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Partitioning for load balancing is a crucial first step to parallelize any type of computation. In this work,

we propose SGORP, a new spatial partitioning method based on Subgradient Optimization, to solve the 𝑑-

dimensional Rectilinear Partitioning Problem (RPP). Our proposed method allows the use of customizable

objective functions as well as some user-specific constraints, such as symmetric partitioning on selected

dimensions. Extensive experimental evaluation using over 600 test matrices shows that our algorithm achieves

favorable performance against the state-of-the-art RPP and Symmetric RPP algorithms. Additionally, we

show the effectiveness of our algorithm to do application-specific load balancing using two applications as

motivation: Triangle Counting and Sparse Matrix Multiplication (SpGEMM), where we model their load-

balancing problems as 3-dimensional RPPs.

CCS Concepts: • Computing methodologies→ Shared memory algorithms.

Additional Key Words and Phrases: Spatial partitioning, rectilinear partitioning, symmetric partitioning.

1 INTRODUCTION
Parallel computing systems have become ubiquitous, and ever-increasing data necessitates their

use. Mapping the data and the computation onto the processors of these parallel systems is usually

the initial parallelization step. However, a significant amount of those data are irregular, i.e., they

do not have easily observable patterns among their elements. Therefore, efficient partitioning of

the data and computation for mapping is a difficult problem. In some applications, computational

dependency and data can be represented as graphs/hypergraphs by defining interactions among

entities. Connectivity-based methods [3, 6, 15, 18] can be used to partition those type of irregular

data. Another large class of irregular data comes from applications that deals with entities in multi-

dimensional spaces, such as 3D space and time [14]. In many cases, like n-body problems [17, 30, 37],

computational dependencies depends on spatial relations of the entities, hence it would be preferred

to partition the data (and work) by keeping the entities that are close-by in space together. Spatial

partitioning achieves that by taking the d-dimensional spatial coordinates of the input and dividing

the space into multi-dimensional rectangles and minimizing the maximum load (hence minimizing

the load imbalance) [2, 24, 29, 33, 35]. In this work, we tackle the generalized spatial partitioning

problem of irregular data for parallel processing.

Many different spatial partitioning strategies have been proposed based on various structural

constraints, balancing between flexibility and communication patterns [2, 13, 24, 33, 35]. Among

these methods, rectilinear partitioning (a.k.a., generalized block distribution) [13, 24] partitions

two-dimensional space using straight lines parallel to each dimension. It is one of the most widely

used techniques due to its simplicity and resulting well-structured communication pattern.

The regularity of the partitioned space makes rectilinear partitioning ideal for many applications.

Limiting the number of neighbors restricts communication into logical rows or columns of virtual

mesh topologies and is beneficial for communication patterns, simplifying the communication and
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reasoning of many computational kernels. For instance, matrix/tensor kernels, such as multiplica-

tion, can be naturally represented using rectilinear partitioning. These properties make rectilinear

partitioning a more attractive choice than other types of spatial partitioning techniques.

The optimal one-dimensional Rectilinear Partitioning Problem (RPP) has a polynomial-time

algorithm [28]. However, multidimensional RPP is NP-hard [13]. Very recently, [38] shows that the

symmetric variant of RPP is also NP-hard. However, in the multidimensional case, the conditional

RPP, which finds the optimal partitioning when partitions of all but one dimension are fixed, is

polynomial-time solvable [28].

In this paper, we propose SGORP, a Subgradient Optimization [4] basedmethod to tackle the more

general, multi-dimensional RPP. A multi-dimensional rectilinear partition of a given 𝑑-dimensional

domain arises when each of the parts are rectangular volumes whose dimensions exactly match that

of each neighbor at each face. Finding a rectilinear partitioning of a given 𝑑-dimensional domain

is useful not only in applications where the data is already in a 𝑑-dimensional space but also in

applications where the computation can be represented in a 𝑑-dimensional space. Consider Matrix

Multiplication as an example. Here, the input data lies in a 2-dimensional space yet the computation

is best represented in a 3-dimensional space. Thus, there is a need for methods tackling the RPP in

higher dimensions.

We demonstrate our method is efficient in finding high-quality solutions for multiple variants of

rectilinear partitioning. One important property of our proposed method is that it allows the use

of customizable objective functions, such as minimizing the sum of loads of combinations of tiles

with arbitrary partition sizes for each dimension.

The main contributions of this work are:

• Presenting a formulation for the Rectilinear Partitioning Problem (RPP) for the continuous

domain (Section 3),

• Proposing and implementing an efficient iterative method for the RPP that generalizes to

an arbitrary 𝑑 dimensions and can also solve the Symmetric RPP (SRPP) via constraints

(Section 4),

• Demonstrating the superiority of the proposed method over the existing state-of-the-art,

applying an extensive experimental evaluation on more than 600 real-world matrices

(Section 6.2),

• Demonstrating the effectiveness of different customizations of SGORP in 2-dimensional (RPP

and SRPP), and 3-dimensional (Triangle Counting and Generalized Sparse Matrix-Matrix

Multiplication (SpGEMM)) use-cases (Section 6.2).

In the following sections, we first present the related work for rectilinear partitioning as well as

application use cases in Section 2. Next, we present the preliminaries and our formulation of RPP

in Section 3. Then in Section 4, we present the SGORP algorithm. Section 5 demonstrates how to

use SGORP to solve different variants possibly motivated by real-world use-cases. Finally, Section 6

presents the detailed experimental evaluation, and in Section 7 we conclude.

2 RELATEDWORK
2.1 Rectilinear Partitioning
Rectilinear partitioning (a.k.a., generalized block distribution) is a well studied problem [1, 12, 19,

24, 28]. Two of the existing important algorithms that we cover in the context of this paper for

the (symmetric) rectilinear partitioning problem are Nicol’s algorithm [28] for 2-dimensional RPP

and the PAL algorithm [38] for the 2-dimensional SRPP. The biggest difference between these

methods and SGORP is that SGORP can work in an arbitrary number of dimensions and contains

the 2-dimensional RPP and SRPP as special cases, while the other algorithms only work for their
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individual cases. Nicol’s algorithm is an iterative method and uses the fact that given the partition

of a dimension, it is possible to find the optimal partition for the other dimension. Compared to the

Nicol’s algorithm, our method changes the partitions for all the dimensions at the same time in a

single step. On the other hand, PAL algorithm is a single shot heuristic. It makes a single pass over

the matrix nonzeros and partitions the matrix along the way. While the output partitions for both

Nicol’s algorithm and PAL algorithm are at local optima, which was defined in (9), we will observe

that SGORP will output partitions that are usually at better local optima.

Aspvall et al. [1] show that in the existence of heavy rows/columns, Nicol’s algorithm [28] focuses

on heavy rows/columns, and that causes accumulation of the load in other rows. To overcome this

problem, Aspvall et al. [1] propose an objective function which ignores the heavy rows/columns

and solves the problem by iterating only 2-3 times.

Khanna et al. [19] and Gaur et al. [12] propose mapping rectilinear partitioning problem to the

rectangle stabbing problem. The main drawback of this approach is its rather high computational

complexity. In this process, the first stage involves finding all the rectangles that have higher load

than a given target load, and it can take up to 𝑂 (𝑛4) for 𝑛 × 𝑛 dense matrices and 𝑂 (𝑜2) for sparse
matrices with 𝑜 nonzeros. Furthermore, rectangle stabbing algorithms running on these rectangles

have a long runtime. Thus, we don’t compare SGORP with this class of algorithms.

There exists an iterative 4-approximation algorithm [26]. In this approach, the authors maintain

costs for each individual row and column initialized to 1 at the start. After, at each step, they find a

tile exceeding a given target load and scale the row and column costs of that tile by 1 + 𝜖
2
, where

𝜖 > 0. Then, they partition the row and column cost arrays using the approach we describe in 4.1.

One main difference between this algorithm and SGORP is that their algorithm requires a target

load 𝐿𝑡 as an input to see whether a partition exists whose maximum load is less than 𝐿𝑡 , thus

being a solution to a decision problem, whereas SGORP outputs the best partition found at the end.

The other difference is that SGORP utilizes information that comes from every part of the load

matrix and also their magnitudes, however its counterpart only utilizes the information about the

location of the maximally loaded part.

