether independent or cooperative minibatching is used. Samp. is short for Graph Sampling,
Feature Copy stands for vertex embedding copies over PCI-e and Cache denotes the runtime of copies
performed with a cache that can hold 106 vertex embeddings per A100 and 5 × 105 per V100. κ
denotes the use of batch dependency κ = 256. F/B means forward/backward. Total time is computed
by the fastest available Feature Copy time, the sampling time, and the F/B time. |S0| is the global
batch size and b is the the batch size per GPU. α stands for cross GPU communication bandwidth
(NVLink), β for PCI-e bandwidth and γ for GPU global memory bandwidth. Green was used to
indicate the better result between independent and cooperative minibatching, while Bold was used to
highlight the feature copy time included in the Total column.

# PEs, γ
α,β, |S0|

Dataset
& Model Sampler I/C Samp. Feature Copy F/B Total- Cache Cache, κ

4 A100
γ = 2TB/s

α = 600GB/s
β = 64GB/s
|S0| = 212

b = 1024

papers100M
GCN

LABOR-0 Indep 21.7 18.4 16.8 11.2 8.9 41.8
Coop 17.7 14.0 10.1 5.8 13.0 36.5

NS Indep 16.1 26.5 22.1 - 10.1 48.3
Coop 11.9 21.3 12.9 - 15.0 39.8

mag240M
R-GCN

LABOR-0 Indep 26.0 57.9 56.0 41.0 199.9 266.9
Coop 20.0 51.1 36.9 23.4 183.3 226.7

NS Indep 14.4 78.0 71.2 - 223.0 308.6
Coop 12.3 73.9 47.5 - 215.6 275.4

8 A100
γ = 2TB/s

α = 600GB/s
β = 64GB/s
|S0| = 213

b = 1024

papers100M
GCN

LABOR-0 Indep 21.3 21.1 18.7 12.0 9.3 42.6
Coop 16.5 12.4 7.1 4.0 13.5 34.0

NS Indep 15.8 31.0 24.5 - 10.3 50.6
Coop 12.5 19.4 9.0 - 15.6 37.1

mag240M
R-GCN

LABOR-0 Indep 30.6 70.1 66.2 46.8 202.1 279.5
Coop 21.6 50.6 29.0 19.3 172.2 213.1

NS Indep 15.0 94.9 80.9 - 224.8 320.7
Coop 14.9 71.6 39.6 - 209.0 263.5

16 V100
γ = 0.9TB/s
α = 300GB/s
β = 32GB/s
|S0| = 213

b = 512

papers100M
GCN

LABOR-0 Indep 39.1 44.5 40.2 29.4 15.1 83.6
Coop 26.9 22.7 10.4 4.9 19.1 50.9

NS Indep 18.0 61.3 52.0 - 16.2 86.2
Coop 19.2 34.9 13.0 - 21.3 53.5

mag240M
R-GCN

LABOR-0 Indep 50.8 128.8 121.3 96.2 156.1 303.1
Coop 29.2 78.1 42.8 23.5 133.3 186.0

NS Indep 19.3 167.3 152.6 - 170.9 342.8
Coop 19.3 116.1 53.1 - 160.4 232.8

with increasing numbers of PEs, relative to independent minibatching. We use the GCN model for
papers100M and the R-GCN model (Schlichtkrull et al., 2017) for mag240M. As seen in Table 2,
cooperative minibatching reduces all the runtimes for different stages of GNN training, except for the
F/B (forward/backward) times on papers100M where the computational cost is not high enough to
hide the overhead of communication.

Table 3: Runtime improvements of Cooperative Minibatching over Independent Minibatching
compiled from the Total column of Table 2. This is a further improvement on top of the speedup
independent minibatching already gets over the execution on a single GPU.

Dataset & Model Sampler 4 GPUs 8 GPUs 16 GPUs

papers100M
GCN

LABOR-0 15% 25% 64%
NS 21% 36% 61%

mag240M
R-GCN

LABOR-0 18% 31% 63%
NS 12% 22% 47%

If we take the numbers in the Total columns from Table 2, divide independent runtimes by the
corresponding cooperative ones, then we get Table 3. We can see that the theoretical decrease in
work results in increasing speedup numbers with the increasing number of PEs, due to Theorem A.1.
We would like to point out that E[|S3|]

|S0| curves in Figure 2 are responsible for these results. With P
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PEs and |S0| global batch size, the work performed by independent minibatching vs cooperative
minibatching can be compared by looking at x = 1

P |S
0| vs x = |S0| respectively.