2.2 Triangle Counting
The triangle counting problem [16, 20, 39] seeks to find mutually connected 3-vertices in an

undirected graph. This is a crucial graph kernel that serves as a building block for many other

graph problems. For the interest of this paper, recently, Hu et al. [16] proposed to use rectilinear

partitioning to divide the computation among GPUs and Yaşar et al. [39] proposed a block-based

triangle counting formulation using symmetric rectilinear partitioning to make the algorithm

suitable for task-based execution on shared and distributed-memory systems. Both approaches

try to minimize the maximum load of a partition. In this work, we show that SGORP can model

this partitioning problem in a three dimensional space and optimize a different objective function

successfully (see Section 5.4).

2.3 SUMMA-SpGEMM
SpGEMM, sparse matrix matrix multiplication, computes matrix multiplication on two sparse

matrices. It is commonly used in graph applications, such as link prediction [25, 32], graph

compression[27], and used in scientific computations [22, 31]. Due to its high complexity, and

extreme irregularity, there has been an interest in optimizing SpGEMM [5, 9, 10, 21, 23] in both

shared memory and distributed systems. SUMMA-SpGEMM[5], inspired by the original dense

SUMMA [36], is one of the most commonly used technique for distributed memory systems. In

SUMMA, the result matrix’s computation is partitioned rectilinearly, and each processor in a

2D virtual processor grid calculates a part. By iteratively generating partial results, space usage
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for each process is limited to a constant number of parts of matrices. We show that SGORP can

directly partition both input matrices simultaneously while incorporating minimization of the

communication volume into partitioning objective (see Section 5.3).

3 PRELIMINARIES
3.1 Definitions
Rectilinear partitioning in the 𝑑-dimensional space consists of 𝑑 1-dimensional partitions, one

for each of the 𝑑-dimensions. That’s why we will start by defining what it means to partition a

1-dimensional interval.

Given an interval 𝑟 = [𝑎, 𝑏), a partitioning 𝑝 of 𝑟 into 𝑘 parts is an array [𝑝 [0], . . . , 𝑝 [𝑘]] such
that 𝑝 [0] = 𝑎, 𝑝 [𝑘] = 𝑏 and it is monotonic, i.e., 𝑝 [ 𝑗] ≤ 𝑝 [ 𝑗 + 1],∀𝑗 ∈ [𝑘]. Here, we use [𝑘] to
represent {0, . . . , 𝑘 − 1} and will use [𝑘]+ to represent {1, . . . , 𝑘}.

Next, we will define the objects that we will try to partition. Let us define a load distribution as

an integrable function 𝑓 : R𝑑 → R+, and let us define its load 𝐿(𝑓 ) as:

𝐿(𝑓 ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
𝑓 (𝑥1, . . . , 𝑥𝑑 ) 𝑑𝑥𝑑 . . . 𝑑𝑥1 < ∞.

Given a 𝑑-dimensional load distribution 𝑓 , we would like to find 𝑝 = (𝑝1, . . . , 𝑝𝑑 ) such that each

𝑝𝑖 is a partitioning of R into 𝑘𝑖 parts. Together, the 𝑝𝑖 ’s imply a partitioning of the whole space R𝑑

into 𝑘 = (𝑘1, . . . , 𝑘𝑑 ) parts. Our goal is to minimize 𝐿(𝑓 , 𝑝), the maximum of loads of these parts,

i.e.,

𝐿∗ = min

𝑝=(𝑝1,...,𝑝𝑑 )
𝐿(𝑓 , 𝑝) (1)

𝐿(𝑓 , 𝑝) = max

𝑗∈[𝑘1 ]×···×[𝑘𝑑 ]
𝐿(𝑓 , 𝑝, 𝑗) (2)

𝐿(𝑓 , 𝑝, 𝑗) =
∫ 𝑝1 [ 𝑗1+1]

𝑝1 [ 𝑗1 ]
· · ·

∫ 𝑝𝑑 [ 𝑗𝑑+1]

𝑝𝑑 [ 𝑗𝑑 ]
𝑓 (𝑥1, . . . , 𝑥𝑑 ) 𝑑𝑥𝑑 . . . 𝑑𝑥1 (3)

Note that, we seek a 𝑝 = (𝑝1, . . . , 𝑝𝑑 ) to minimize 𝐿(𝑓 , 𝑝), the load of the maximally loaded part.

And finally, let us also define the prefix sum 𝐹 : R𝑑 → 𝑅+
of 𝑓 as

𝐹 (𝑥1, . . . , 𝑥𝑑 ) = 𝐿(𝑓 , [−∞, 𝑥1], . . . , [−∞, 𝑥𝑑 ])

and the prefix sum in the 𝑖-th dimension 𝐹𝑖 : R→ R+ as

𝐹𝑖 (𝑥) = 𝐹 (𝑥1, . . . , 𝑥𝑑 ) : 𝑥𝑖 = 𝑥 and 𝑥 𝑗 = ∞,∀𝑗 ≠ 𝑖 .

Let us denote the inverse of the prefix sum in the 𝑖-th dimension as 𝐹 −1
𝑖 . We will use these prefix

sums in the next section to reparametrize partitions of each of the 𝑑 dimensions and it will serve as

the basic building block of our method. A summary of used notation can be found in Table 1.

3.2 Modeling sparse tensors and point datasets as load distributions
Let A be a 𝑑-dimensional sparse tensor with 𝑜 nonzeros defined via an ordered index set,𝐴𝐼 ∈ N𝑜×𝑑 ,
and corresponding values of these indices, 𝐴𝑉 ∈ R𝑜 . Thus:

𝐴[𝐴𝐼 [𝑖]] = 𝐴𝑉 [𝑖],∀𝑖
𝐴[𝑒] = 0,∀𝑒 ∈ N𝑑 \𝐴𝐼

Note that, a sparse tensor 𝐴 is essentially a function from the index space N𝑑 to the value space R,
i.e., 𝐴 : N𝑑 → R, and it is zero for any index not in the index set.
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Table 1. Notation used in this paper.

Symbol Description
[𝑘] Integer set: {0, . . . , 𝑘 − 1}

[𝑘]+ Integer set: {1, . . . , 𝑘}
[𝑎, 𝑏) Real interval: {𝑥 ∈ R : 𝑎 ≤ 𝑥 < 𝑏}

𝑝 = (𝑝1, . . . , 𝑝𝑑 ) A partitioning of R𝑑 , where 𝑝𝑖 is the
partition array in 𝑖-th dimension

𝑘 = (𝑘1, . . . , 𝑘𝑑 ) Nu. of parts in each dimension of 𝑝

𝐿(𝑓 , 𝑝, 𝑗) Load at index 𝑗 = ( 𝑗1, . . . , 𝑗𝑑 ) with 𝑝

𝐿(𝑓 , 𝑝) Maximum load

𝐹𝑖 (𝑥) Prefix sum: 𝑖-th dimension, point 𝑥

𝐹−1
𝑖

(𝑥) Inverse of 𝐹𝑖 at point 𝑥

𝐴 A sparse tensor

𝑓𝐴 Load distribution of the tensor 𝐴

𝜋 = (𝜋1, . . . , 𝜋𝑑 ) Parametrization of 𝑝 = (𝑝1, . . . , 𝑝𝑑 )
𝑔 = (𝑔1, . . . , 𝑔𝑑 ) Subgradient at the current parameters

𝜂 (𝑡) Step size depending on iteration 𝑡

In the case of a given 𝑑-dimensional dataset with 𝑜 points, we can treat 𝐴𝐼 ∈ R𝑜×𝑑 as the

coordinates of the points and 𝐴𝑉 ∈ R𝑜 as their weights. As there isn’t a fundamental difference

between sparse tensors and point datasets in this sense, we will talk about datasets as sparse tensors.

Given a 𝑑-dimensional sparse tensor 𝐴, we will define the corresponding 𝑑-dimensional load

distribution 𝑓𝐴 as follows:

𝑓𝐴 (𝑥1, . . . , 𝑥𝑑 ) =
∑︁
𝑢∈𝐴𝐼

𝛿 (𝑥 − 𝑢)𝐴[𝑢], (4)

where 𝛿 : R𝑑 → R denotes the Dirac delta function to model a point-wise load that a nonzero in 𝐴

implies. Defined this way, 𝑓 represents the distribution of the nonzeros of 𝐴 in R𝑑 . In the scenario

where the values of the nonzeros of 𝐴 don’t matter, we assume that all the values are set to 1.

4 SGORP: SUBGRADIENT OPTIMIZATION FOR RECTILINEAR PARTITIONING
In this section, we explain our customizable framework, SGORP. The reason we are classifying

our method under Subgradient Optimization [34] is that; we don’t have access to the gradient of

our objective function. We pick a direction to move our parameters that will probably improve

the objective but might not every iteration. Given a 𝑑-dimensional load distribution 𝑓 , SGORP

partitions the load distribution, 𝑓 , while also taking any user given equality constraints on the

partition vectors of different dimensions to solve the symmetric RPP. In the following subsections,

we first explain how the algorithm works for the 1-dimensional partitioning problem. Afterwards,

we show how to generalize our approach to the multi-dimensional case. Then, we show how

we can incorporate equality constraints on the partition vectors of different dimensions into our

framework and how to initialize the optimization variables. Since SGORP is an iterative method, we

also discuss possible stopping conditions and step size rules. Finally, we give an overall summary

of our method and illustrate a single iteration on a toy example.

4.1 1-dimensional partitioning problem
We first consider the 1-dimensional partitioning problem to build up an intuition for the RPP. Let 𝑓

be a 1-dimensional load distribution. Our goal is to find a way, 𝑝 = (𝑝1), to partition it into 𝑘 = (𝑘1)
parts while minimizing 𝐿(𝑓 , 𝑝). Given our objective, there exists a partition 𝑝∗ = (𝑝∗

1
) such that
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𝐿(𝑓 , 𝑝∗) = 𝐿 (𝑓 )
𝑘1

. Note that 𝐹 is differentiable by definition, and so it is also continuous. We can also

explicitly express the entries of 𝑝∗
1
as follows:

𝑝∗
1
[ 𝑗] = 𝐹 −1

1

(
𝑗
𝐿(𝑓 )
𝑘1

)
,∀𝑗 ∈ [𝑘1 + 1]

Unfortunately, we can not determine the optimal solution 𝑝∗ explicitly using this formulation for

higher-dimensional problems. Therefore for a given 𝑝 , we seek a way to compute its subgradient

to improve it iteratively. As one can notice, 𝐹 −1
1

plays a crucial role to solve the 1-dimensional

partitioning problem. Thus, we argue that in the multidimensional case, it might also be beneficial

to parametrize 𝑝 with 𝜋 = (𝜋1, . . . , 𝜋𝑑 ) as follows:
𝑝𝑖 [ 𝑗] = 𝐹 −1

𝑖 (𝜋𝑖 [ 𝑗])
In this parametrization, the optimal solution for the 1-dimensional case 𝜋∗ = (𝜋∗

1
) can be expressed

as:

𝜋∗
1
[ 𝑗] = 𝑗

𝐿(𝑓 )
𝑘1

Then we define the load, 𝐿𝜋 , as:

𝐿𝜋 (𝑓 , 𝜋) = max

𝑗∈[𝑘1 ]×···×[𝑘𝑑 ]
𝐿𝜋 (𝑓 , 𝜋, 𝑗) (5)

𝐿𝜋 (𝑓 , 𝜋, 𝑗) = 𝐿(𝑓 , (𝐹 −1
1

(𝜋1), . . . , 𝐹 −1
𝑑

(𝜋𝑑 )), 𝑗) (6)

Finally, the subgradient 𝑔 = (𝑔1) for the 1-dimensional case can be written as:

𝑔1 [ 𝑗] =
𝜕𝐿𝜋 (𝑓 , 𝜋)

𝜕𝜋1
= 𝜋1 [ 𝑗] − 𝜋∗

1
[ 𝑗]

and the update rule with step size 𝜂 (𝑡) > 0 at iteration 𝑡 as:

𝜋 ′ = 𝜋 − 𝜂 (𝑡)𝑔 (7)

Note that when 𝜂 = 1, we achieve the optimal solution in one step.

4.2 Multidimensional partitioning problem
Let 𝑓 be a 𝑑-dimensional load distribution and say we want to partition it into 𝑘 = (𝑘1, . . . , 𝑘𝑑 )
parts. We aim to find a good way to define the subgradient 𝑔 = (𝑔1, . . . , 𝑔𝑑 ) so that applying the

update rule in (7) repeatedly, we will get closer and closer to local optima. But before that, let us

define 𝑟𝑖 (𝑓 , 𝜋) [ 𝑗𝑖 ] as the maximum over all dimensions except the 𝑖th one as follows:

𝑟𝑖 (𝑓 , 𝜋) [ 𝑗𝑖 ] = max

𝑗∈[𝑘1 ]×···×{ 𝑗𝑖 }×···×[𝑘𝑑 ]
𝐿𝜋 (𝑓 , 𝜋, 𝑗),∀𝑗𝑖 ∈ [𝑘𝑖 ] (8)

We claim that a given 𝜋 is at local optima in the sense that changing any of the 𝜋𝑖 while keeping

others fixed will increase the value of 𝐿(𝑓 , 𝜋) when the following holds:

𝑟𝑖 (𝑓 , 𝜋) [ 𝑗𝑖 ] = 𝐿𝜋 (𝑓 , 𝜋),∀𝑖, 𝑗𝑖
Thus, the optimal solution 𝜋∗

lies in the set

𝑆 = {𝜋 | 𝑟𝑖 (𝑓 , 𝜋) [ 𝑗𝑖 ] = 𝐿𝜋 (𝑓 , 𝜋),∀𝑖, 𝑗𝑖 } (9)

In the 1-dimensional case, this set only has a single member, and it is the optimal solution.

However, in the multidimensional case, this set is not necessarily a singleton.

We will define the subgradient 𝑔 = (𝑔1, . . . , 𝑔𝑑 ) as follows:

𝑔𝑖 [ 𝑗𝑖 ] =
𝑗𝑖−1∑︁
𝑢=0

𝑟𝑖 [𝑢] −
𝑗𝑖

𝑘𝑖

𝑘𝑖−1∑︁
𝑢=0

𝑟𝑖 [𝑢],∀𝑖, 𝑗𝑖 (10)
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so that a given 𝜋 will get closer and closer to the set 𝑆 by applying our update rule repeatedly. Let’s

verify if the subgradient 𝑔 becomes 0 when 𝜋 ∈ 𝑆 :

𝑔𝑖 [ 𝑗𝑖 ] =
𝑗𝑖−1∑︁
𝑢=0

𝑟𝑖 [𝑢] −
𝑗𝑖

𝑘𝑖

𝑘𝑖−1∑︁
𝑢=0

𝑟𝑖 [𝑢]

=

𝑗𝑖−1∑︁
𝑢=0

𝐿𝜋 (𝑓 , 𝜋) −
𝑗𝑖

𝑘𝑖

𝑘𝑖−1∑︁
𝑢=0

𝐿𝜋 (𝑓 , 𝜋)

= 𝑗𝑖𝐿𝜋 (𝑓 , 𝜋) − 𝑗𝑖𝐿𝜋 (𝑓 , 𝜋) = 0

Indeed, 𝑔 becomes 0 when 𝜋 is at a local optima as expected.

Note that, our update rule in (7) reads the same for each of the 𝑑 dimensions:

𝜋 ′
𝑖 = 𝜋𝑖 − 𝜂𝑖 (𝑡)𝑔𝑖 ,∀𝑖 (11)

Again to verify, in the 1-dimensional case, we have:

𝜋 ′
1
[ 𝑗1] = 𝜋1 [ 𝑗1] − 𝜂𝑔1 [ 𝑗1]

= 𝜋1 [ 𝑗1] − 𝜂

𝑗1−1∑︁
𝑢=0

𝑟1 [𝑢] + 𝜂
𝑗1

𝑘1

𝑘1−1∑︁
𝑢=0

𝑟1 [𝑢]

= 𝜋1 [ 𝑗1] − 𝜂

𝑗1−1∑︁
𝑢=0

(𝜋1 [𝑢 + 1] − 𝜋1 [𝑢])

+ 𝜂 𝑗1

𝑘1

𝑘1−1∑︁
𝑢=0

(𝜋1 [𝑢 + 1] − 𝜋1 [𝑢])

= 𝜋1 [ 𝑗1] − 𝜂 (𝜋1 [ 𝑗1] − 𝜋1 [0]) + 𝜂
𝑗1

𝑘1
(𝜋1 [𝑘1] − 𝜋1 [0])

= 𝜋1 [ 𝑗1] − 𝜂 (𝜋1 [ 𝑗1] − 0) + 𝜂 𝑗1

𝑘1
(𝐿(𝑓 ) − 0)