We also ran experiments that show that graph partitioning using METIS (Karypis & Kumar, 1998)
prior to the start of training can help the scenarios where communication overhead is significant. The
forward-backward time goes from 13.0ms to 12.0ms on papers100M with LABOR-0 on 4 NVIDIA
A100 GPUs with such partitioning due to reduced communication overhead using the same setup
as Table 2.

Increasing the number of GPUs increases the advantage of cooperative minibatching compared to
independent minibatching. The forward-backward time on mag240M with LABOR-0 is 200 (same
as independent baseline), 194, 187 and 183 ms with 1, 2, 3 and 4 cooperating PEs, respectively
measured on the NVIDIA DGX Station A100 machine. The decrease in runtime with increasingly
cooperating PEs is due to the decrease in redundant work they have to perform. Even though the
batch size per PE is constant, the runtime goes down similar to the plots in the top row of Figure 2,
except that it follows kE[|S2|]

|S0| , which gives the average number of edges in the 3rd layer when a
sampler with fanout k is used.

Additionally, we demonstrate that there is no significant model convergence difference between
independent vs cooperative minibatching in Appendix A.6.

4.3.1 Cooperative-Dependent Minibatching

Table 4: Runtime improvements of Dependent Minibatching for Independent and Cooperative
Minibatching methods compiled from the Cache, κ and Cache columns of Table 2 with LABOR-0.
Making consecutive minibatches dependent increases temporal locality, hence reducing cache misses.
This speeds up feature loading runtime.

Dataset & Model I/C 4 GPUs 8 GPUs 16 GPUs

papers100M
GCN

Indep 50% 57% 37%
Coop 74% 78% 112%

mag240M
R-GCN

Indep 37% 41% 26%
Coop 58% 50% 82%

We use the same experimental setup as Section 4.3 but vary the κ parameter to show that cooperative
minibatching can be used with dependent batches (Figure 4b). We use a cache size of 1M per PE.
Cooperative feature loading effectively increases the global cache size since each PE caches only the
vertices assigned to them while independent feature loading can have duplicate entries across caches.
For our largest dataset mag240M, on top of 1.4× reduced work due to cooperative minibatching
alone, the cache miss rates were reduced by more than 2×, making the total improvement 3×.
Runtime results for κ ∈ {1, 256} are presented in Table 2, the Feature Copy Cache and Cache,
κ columns. Table 4 summarizes these results by dividing the runtimes in Cache by Cache, κ and
reporting percentage improvements.

5 Conclusions

In this paper, we investigated the difference between DNN and GNN minibatch training. We observed
that the cost of processing a minibatch is a concave function of batch size in GNNs, unlike DNNs
where the cost scales linearly. We then presented theorems that this is indeed the case for every graph
and then proceeded to propose two approaches to take advantage of cost concavity. The first approach,
which we call cooperative minibatching proposes to partition a minibatch between multiple PEs and
process it cooperatively. This is in contrast to existing practice of having independent minibatches per
PE, and avoids duplicate work that is a result of vertex and edge repetition across PEs. The second
approach proposes the use of consecutive dependent minibatches, through which the temporal locality
of vertex and edge accesses is manipulated. As batches get more dependent, the locality increases.
We demonstrate this increase in locality by employing an LRU-cache for vertex embeddings on GPUs.
Finally, we show that these approaches can be combined without affecting convergence, and speed
up multi-GPU GNN training by up to 64% for free.
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Alok Tripathy, Katherine Yelick, and Aydın Buluç. Reducing communication in graph neural network
training. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020.

Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, mar
1985. ISSN 0098-3500. doi: 10.1145/3147.3165.

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkataraman. Mariusgnn:
Resource-efficient out-of-core training of graph neural networks, 2022.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang. Deep
graph library: A graph-centric, highly-performant package for graph neural networks, 2019. URL
https://arxiv.org/abs/1909.01315.

D Randall Wilson and Tony R Martinez. The general inefficiency of batch training for gradient
descent learning. Neural networks, 16(10):1429–1451, 2003.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: A survey, 2020.