= 𝜋1 [ 𝑗1] − 𝜂 (𝜋1 [ 𝑗1] −
𝑗1

𝑘1
𝐿(𝑓 ))

= 𝜋1 [ 𝑗1] − 𝜂 (𝜋1 [ 𝑗1] − 𝜋∗
1
[ 𝑗1])

4.3 Constrained optimization
Again, let 𝑓 be a 𝑑-dimensional load distribution and say we want to again partition it into

𝑘 = (𝑘1, . . . , 𝑘𝑑 ) parts. This time however, we will have equality constraints among the partitions,

e.g., 𝑝1 = 𝑝2 = 𝑝3 and 𝑝4 = 𝑝𝑑 , etc. Let’s say we group the dimensions whose partitions are

constrained to be equal and we are left with only
ˆ𝑑 groups. Then, we can encode these constraints

as:

𝑝𝑖 = 𝑝𝑖 , for some 𝑖 ∈ [ ˆ𝑑]+

𝐶𝑖 = {𝑖 | 𝑝𝑖 = 𝑝𝑖 }

If we optimize over 𝑝 , then the problem turns into an unconstrained one. However, first we need

to find a way to parametrize 𝑝 as 𝜋 in a similar manner to our former discussion. First, we define

𝐹𝑖 (𝑥) as:

𝐹𝑖 (𝑥𝑖 ) =
1

|𝐶𝑖 |
∑︁
𝑖∈𝐶𝑖

𝐹𝑖 (𝑥𝑖 )
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With this, we parametrize 𝑝 as 𝜋 as in the previous section:

𝑝𝑖 [ 𝑗𝑖 ] = 𝐹 −1
𝑖

(𝜋𝑖 [ 𝑗𝑖 ])

As is the case with 𝑝𝑖 and 𝑝𝑖 , we will define 𝜋𝑖 as an alias to the corresponding 𝜋𝑖 . In a similar

manner, we can define 𝑟𝑖 (𝑓 , 𝜋) [ 𝑗𝑖 ] as:

𝑟𝑖 (𝑓 , 𝜋) [ 𝑗𝑖 ] = max

∀𝑖∈𝐶𝑖

𝑟𝑖 (𝑓 , 𝜋) [ 𝑗𝑖 ] (12)

and finally, we can define the subgradient, again, the same as in the previous section:

𝑔𝑖 [ 𝑗𝑖 ] =
𝑗𝑖−1∑︁
𝑢=0

𝑟𝑖 [𝑢] −
𝑗𝑖

𝑘𝑖

𝑘𝑖−1∑︁
𝑢=0

𝑟𝑖 [𝑢],∀𝑖, 𝑗𝑖 (13)

4.4 Initializing 𝜋

The possible values for 𝜋𝑖 [ 𝑗𝑖 ] lie in the range of 𝐹𝑖 . Since 𝐹𝑖 is a monotonic function and 𝐹𝑖 (−∞) = 0

and 𝐹𝑖 (∞) = 𝐿(𝑓 ) for all 𝑖 , we could choose to deterministically initialize 𝜋𝑖 [ 𝑗𝑖 ] as:

𝜋𝑖 [ 𝑗𝑖 ] =
𝑗𝑖
ˆ𝑘𝑖

𝐿(𝑓 ).

Another option to initialize 𝜋𝑖 [ 𝑗𝑖 ] is to use the uniform distribution with range (0, 𝐿(𝑓 )). Note
that 𝜋𝑖 has to be monotonic so we sort 𝜋𝑖 after initializing them with the uniform distribution. After

this, we set 𝜋𝑖 [0] = 0 and 𝜋𝑖 [ ˆ𝑘𝑖 ] = 𝐿(𝑓 ). This way of initialization is better because we suspect that

𝑑-dimensional rectilinear partitioning for any 𝑑 ≥ 2 and any types of constraints is NP-hard. Thus,

it is expected that there are many local optima. Random initialization makes it so that multiple runs

of the algorithm with different random seeds produce different outputs which can be considered to

be a good property since a single run might get stuck at a bad local optima.

4.5 Stopping condition
Since we have characterized the optimal solution to be in the set 𝑆 defined in (9), this immediately

gives us a metric to decide when to stop. Since the following holds

𝐿𝜋 (𝑓 , 𝜋) = max

𝑗𝑖

𝑟𝑖 (𝑓 , 𝜋) [ 𝑗𝑖 ],∀𝑖

we can measure for all 𝑖 how close 𝑟𝑖 (𝑓 , 𝜋) is to the uniform distribution when we consider 𝑟𝑖 (𝑓 , 𝜋)
as an unnormalized probability distribution. This can be done using norms, including 𝐿1, 𝐿2 or

even 𝐿∞. During the iterations, we can check whether it is close enough and if so, we can choose

to terminate the algorithm. Among all of the available options, we choose to stop the algorithm

when the following holds:

𝐿𝜋 (𝑓 , 𝜋) −min𝑖, 𝑗𝑖
𝑟𝑖 [ 𝑗𝑖 ]

min𝑖, 𝑗𝑖
𝑟𝑖 [ 𝑗𝑖 ]

< 𝜖 (14)

However, when we represent sparse tensors as load distributions, the load function that we defined

in (3) won’t be continuous. Thus, it might be impossible for 𝑟𝑖 (𝑓 , 𝜋) to approximate an unnormalized

uniform probability distribution causing the algorithm to never stop. Therefore, we resort to the

following technique: for 𝑐
∑𝑑

𝑖=1 𝑘𝑖 iterations after the last update of the best solution found so far, if

the solution quality doesn’t improve more than a factor of 1+𝜖 , then SGORP stops. Our experimental

results show that combining this technique with the aforementioned stopping condition gives good

results with 𝑐 = 10 and 𝜖 = 0.001.
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(a) (16, 16) rectilinear partitioning
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(b) (16, 16) symmetric rectilinear partitioning

Fig. 1. Plots of 𝐿(𝑓 , 𝜋) and closeness to local optimality with respect to iteration number on twitter7 matrix
from SuiteSparse with (16, 16) partitioning.

In Figure 1, if the orange curve gets sufficiently close to 0, then we can stop because we have

reached a local optima. We can also choose to stop when the blue curve starts to flatten in case

we can’t get close enough to a local optima. In Figure 1b, we observe that both the blue and

orange curves are less smooth compared to Figure 1a. Our explanation for this phenomenon is that

the parameters of partition arrays of both dimensions are shared in the symmetric case, so the

effect of the first and the second dimensions to the subgradient sometimes conflict each other. At

those times, SGORP might move 𝜋 further away from the set 𝑆 defined in (9). Another reason for

non-smoothness is that the object we are partitioning is discrete in nature. That is why there are

some jumps at the end of the blue and orange curves in Figure 1a.

4.6 Step size selection
The update rule we defined in (11) depends on current iteration 𝑡 . There is a multitude of step size

rules that can be used one of which is the constant step size rule [4]. However, we choose to use a

diminishing step size rule, specifically 𝜂𝑖 (𝑡) ≈ 𝜇√︃
𝑡
ˆ𝑘𝑖
+𝑇

, where 𝜇 = 1 and 𝑇 = 100 were determined to

work well empirically in our experiments.

4.7 Overall summary and an example
Algorithm 1 presents the pseudocode of our proposed method SGORP. First, we initialize the

partitioning variables 𝜋 . Then, in each step, SGORP computes the subgradients 𝑔𝑖 and updates 𝜋 ,

and keeps track of the best solution found so far, 𝜋∗
. SGORP returns the best solution when the

stopping condition is achieved.

As a toy example, given the partitioned matrix𝐴 in Figure 2a as our initial state with partitioning

(𝑝, 𝑝), where 𝑝 = [0, 2, 4, 8], we apply a single update of our algorithmwhen there are no constraints.

Since 𝐴 is a sparse matrix, we first get its load distribution 𝑓𝐴. Note that 𝐿(𝑓𝐴, (𝑝, 𝑝)) = 5. After

that, we compute the prefix sums 𝐹1 and 𝐹2 by counting the numbers of nonzeros along the rows

and columns to get 𝐹1 = [0, 5, 9, 11, 11, 12, 12, 14, 15] and 𝐹2 = [0, 2, 3, 4, 7, 8, 9, 13, 15]. By plugging 𝑝

into 𝐹1 and 𝐹2 as an index, we get 𝜋1 = [𝐹1 [𝑝 [0]], 𝐹1 [𝑝 [1]], 𝐹1 [𝑝 [2]], 𝐹1 [𝑝 [3]]] = [0, 9, 11, 15] and
𝜋2 = [𝐹2 [𝑝 [0]], 𝐹2 [𝑝 [1]], 𝐹2 [𝑝 [2]], 𝐹2 [𝑝 [3]]] = [0, 3, 7, 15]. We also compute the loads of each part

to get [[2, 2, 5], [0, 2, 0], [1, 0, 3]]. As the next step, we compute 𝑟1 = [5, 2, 3] and 𝑟2 = [2, 2, 5]. After
that, we compute the subgradients 𝑔1 = [0, 5

3
, 1
3
, 0] and 𝑔2 = [0, 1,−1, 0]. If we have the step size

𝜂 = 2, then updated parameters become 𝜋1 = [0, 17
3
, 31
3
, 15] and 𝜋2 = [0, 5, 11, 15]. Doing binary
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Fig. 2. A toy matrix partitioned in various ways. The (magenta) numbers to the left and top of the figures
denote the prefix sums 𝐹1 and 𝐹2. The (blue) numbers to the right and bottom represent the maximum loads
𝑟1 and 𝑟2. Finally, the (green) numbers inside the boxes show the load of the part they are in.

Algorithm 1: SGORP(𝑓 , 𝐶 , 𝑘)
⊲ 𝑓 : A 𝑑-dimensional load distribution

⊲𝐶 : Set of constraints

⊲ 𝑘 = (𝑘1, . . . , 𝑘𝑑 ) : Partition vector sizes of each dimension

1 𝜋 = Initialize() ⊲ See Section 4.4

2 𝜋∗ = 𝜋 ⊲ Initialize best solution found so far

3 𝑡 = 0 ⊲ Initialize iteration count to 0

⊲ See Section 4.5 for the stopping condition

4 while not (14) do
5 Compute 𝑟𝑖 using (8), 𝑟𝑖 using (12), and 𝑔𝑖 using (13)

6 𝜋𝑖 = 𝜋𝑖 − 𝜂𝑖 (𝑡)𝑔𝑖 st. 𝑖 ∈ [𝑑]+
7 if 𝐿(𝑓 , 𝜋) < 𝐿(𝑓 , 𝜋∗) then
8 𝜋∗ = 𝜋 ⊲ Best solution improved

9 𝑡 = 𝑡 + 1

10 return 𝜋∗

searches in 𝐹1 and 𝐹2 to compute 𝐹 −1
1

and 𝐹 −1
2

, we get the new partition vectors 𝑝1 = [0, 1, 2, 8] and
𝑝2 = [0, 3, 6, 8]. With this new partition of the matrix, we have 𝐿(𝑓𝐴, (𝑝1, 𝑝2)) = 2, down from 5.

Now we show a single step of our algorithm when there is an equality constraint along the

matrix rows and columns. In this case, we compute 𝐹1 =
𝐹1+𝐹2
2

= [0, 7
2
, 6, 15

2
, 9, 10, 21

2
, 27
2
, 15]. By

looking-up each element of 𝑝 in 𝐹1, we get 𝜋1 = [0, 6, 9, 15]. Since we already computed 𝑟1 and 𝑟2
above, we can compute 𝑟1 = [5, 2, 5] by taking an element-wise max of 𝑟1 and 𝑟2. After that, we

compute the subgradient 𝑔1 = [0, 1,−1, 0]. Using 𝜂 = 2, we get updated 𝜋 = [0, 4, 11, 15]. Doing
binary searches on 𝐹1, we get the new partition vector 𝑝1 = [0, 1, 6, 8]. Because of the constraint
𝑝1 = 𝑝1 = 𝑝2, we have 𝐿(𝑓𝐴, (𝑝1, 𝑝2)) = 3, down from 5.
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5 MAPPING PARTITIONING PROBLEMS INTO SGORP
In this section, we propose modeling strategies to map four different applications into SGORP. The

first two of these applications model the partitioning problem using two-dimensional objective

functions, while the last two of these applications use three-dimensional objective functions.

5.1 2-dimensional RPP
Nicol’s [28] rectilinear partitioning algorithm partitions a given sparse matrix 𝐴 into (𝑘1, 𝑘2) parts
and tries to minimize the maximum number of nonzeros contained in the most loaded partition.

SGORP can achieve the same type of partitioning: Given a 2-dimensional sparse matrix 𝐴, we treat

it as a 2-dimensional load distribution 𝑓𝐴 as in (4). The objective is to partition 𝑓𝐴 into (𝑘1, 𝑘2) parts.
Thus, this use of our framework is a direct contender to Nicol’s algorithm, which we will investigate

in the experiments section. We will refer to this variant of SGORP as SGO-2DR. In short, we will

have SGORP solve the following optimization problem:

min

𝑝1,𝑝2
max

𝑗1, 𝑗2
𝐿(𝑓𝐴, (𝑝1, 𝑝2), ( 𝑗1, 𝑗2)) (15)

5.2 2-dimensional SRPP
The partitioning algorithms presented in [38] partition a given sparse matrix 𝐴 into (𝑘, 𝑘) parts
resulting in partition vectors (𝑝, 𝑝) while minimizing the maximum number of nonzeros contained

in a single partition. Note that the use of 𝑝 for the partition vectors of both dimensions implies

an equality constraint, as explained in Section 4.3. The objective is to partition 𝑓𝐴 into (𝑘, 𝑘) parts.
This kind of use of our framework is a direct contender to the algorithms presented in [38]. In

our experiments, we compare SGORP with the PAL algorithm implemented in that library. We

will refer to this variant of SGORP as SGO-2DS. In short, SGORP solves the following optimization

problem:

min

𝑝1=𝑝2
max

𝑗1, 𝑗2
𝐿(𝑓𝐴, (𝑝1, 𝑝2), ( 𝑗1, 𝑗2)) (16)

5.3 3-dimensional RPP Use Case: SpGEMM
SGORP is a flexible framework, and it can optimize different objective functions. This property is

highly useful for modeling a wide range of applications. For instance, for the Sparse Matrix-Matrix

Multiplication (SpGEMM) kernel that uses the SUMMA algorithm, one might want to minimize

the maximum communication volume during each communication round. In this algorithm, each

processor (𝑢, 𝑣) in a 𝑘 × 𝑘 processor grid multiplies the tile (𝑢,𝑤) of 𝐴 with the tile (𝑤, 𝑣) of 𝐵 and

adds it to the tile (𝑢, 𝑣) of C in communication round𝑤 . The total volume of communication done

by the processor (𝑢, 𝑣) in round𝑤 is the sum of the load of the tile (𝑢,𝑤) of 𝐴 and the tile (𝑤, 𝑣) of
𝐵. The goal is to minimize the maximum total volume of communication in the round𝑤 between

all processors, i.e.max𝑢,𝑣 𝑛𝑛𝑧 (𝐴[𝑢,𝑤]) +𝑛𝑛𝑧 (𝐵 [𝑤, 𝑣]). When we consider all of the communication

rounds, the objective becomes to minimize

∑
𝑤 max𝑢,𝑣 𝑛𝑛𝑧 (𝐴[𝑢,𝑤]) + 𝑛𝑛𝑧 (𝐵 [𝑤, 𝑣]). However, it is

not possible to optimize this objective function with our framework as subgradients vanish when we

sum over a dimension. That is why we choose to minimize max𝑢,𝑤,𝑣 𝑛𝑛𝑧 (𝐴[𝑢,𝑤]) + 𝑛𝑛𝑧 (𝐵 [𝑤, 𝑣]).
To map this problem into our framework, let 𝑓𝐴 and 𝑓𝐵 be 2-dimensional load distributions

representing matrices 𝐴 and 𝐵 as in Section 3.2. Let 𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑓𝐴 (𝑥1, 𝑥2) + 𝑓𝐵 (𝑥2, 𝑥3). Note that
𝑓 is 3-dimensional load distribution. Solving the problem of partitioning 𝑓 into (𝑘, 𝑘, 𝑘) parts and
getting the resulting partitions (𝑝1, 𝑝2, 𝑝3), directly corresponds to minimize the communication

volume of the Sparse SUMMA algorithm where 𝐴 is distributed with respect to (𝑝1, 𝑝2) and 𝐵 is
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distributed with respect to (𝑝2, 𝑝3). In short, SGORP solves the following optimization problem:

min

𝑝1,𝑝2,𝑝3
max

𝑗1, 𝑗2, 𝑗3
𝐿(𝑓 , (𝑝1, 𝑝2, 𝑝3), ( 𝑗1, 𝑗2, 𝑗3)) (17)

We will refer to this variant of SGORP as SGO-3DR.