Nuo Xu, Pinghui Wang, Long Chen, Jing Tao, and Junzhou Zhao. MR-GNN: Multi-resolution
and dual graph neural network for predicting structured entity interactions. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, aug 2019. doi:
10.24963/ijcai.2019/551.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’18, pp. 974–983, 2018. doi: 10.1145/3219819.3219890.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, Qidong Su, Minjie Wang, Chao Ma, and
George Karypis. Distributed hybrid cpu and gpu training for graph neural networks on billion-scale
graphs. arXiv preprint arXiv:2112.15345, 2021.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren
Zhou. Aligraph: A comprehensive graph neural network platform. Proc. VLDB Endow., 12(12):
2094–2105, aug 2019. doi: 10.14778/3352063.3352127.

13

https://arxiv.org/abs/1909.01315
https://openreview.net/forum?id=BJe8pkHFwS


A Appendix

A.1 Work Monotonicity Theorem

Theorem A.1. The work per epoch required to train a GNN model using minibatch training is
monotonically nonincreasing as the batch size increases.

Proof. Given any n ≥ 2, let’s say we uniform randomly sample without replacement S0 ⊂ V , where
n = |S0|. Now note that for any S′0 ⊂ S0, using the definition in (2), we have S′l ⊂ Sl,∀l. We will
take advantage of that and define S′0 = S0 \ {s} in following expression.

∑
s∈S0

S′0=S0\{s}

|Sl| − |S′l| =
∑
s∈S0

S′0=S0\{s}

∑
w∈Sl

1[w /∈ S′l]

=
∑
s∈S0

S′0=S0\{s}

∑
w∈{s}l

1[w /∈ S′l]

=
∑
s∈S0

S′0=S0\{s}

∑
w∈{s}l

1[w /∈ {s′}l,∀s′ ∈ S′0]

=
∑
w∈Sl

∑
s∈S0

w∈{s}l

1[w /∈ {s′}l,∀s′ ∈ S0 \ {s}]

(3)

In the last expression, for a given w ∈ Sl, if there are two different elements s, s′ ∈ S0 such that
w ∈ {s}l and w ∈ {s′}l, then the indicator expression will be 0. It will be 1 only if w ∈ {s}l for a
unique s ∈ S0. So:

∑
w∈Sl

∑
s∈S0

w∈{s}l

1[w /∈ {s′}l,∀s′ ∈ S0 \ {s}] =
∑
w∈Sl

∃!s∈S0,w∈{s}l

1

= |{w ∈ Sl | w ∈ {s}l,∃!s ∈ S0}| ≤ |Sl|

(4)

Using this, we can get:

∑
S′0⊂S0

|S′0|+1=|S0|

|Sl| − |S′l| ≤ |Sl|

⇐⇒ |S0||Sl| −
∑

S′0⊂S0

|S′0|+1=|S0|

|S′l| ≤ |Sl|

⇐⇒ |Sl|(|S0| − 1) ≤
∑

S′0⊂S0

|S′0|+1=|S0|

|S′l|

⇐⇒ |Sl|(|S0| − 1) ≤ |S0|E[|S′l|]

⇐⇒ |Sl|
|S0|

≤ E[S′l]

|S′0|

Since S0 was uniformly randomly sampled from V , its potential subsets S′0 are also uniformly
randomly picked from V as a result. Then, taking an expectation for the random sampling of S0 ⊂ V ,
we conclude that E[|Sl|]

|S0| ≤
E[|S′l|]
|S′0| , i.e., the expected work of batch size n is not greater than the

work of batch of size n− 1. This implies that the work with respect to batch size is a monotonically
nonincreasing function.
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Empirical evidence can be seen in Figures 2 and 5. In fact, the decrease is related to the cardinality of
the following set:

Tl(S) = {w ∈ Sl | w ∈ {s}l,∃!s ∈ S0}

When T (S0) is equal to Sl, the work is equal as well. In the next section, we further investigate the
effect of |T (S0)| on E[|Sl|].

A.2 Overlap monotonicity

In addition to the definition of T (S) above, if we define the following set T 2(S):

T l
2(S) = {w ∈ Sl | w ∈ {s}l ∩ {s′}l,∃!{s, s′} ⊂ S0}

Theorem A.2. The expected subgraph size E[|Sl|] required to train a GNN model using minibatch
training is a concave function of batch size, |S0|.

Proof. Given any n ≥ 2, let’s say we uniformly randomly sample without replacement S0 ⊂ V of
size n.

|Tl(S
0)| − 2|T l

2(S
0)| =

∑
S′0⊂S0

|S′0|+1=|S0|

|Tl(S
0)| − |Tl(S

′0)|

= |S0||Tl(S
0)| − |S0|E[|Tl(S

′0)|]
⇐⇒ (|S0| − 1)|Tl(S

0)| = |S0|E[|Tl(S
′0)|]− 2|T l

2(S
0)|

⇐⇒ |Tl(S
0)|

|S0|
=

E[|Tl(S
′0)|]

|S′0|
− 2|T l

2(S
0)|

|S′0||S0|

=⇒ |Tl(S
0)|

|S0|
≤ E[|Tl(S

′0)|]
|S′0|

(5)

where the first equality above is derived similar to Equations (3) and (4). Overall, this means that the
overlap between vertices increases as the batch size increases. Utilizing our finding from Equations (3)
and (4), we have:

∑
S′0⊂S0

|S′0|+1=|S0|

|Sl| − |S′l| = |Tl(S
0)|

=⇒ |S0||Sl| − |S0|E[|S′l|] = |Tl(S
0)|

=⇒ |Sl| = E[|S′l|] + |Tl(S
0)|

|S0|

=⇒ E[|Sl|] = E[|S′l|] + E[|Tl(S
0)|]

|S0|

(6)

Note that the last step involved taking expectations for the random sampling of S0. See the recursion
embedded in the equation above, the expected size of the subgraph Sl with batch size |S0| depends
on the expected size of the subgraph S′l with batch size |S0| − 1. Expanding the recursion, we get:

E[|Sl|] =
|S0|∑
i=1

E[|Tl(V
i
0 )|]

i
(7)

where V i
0 is a random subset of V of size i. Since E[|Tl(V

i
0 )|]

i is monotonically nonincreasing as
i increases as we showed in (5), we conclude that E[|Sl|] is a concave function of the batch size,
|S0|.

15



So, the slope of the expected number of sampled vertices flattens as batch size increases, see the last
row in Figure 2 and the first row in Figure 5. Note that this implies work monotonicity as well.

Figure 5: Monotonicity of the work. x axis shows the batch size, y axis shows E[|S3|] for node
prediction (top row) and E[|S3|]

|S0| for edge prediction (bottom row), where E[|S3|] denotes the expected
number of vertices sampled in the 3rd layer and |S0| denotes the batch size. RW stands for Random
Walks, NS stands for Neighbor Sampling, and LABOR-0/* stand for the two different variants of the
LABOR sampling algorithm described in Section 2.2. Completes Figure 2.

A.3 Complexity Analysis

Table 5: Algorithmic complexities of different stages of GNN training at layer 0 ≤ l < L with L total
layers and batch size B = |S0| with P PEs. Note that |Sl

p(B)| = |Sl(B)| 1P , |El
p(B)| = |El(B)| 1P

since the PEs process the partitioned subgraphs. Feature loading happens only at layer L.

Stage Independent Cooperative

Sampling O(|Sl(BP )| 1β ) O(|Sl
p(B)| 1β + |S̃l+1

p (B)| cα )
Feature loading O(|SL(BP )|dρβ ) O(|SL

p (B)|dρβ + |S̃L
p (B)|dcα )

Forward/Backward O(M(Sl(BP ), El(BP ), Sl+1(BP )) dγ ) O(M(Sl
p(B), El

p(B), S̃l+1
p (B)) dγ + |S̃l+1

p (B)|dcα )

Let M(V1, E, V2) denote the work to process a bipartite graph V2 → V1 with edges E for a given
GNN model M . Assuming cross PE communication bandwidth α, Storage (e.g., disk, network, or
DRAM) to PE bandwidth as β and PE memory bandwidth γ, and cache miss rate ρ, we have the time
complexities given in Table 5 to perform different stages of GNN training per PE. We also use d for
embedding dimension and c < 1 for the cross edge ratio, note that c ≈ P−1

P for random partitioning,
and smaller for smarter graph partitioning with P standing for the number of PEs. Also the sizes of
S̃l become smaller when graph partitioning is used due to increased overlap.