5.4 3-dimensional SRPP Use Case: Triangle Count
Triangle Counting Problem [16, 39] can be another use-case. When we partition the adjacency

matrix of a given graph using a symmetric-rectilinear fashion, edges of a triangle can appear in

at most three of the partitions. Furthermore, in a triangle, for chosen two edges, there exists only

one sub-graph such that the third edge belongs. If one partitions the adjacency matrix 𝐴 into (𝑘, 𝑘)
parts using a partition 𝑝1, 𝑝2 under the constraint 𝑝1 = 𝑝2, then there will be ≈ 𝑘3 instances (i.e.,

tasks) of the triangle counting problem, each seeks triangles in (𝐴[𝑢,𝑤], 𝐴[𝑤, 𝑣], 𝐴[𝑢, 𝑣]). In the

heterogeneous environment, where the memory of the co-processors or the bandwidth between

the host-processor and the co-processors are limited, 𝑛𝑛𝑧 (𝐴[𝑢,𝑤]) + 𝑛𝑛𝑧 (𝐴[𝑤, 𝑣]) + 𝑛𝑛𝑧 (𝐴[𝑢, 𝑣])
of task (𝑢,𝑤, 𝑣) will correspond to transfer times to the co-processors and the memory requirement.

Thus, the objective is to minimize max𝑢,𝑤,𝑣 𝑛𝑛𝑧 (𝐴[𝑢,𝑤]) + 𝑛𝑛𝑧 (𝐴[𝑤, 𝑣]) + 𝑛𝑛𝑧 (𝐴[𝑢, 𝑣]).
To map this problem into our framework, let 𝑓𝐴 be a 2-dimensional load distribution representing

the adjacency matrix𝐴 and let 𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑓𝐴 (𝑥1, 𝑥2) + 𝑓𝐴 (𝑥2, 𝑥3) + 𝑓𝐴 (𝑥1, 𝑥3). Solving the problem
of partitioning 𝑓 using (𝑝1, 𝑝2, 𝑝3) into (𝑘, 𝑘, 𝑘) parts with the constraint 𝑝1 = 𝑝2 = 𝑝3, directly

corresponds to minimize the maximum communication cost of a processor. We will refer to this

variant of SGORP as SGO-3DS. In short, SGORP solves the following optimization problem:

min

𝑝1=𝑝2=𝑝3
max

𝑗1, 𝑗2, 𝑗3
𝐿(𝑓 , (𝑝1, 𝑝2, 𝑝3), ( 𝑗1, 𝑗2, 𝑗3)) (18)

6 EXPERIMENTS
In this section, we compare the performance of our proposed algorithms (SGO-2DS, SGO-2DR,

SGO-3DR, SGO-3DS) with state-of-the-art rectilinear and symmetric rectilinear partitioning al-

gorithms. We use Nicol’s (NIC) [28], Aspvall et al.’s (2SWP) [1] and Muthukrishnan and Suel’s

(4APX) [26] rectilinear partitioning algorithms for the nonsymmetric case and Probe a Load (PAL)

symmetric rectilinear partitioning algorithm for the symmetric case. We use NIC and PAL with

their default parameters from the SARMA library [38]. We choose to use a maximum iteration limit

of 10000 for the 4APX algorithm with 𝜖 = 0.01. For the 4APX algorithm, the authors state in their

paper that the number of iterations required to converge is on the order of 𝑂 (𝑘1 log𝑁 ), where 𝑘1
stands for the number of parts in a dimension and 𝑁 stands for the maximum dimension of the

input matrix. We also include uniform partitioning (UNI) in our experiments as the baseline. Note

that SGO-2DS and SGO-3DS output symmetric partitions whereas SGO-2DR and SGO-3DR output

rectilinear partitions.

SGORP variants use the random initialization as explained in Section 4.4. To reduce the variance

caused by randomness, the median result of 10 runs is taken in all reported results.

We ran all of the experiments on the Hive cluster of Georgia Tech. Hive has 416 compute nodes,

each is equipped with 2 × 2.7 GHz Intel Xeon 6226 CPUs (with 12-cores), and 192 GB of RAM.

Interconnection network is EDR Infiniband (100Gbps). Each algorithm run had a single such node

with all 24 cores for their use.

All of the sparse matrices used in our experiments were downloaded from the SuiteSparse Matrix

Collection [8]. We excluded non-square matrices and matrices with less than 10
6
or more than

2 × 10
9
nonzeros. By the time of this experimentation there were 687 matrices, out of 2856, that fit

our criteria.
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We downloaded 17 additional point datasets from the DIMACS10 workshop repository [7]; Street

Networks, and Frames from 2D Dynamic Simulations categories. The number of points in this

dataset varies from 10
5
to 5 × 10

7
.

We present our results using performance profile plots [11]. In these plots, the 𝑦-axis denotes

the relative number of test instances, and the 𝑥-axis denotes the ratio of the metric of interest to

the best performing algorithm on one of the test instances. The higher and closer a plot is to the

𝑦-axis, the better the method is.

Furthermore, in order to support reproducibility, we provide normalized load imbalance (with

respect to average non-zero per part) and absolute algorithm execution times for a subset of data

in Appendix A.

6.1 Implementation
We have contributed our implementation of SGORP, the two-sweep (2SWP) algorithm in [1] and

the four approximation (4APX) algorithm in [26] to the SARMA library and it is publicly available

at https://github.com/GT-TDAlab/SARMA via a BSD-license. SARMA library is a suite of spatial

partitioning algorithms implemented using C++17 and the parallel standard library using shared

memory parallelism. We particularly used the sparse prefix sum data structure provided in SARMA

to represent 2-dimensional load distributions 𝑓𝐴 implied by the sparse matrices 𝐴 used during

experiments. Given a sparse matrix 𝐴 of dimensions (𝑚,𝑛) with 𝑜 nonzeros, this data structure

enables us to query the load of a rectangular region in the 2-dimensional space in 𝑂 (log𝑛 log𝑚)
time using 𝑂 (𝑜 logmin(𝑚,𝑛)) space.
The computational complexity of our algorithm is given by sparse-prefix-sum data structure

construction and load queries. SGORP can be computed in 𝑂 (𝑜 logmin(𝑚,𝑛) + 𝜏𝑘1𝑘2 log𝑛 log𝑚)
for the 2-dimensional case where 𝜏 stands for the number of iterations. Note that, while the

number of iterations required depends on many factors, it is at most thousands in practice and it

highly depends on the selected parameters for the stopping condition and the step size. The data

structure construction dominates the complexity of our algorithm. However, one can reduce that

by sparsifying the graph, that is, sampling the nonzeros of the input sparse-matrix [38].

6.2 Evaluation of the PartitioningQuality
In this sub-section, we compare the performance of our proposed algorithms with-respect-to

state-of-the-art partitioning algorithms for given objective functions. Depending on the nature of

the partitioning problem we use NIC, 4APX, 2SWP, PAL, and UNI algorithms as baselines. In the

following experiments we present results for 8 × 8, 16×, 16, and 32 × 32 partitionings.

6.2.1 2-dimensional Rectilinear Partitioning. In this experiment, we compare SGO-2DR, and SGO-2DS

with NIC, 4APX, 2SWP, PAL and UNI algorithms. In this experiment the objective function is min-

imizing the load of the maximum loaded partition. Note that comparing SRPP algorithms with

RPP algorithms is not fair because SRPP algorithms have more constraints. However we include

these algorithms in this experiment to give the reader an idea of how much of a limitation SRPP

brings compared to RPP. Figure 3 illustrates that the relative order of the algorithms with respect

to partitioning quality is SGO-2DR, NIC, 2SWP, SGO-2DS, PAL, 4APX and UNI. We see that the

difference between SGO-2DR and NIC algorithms start to decrease as we increase the number of

parts from (8, 8) to (32, 32). However, SGORP still outperforms NIC both in terms of partitioning

quality and also execution time as we will present below. Since RPP algorithms can output different

partition vectors for each dimension as opposed to SRPP algorithms, this kind of a difference was

expected.

https://github.com/GT-TDAlab/SARMA
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In the point datasets, we see that SGO-2DR and NIC are much closer, SGO-2DR outperforming

NIC for the (8, 8) case and NIC outperforming SGO-2DR for the (32, 32) case in Figure 7. Note that,

the number of instances is small, only 17. Thus, we believe that the use of sparse matrices gives a

better picture of overall quality.
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Fig. 3. Performance profile plots of the partitioning methods with natural reordering. The algorithms are
compared wrt. (15).
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Fig. 4. Performance profile plots of the symmetric partitioning methods when the graphs are reordered in
ascending order of their degrees and only the upper triangular part is kept. The algorithms are compared
wrt. (16).

6.2.2 2-dimensional Symmetric Rectilinear Partitioning. In this experiment, we compare SGO-2DS,

PAL and UNI algorithms. The objective function tries to minimize the load of the maximum loaded

partition. As illustrated in Figure 4, we see that the relative order of the algorithms with respect to

partitioning quality is SGO-2DS, PAL and UNI. We observe that the difference between SGO-2DS

and PAL algorithms increases proportional to the number of parts, from (8, 8) to (32, 32). We also

observe that on nearly 80% of the matrices, the partition quality is very close between SGO-2DS

and PAL algorithms while SGO-2DS outperforms the PAL algorithm on the rest of the matrices.

Therefore we claim that SGO-2DS is more resistant to the sparsity pattern of the given matrix and

outputs better partitions. As expected, the UNI algorithm performs really badly and it gives up to 3

times worse partitions.

6.2.3 3-dimensional Rectilinear Partitioning. In this experiment, we compare SGO-3DR, SGO-2DS,

NIC, PAL and UNI algorithms and we use (17) as the objective function. In this use case, we require

3 partition arrays 𝑝 = (𝑝1, 𝑝2, 𝑝3). For the symmetric methods (SGO-2DS, PAL and UNI) we use the

same partition array for each dimension. However, for the NIC algorithm, initially, we partition

the first load distribution 𝑓𝐴 to get 𝑝1 and 𝑝2. Then we find the optimal 𝑝3 to partition 𝑓𝐵 when
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the partition array for the first dimension of 𝑓𝐵 is 𝑝2. SGO-3DR outputs 3 partition arrays as an

output. Figure 5, shows that the relative order of the algorithms with respect to partitioning quality

is SGO-3DR, NIC, SGO-2DS, PAL and UNI.
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Fig. 5. Performance profile plots of the partitioning methods with natural reordering. The algorithms are
compared wrt. (17).
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Fig. 6. Performance profile plots of the symmetric partitioning methods when the graphs are reordered
in ascending order of their degrees and only the upper triangular part is kept which is useful when doing
triangle counting. The algorithms are compared wrt. (18).
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Fig. 7. Performance profile plots of the partitioning methods on point datasets. The algorithms are compared
wrt. (15).

6.2.4 3-dimensional Symmetric Rectilinear Partitioning. In this experiment, we compare SGO-3DS,

SGO-2DS, PAL and UNI algorithms, and we use (18) as the objective function. Figure 6 illustrates

that the relative order of the algorithms with respect to partitioning quality is SGO-3DS, SGO-2DS,
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Fig. 8. Performance profile plots of the partitioning methods with natural ordering. The algorithms are
compared wrt. their execution times.

PAL and UNI. We observe that the difference between SGO-3DS and other algorithms start to

increase as we increase the number of parts from (8, 8) to (32, 32). Among those algorithms only

SGO-3DS tries to minimize the objective function (18), we see that minimizing the maximum load

of a single partition also helps in most cases as SGO-2DS seems to perform relatively well. The

reason for this phenomenon is that 3 times (16) is an upper bound for (18), so optimizing for (16)

also implicitly optimizes for (16).

6.3 Evaluation of the Execution Time
We would like to note that in this work our goal is to propose a novel subgradiant-based multi-

dimensional rectilinear partitioning framework. However, to achieve better performance we enabled

parallelization features using modern C++ execution policies and also we transformed pleasingly

parallelizable loops in to parallel. All of the algorithms used for the experiments were parallelized

in the same manner including the sparse prefix sum data structure. We include data structure

construction time and partitioning time in reported execution times. Among the RPP algorithms,

we pick NIC as the baseline omitting 4APX and 2SWP as NIC is the only algorithm that gives

comparable results to SGO-2DR. The execution time of 2SWP is around 5 to 10 times faster than NIC

because it only does 2 iterations whereas NIC can do upto 20 iterations. Even though 4APX does

more iterations than SGO-2DR and requires a binary search on top as the algorithm is presented in

the format of a decision procedure, it still gives worse results and the runtime of a single iteration

is the same as SGO-2DR as they both use the same sparse prefix sum data structure to query loads

of tiles in each iteration.

In Figure 8, we observe that when we increase the number of parts the NIC algorithm gives

worse performance; as we go from 𝑘 = (𝑘1, 𝑘2) = (8, 8) to (32, 32). Because the complexity

of the NIC algorithm depends on 𝑘1 + 𝑘2 linearly and other algorithms’ runtimes are mostly

dominated by the sparse prefix sum data structure construction time, which doesn’t depend on 𝑘 .

In addition, we observe that different variants of SGORP are at least as fast as the PAL algorithm,

while SGO-2DS being around more than 2 times faster on average. Since SGO-3DR partitions two

matrices simultaneously and has to build two different sparse prefix sum data structures and query

them during each iteration, it does at least 2 times as much work as other algorithms. It also

optimizes over 3 partition arrays which increases the dimensionality of the searches space by 3

times. That is why it is much slower than other SGORP variants.

7 CONCLUSION
In this paper, we propose an efficient iterative subgradient-based method, SGORP, for the rectilinear

partitioning problem that is generalizable for arbitrary 𝑑 dimensions. We also show our framework
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can solve the symmetric rectilinear partitioning problem, via constraints. We propose algorithms

to two variants of this problem. Finally, our experiments on more than 600 matrices show that

SGORP outperforms state-of-the-art algorithms in terms of partition quality and execution time.
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A APPENDIX
A.1 Detailed results for a small subset of matrices
In order to provide reproducible results, we have provided normalized load imbalance (with respect

to average non-zero per part, meaning
𝐿 (𝑓 ,𝑝 )𝑘1𝑘2

𝐿 (𝑓 ) ) and absolute execution times of the algorithms for

a selected subset of the sparse matrices. Table 2 presents the detailed properties of those matrices,

total 16 of them. Tables 3 to 8 present the normalized loads and execution times of different

algorithms for 𝑘1 = 𝑘2 ∈ {8, 16, 32}.

Table 2. The properties of sparse matrices.

Matrix Name Matrix Origin # Rows # Nonzeros Density
twitter7 Social 41,652,231 1,468,365,182 35.25

uk-2005 Web 39,459,926 936,364,282 23.73

stokes Semiconductor 11,449,534 349,321,980 30.51

kmer_A2a Biological 170,728,176 180,292,586 1.06

nlpkkt160 Optimization 8,345,601 118,931,856 14.25

com-Orkut Social 3,072,442 117,185,083 38.14

kron_g500-logn21 Kronecker 2,097,153 91,042,010 43.41

soc-LiveJournal1 Social 4,847,572 68,993,773 14.23

Cube_Coup_dt6 Structural 2,164,761 64,685,452 29.88

circuit5M Simulation 5,558,327 59,524,291 10.71

hollywood-2009 Movie/Actor 1,139,906 57,515,616 50.46

wb-edu Web 9,845,726 57,156,537 5.81

europe_osm Road 50,912,019 54,054,660 1.06

dielFilterV3real Electromagnetics 1,102,825 45,204,422 40.99

kron_g500-logn20 Kronecker 1,048,577 44,620,272 42.55

road_usa Road 23,947,348 28,854,312 1.20
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Table 3. The normalized loads of different algorithms for 𝑘1 = 𝑘2 = 8 compared wrt. (15).