Our goal in this section is to empirically show the work reduction enjoyed by cooperative minibatching
over independent minibatching by reporting the number of vertices and edges processed per PE. We
also report the number of vertices that are communicated for cooperative minibatching during its
all-to-all calls in Algorithm 1. The results are given in Table 6.

Looking at Tables 5 and 6, we make the following observations:

1. All runtime complexities for cooperative minibatching scales with |Sl
p(B)| = |Sl(B)| 1P

and |El
p(B)| = |El(B)| 1P ≤ |S

l(B)| kP and for independent minibatching with |Sl(BP )| and
|El(BP )| ≤ |Sl(BP )|k, for a sampler with fanout k. Since E[|Sl(B)|] is a concave function,
E[|Sl(B)|] 1P ≤ E[|Sl(BP )|], and this corresponds to looking at Figure 2 first row with
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Table 6: Average number of vertices and edges sampled in different layers with LABOR-0 per PE,
reduced by taking the maximum over 4 PEs (All the numbers are in thousands, lower is better) with
batch size |S0| = 1024. c|S̃l| shows the number of vertices communicated at layer l. Papers and mag
were used as short versions of papers100M and mag240M. Last column shows forward-backward
(F/B) runtime in ms.

Dataset Part. I/C |S3| c|S̃3| |S̃3| |E2| |S2| c|S̃2| |S̃2| |E1| |S1| F/B

papers
random Indep 463 0 463 730 74.8 0 74.8 93.6 9.63 8.9
random Coop 318 311 463 608 62.4 56.8 82.8 89.9 9.28 13.0
metis Coop 328 179 402 615 63.1 34.0 73.8 90.8 9.35 12.0

mag
random Indep 443 0 443 647 67.9 0 67.9 82.0 8.78 199.9
random Coop 324 310 459 566 59.8 53.1 77.3 80.4 8.62 183.3
metis Coop 334 178 419 576 60.6 31.0 71.3 81.8 8.80 185.1

x = B for coop and x = B
P for independent if one wanted to guess how their runtime would

change with changing B and P . For an example, all the runtime numbers we have provided
in the Table 2 are for 4 GPUs. Going from 4 to 8 would increase the edge of cooperative
over independent even more, see Table 3.

2. Sampling and Feature loading over PCI-e requires α≫ β for cooperative to get a speedup
over independent.

3. In order for cooperative F/B to improve against independent, we need that α
c > γ

M .
4. Cross edge ratio c reduces all communication between PEs. In particular, graph partitioning

will lower both c and |S̃l
p(B)|, lowering the communication overhead, see c|S̃l| columns

in Table 6.
5. The model complexity M is small for the GCN model (papers100M) but large for the

R-GCN model (mag240M), as shown by the F/B runtime numbers in Table 2. Also, the
communication overhead between the two scenarios is similar, meaning communication
can take from upto 30% to less than a few percent depending on M . For the papers100M
dataset, communication makes up more of the runtime, so graph partitioning helps bring the
F/B runtime down. However, the load imbalance caused by graph partitioning slows down
the F/B runtime despite lowered communication costs for the mag240M dataset.

In today’s modern multi-GPU systems we see that γ ≈ 2 TB/s , α ≈ 300 GB/s and β ≈
30 GB/s (NVIDIA, 2020a). Due to α being relatively fast compared to γ

M and β, our approach
is feasible. On newer systems, the all-to-all bandwidth continues to increase (NVIDIA, 2023),
decreasing the cost of cooperation on a global mini-batch.

However, on systems where the interconnect does not provide full bandwidth for all-to-all operations,
our approach is limited in the speedup it can provide. Our approach is most applicable for systems
with relatively fast alltoall bandwidth α

c compared to γ
M and β and large P . In particular, starting

from P = 2, cooperative starts to outperform independent even on F/B with the mag240M dataset
and the R-GCN model in Section 4.3 and Tables 2 and 3.

A.4 Smoothed Dependent Minibatching

As described in Section 2, NS algorithm works by using the random variate rts for each edge (t→ s).
Being part of the same minibatch means that a single random variate rts will be used for each edge.
To generate these random variates, we initialize a Pseudo Random Number Generator (PRNG) with a
random seed z along with t and s to ensure that the first rolled random number rts from the PRNG
stays fixed when the random seed z is fixed. Given random seeds z1 and z2, let’s say we wanted
to use z1 for the first κ iterations and would later switch to the seed z2. This switch can be made
smoothly by interpolating between the random seeds z1 and z2 while ensuring that the resulting
sampled random numbers are uniformly distributed. If we are processing the batch number i < κ in
the group of κ batches, then we want the contribution of z2 to be c = i

κ , while the contribution of
z1 is 1− c. We can sample n1

ts ∼ N (0, 1) with seed z1 and n2
ts ∼ N (0, 1) with seed z2. Then we

combine them as
nts(c) = cos(

cπ

2
)n1

ts + sin(
cπ

2
)n2

ts
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note that nts(0) = n1
ts, nts(1) = n2

ts and nts(c) ∼ N (0, 1),∀c ∈ R also, then we can set rts =
Φ(nts(c)), where Φ(x) = P(Z ≤ x) for Z ∼ N (0, 1), to get rts ∼ U(0, 1) that the NS algorithm
can use. Dropping s from all the notation above gives the version for LABOR. In this way, the
random variates change slowly as we are switching from one group of κ batches to another. When
i = κ, we let z1 ← z2 and initialize z2 with another random seed. To use this approach, only the
random variate generation logic needs modification, making its implementation for any sampling
algorithm straightforward compared to the nested approach initially described.

A.5 Dependent batches (cont.)

Looking at the training loss and validation F1-score with sampling curves in Figure 6, we notice that
the performance gets better as κ is increased. This is due to the fact that a vertex’s neighborhood
changes slower and slower as κ is increased, the limiting case being κ = ∞, in which case the
sampled neighborhoods are unchanging. This makes training easier so κ =∞ case leads the pack in
the training loss and validation F1- score with sampling curves.

Figure 6: LABOR-0 sampling algorithm with 1024 batch size and varying κ dependent minibatches,
κ = ∞ denotes infinite dependency, meaning the neighborhood sampled for a vertex stays static
during training. The first row shows the validation F1-score with the dependent sampler. The second
row shows the training loss curve. Completes Figure 3.

A.6 Comparing a single batch vs P independent batches convergence

We investigate whether training with a single large batch in P -GPU training shows any convergence
differences to the current approach of using P separate batches for each of the GPUs. We use a global
batch size of 4096 and divide a batch into P ≤ 8 independent batches, with each batch having a size
of 4096

P . We use NS and LABOR-0 samplers with fanouts of k = 10 for each of the 3 layers. Figure 7
shows that there are no significant differences between the two approaches, we present the results
averaged over the samplers to save space.

A.7 Redundancy Free GCN aggregation

Jia et al. (2020) proposes a method of reducing processing during neighborhood aggregation by
finding common sub-neighborhoods among aggregated vertices, whether using full-batch or minibatch
training. That is, if two vertices have the neighborhoods {A,B,C} and {B,C,D}, and a summation
operator is used for aggregation, then instead of computing four additions: A+B+C and B+C+D
concurrently, the three additions BC = B+C, A+BC, and BC+D can be computed. This approach
is orthogonal to the approaches proposed in Section 3 in that it reduces redundant aggregation steps,
where as our approach reduces redundant input nodes and edges in parallel computations. As such,
the two approaches could be employed together.
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Figure 7: Convergence difference between cooperative vs independent minibatching with a global
batch size of 4096 averaged over Neighbor and LABOR-0 samplers.

19


	Introduction
	Background
	Minibatching in GNNs
	Graph Sampling
	Neighbor Sampling (NS)
	LABOR Sampling
	RandomWalk Sampling

	Independent Minibatching

	Cooperative Minibatching
	Cooperative Minibatching
	Cooperative Dependent Minibatching

	Experiments
	Demonstrating monotonicity of work
	Dependent Minibatches
	Cooperative Minibatching
	Cooperative-Dependent Minibatching


	Conclusions
	Appendix
	Work Monotonicity Theorem
	Overlap monotonicity
	Complexity Analysis
	Smoothed Dependent Minibatching
	Dependent batches (cont.)
	Comparing a single batch vs P independent batches convergence
	Redundancy Free GCN aggregation