SGO-2DR NIC 2SWP 4APX SGO-2DS PAL UNI
twitter7 1.78 1.67 2.32 1.81 1.85 1.80 9.35

uk-2005 5.06 5.13 6.29 7.90 7.65 7.65 11.47

stokes 2.93 2.75 3.13 4.27 4.71 4.79 5.01

kmer_A2a 1.95 1.84 2.27 2.43 2.63 3.33 2.51

nlpkkt160 4.88 5.75 6.17 13.65 9.46 7.75 14.66

com-Orkut 2.78 2.72 2.80 2.87 2.87 2.83 5.95

kron_g500-logn21 1.83 1.89 2.48 2.01 2.49 3.16 2.08

soc-LiveJournal1 2.17 2.13 2.57 2.68 2.51 2.51 15.40

Cube_Coup_dt6 4.97 7.66 6.40 7.70 7.69 7.69 7.84

circuit5M 2.64 2.79 3.22 3.64 2.67 3.19 16.94

hollywood-2009 4.20 4.01 4.75 6.88 5.78 5.78 11.05

wb-edu 4.79 5.67 6.05 7.66 7.63 7.63 8.78

europe_osm 4.93 6.79 5.66 7.39 7.39 7.39 7.70

dielFilterV3real 3.06 3.00 4.88 4.45 4.66 4.09 5.60

kron_g500-logn20 1.85 1.89 2.58 2.00 2.61 3.16 2.08

road_usa 5.05 5.90 5.05 6.85 6.86 6.84 7.07

Table 4. The normalized loads of different algorithms for 𝑘1 = 𝑘2 = 16 compared wrt. (15).

SGO-2DR NIC 2SWP 4APX SGO-2DS PAL UNI
twitter7 2.07 2.00 2.91 2.16 2.17 2.13 15.12

uk-2005 9.37 9.83 13.87 17.43 15.21 15.20 27.09

stokes 5.43 5.33 6.10 8.21 8.52 9.06 9.06

kmer_A2a 2.48 2.46 3.11 3.25 3.33 4.03 4.43

nlpkkt160 9.25 7.98 13.34 27.11 18.06 15.46 28.83

com-Orkut 3.58 3.53 4.64 3.84 3.62 3.59 14.03

kron_g500-logn21 1.98 2.26 2.85 2.01 3.36 3.54 2.17

soc-LiveJournal1 3.10 2.94 3.80 4.57 3.88 3.88 27.47

Cube_Coup_dt6 9.92 14.26 13.78 15.35 14.74 14.73 15.52

circuit5M 4.93 5.42 5.43 6.76 5.00 4.61 26.61

hollywood-2009 7.55 7.28 7.99 11.59 9.98 9.66 28.95

wb-edu 9.42 10.41 10.11 16.16 15.21 15.21 18.22

europe_osm 8.77 10.68 9.48 14.64 14.62 14.61 15.37

dielFilterV3real 5.82 6.12 6.90 8.37 8.89 7.43 8.59

kron_g500-logn20 2.09 2.25 3.00 2.07 3.04 3.54 2.13

road_usa 8.94 8.94 11.14 12.32 12.30 11.48 13.23
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Table 5. The normalized loads of different algorithms for 𝑘1 = 𝑘2 = 32 compared wrt. (15).

SGO-2DR NIC 2SWP 4APX SGO-2DS PAL UNI
twitter7 2.42 2.47 3.35 2.88 2.64 2.63 26.60

uk-2005 18.03 15.84 19.72 43.52 30.35 30.29 57.25

stokes 10.55 10.09 11.71 16.46 16.45 16.94 19.10

kmer_A2a 4.15 3.97 5.45 5.14 5.17 5.43 7.19

nlpkkt160 17.94 15.96 27.06 50.97 36.66 30.54 55.67

com-Orkut 4.57 4.38 6.95 5.26 4.79 4.80 23.69

kron_g500-logn21 2.26 2.62 3.51 2.02 3.21 3.76 2.32

soc-LiveJournal1 4.80 4.42 5.72 11.41 6.28 6.28 49.99

Cube_Coup_dt6 19.85 21.82 27.85 27.14 26.93 26.92 30.65

circuit5M 9.55 8.46 10.44 18.17 8.66 8.68 49.37

hollywood-2009 12.80 12.48 14.93 40.53 17.76 17.74 93.46

wb-edu 18.62 19.23 19.97 31.67 30.31 30.30 40.53

europe_osm 18.05 17.88 23.94 29.07 28.98 28.97 30.65

dielFilterV3real 11.24 11.17 12.93 16.14 16.02 14.17 17.29

kron_g500-logn20 2.45 2.63 3.72 2.02 3.29 3.76 2.40

road_usa 13.22 13.50 16.31 17.56 17.17 18.22 21.67

Table 6. The execution time in seconds of different algorithms for 𝑘1 = 𝑘2 = 8.

SGO-2DR NIC 2SWP 4APX SGO-2DS PAL
twitter7 127.76 37.38 739.04 129.64 127.79 117.90

uk-2005 25.17 15.45 112.86 40.37 25.17 29.93

stokes 9.98 3.93 35.65 15.22 10.00 11.36

kmer_A2a 13.03 11.06 69.84 55.48 13.06 23.72

nlpkkt160 3.76 1.59 11.77 11.34 3.76 4.64

com-Orkut 6.00 2.15 19.15 11.66 6.02 6.63

kron_g500-logn21 4.74 1.55 16.43 7.72 4.74 5.05

soc-LiveJournal1 3.38 1.54 12.45 9.08 3.39 4.44

Cube_Coup_dt6 1.62 0.42 5.98 5.99 1.62 1.96

circuit5M 1.99 1.09 5.85 5.91 1.99 2.64

hollywood-2009 1.81 0.80 6.00 4.98 1.82 1.99

wb-edu 1.88 1.19 8.49 7.11 1.88 2.64

europe_osm 3.89 2.40 15.53 18.49 3.89 7.95

dielFilterV3real 1.27 0.44 3.93 3.92 1.27 1.43

kron_g500-logn20 2.10 0.76 7.25 4.85 2.10 2.20

road_usa 1.77 1.41 9.77 10.42 1.78 3.29
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Table 7. The execution time in seconds of different algorithms for 𝑘1 = 𝑘2 = 16.

SGO-2DR NIC 2SWP 4APX SGO-2DS PAL
twitter7 127.86 44.22 753.83 135.45 127.88 118.16

uk-2005 25.22 33.06 116.03 45.24 25.19 29.89

stokes 10.05 8.21 32.64 21.05 10.02 11.45

kmer_A2a 13.21 33.33 79.05 56.92 13.10 24.34

nlpkkt160 3.77 3.69 12.05 13.23 3.77 4.71

com-Orkut 6.04 2.02 18.89 13.51 6.07 6.72

kron_g500-logn21 4.80 2.08 16.69 9.19 4.81 5.13

soc-LiveJournal1 3.43 3.43 12.28 11.44 3.43 4.53

Cube_Coup_dt6 1.63 0.71 6.10 6.48 1.63 2.04

circuit5M 2.02 2.00 6.06 7.26 2.02 2.67

hollywood-2009 1.84 1.77 6.37 8.39 1.84 2.08

wb-edu 1.89 3.08 9.07 11.99 1.88 2.76

europe_osm 3.90 6.95 17.70 19.99 3.90 7.94

dielFilterV3real 1.30 0.65 4.04 6.55 1.28 1.50

kron_g500-logn20 2.17 1.26 7.11 5.63 2.15 2.28

road_usa 1.78 5.04 10.52 13.62 1.82 3.42

Table 8. The execution time in seconds of different algorithms for 𝑘1 = 𝑘2 = 32.

SGO-2DR NIC 2SWP 4APX SGO-2DS PAL
twitter7 128.47 138.33 248.65 152.22 128.34 118.50

uk-2005 25.53 67.08 125.55 51.70 25.30 30.31

stokes 10.41 20.48 33.74 26.21 10.15 11.72

kmer_A2a 13.63 54.22 82.41 65.21 13.47 25.05

nlpkkt160 3.80 10.03 12.64 24.14 3.79 4.93

com-Orkut 6.35 3.96 19.13 16.63 6.27 6.94

kron_g500-logn21 5.35 3.47 16.83 12.71 5.17 5.32

soc-LiveJournal1 3.78 9.20 12.65 15.24 3.59 4.76

Cube_Coup_dt6 1.64 4.20 6.37 12.73 1.64 2.24

circuit5M 2.16 3.55 7.02 9.11 2.11 2.86

hollywood-2009 2.04 4.16 6.38 10.82 1.88 2.28

wb-edu 1.97 9.62 9.66 17.50 1.91 3.01

europe_osm 3.98 35.89 20.03 26.20 3.92 8.46

dielFilterV3real 1.41 2.96 4.26 10.90 1.37 1.67

kron_g500-logn20 2.73 1.82 7.13 7.39 2.53 2.44

road_usa 1.86 12.40 11.45 14.81 1.95 3.59
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