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Abstract. We propose a two-step biclustering approach to mine colaéign
patterns of a given reference gene to discover other geaefuthction in a com-
mon biological process. Currently, several successfulhodd utilize Pearson
Correlation Coefficient (PCC) based gene expression aisaygsoss all samples
in datasets. However, microarray datasets are fraught spitllious samples or
samples of diverse origin, and many genes/proteins thatifumin the same bi-
ological pathway may be missed. The novel PCC based biclugtalgorithm
introduced in this paper identifies subsets of genes with bagrelation by strin-
gently filtering the data and reducing false negatives d@ptwious or unrelated
samples in a dataset. Then, correlation information etdchfrom resulting bi-
clusters are synthesized. We applied our method using #essbrancer associ-
ated tumor suppressors, BRCA1 and BRCA2, as the referenteins to reveal
genes and proteins important in the complex process of brea®r formation.
Experiments on 20 very large datasets showed that the tiqedagenes were
remarkably enriched for genes that regulate the mitotindipiand cytokinesis.
The results imply that BRCA1 and BRCAZ2 proteins, which aresidered to be
DNA repair factors, have critical function regarding thetotic spindle as well.
Initial biological verification reveal that this identifidector function to control
both centrosome dynamics, and also, surprisingly, DNAirephus, this biclus-
tering approach is successful at identifying proteins kitfhly related function
from extremely complex datasets, and permits novel insigitb gene function.

1 Introduction

Proteins that function in concert in a given cellular preceften have their encoding

mMRNA co-expressed [1]. Therefore, examining transcriptavels of genes under dif-

ferent conditions provides insight about functions of gesed eventually development
and treatment of complex diseases. DNA microarray tectgydbas become the central
enabling technology in genomic research by allowing mezment of expression lev-

els of thousands of genes in parallel. In a microarray expent, expression levels of
genes in various samples are arranged in a matrix cge@ expression dat&amples
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Fig. 1: Overview of the proposed approach.

are usually collected from different individuals and mayrespond to different en-
vironmental conditions. Mining gene expression data toalisr biologically relevant
knowledge is a challenging task and has been the focus of reaewrch efforts [2—-5].

In this work, our objective is to develop a method that ugtizmultiple gene ex-
pression datasets to identify genes exhibiting co-regratith respect to a reference
gene. ldentifying genes co-regulated with a gene of immbftanction is crucial to un-
derstand biochemical and genetic pathways in which the garteipates. A straight-
forward approach towards this aim is to cluster genes in datdiset using a correlation
or similarity metric such a®earson Correlation Coefficient (PC(]; then count the
number of times each gene co-occurs in the same cluster ndtheference gene over
all datasets. PCC is a very effective and widely used matribis type of analysis to
quantify co-regulation between pairs of genes [3, 5].

A major drawback in this approach is that the entire set of[gamin a dataset
are used to decide cluster membership or correlation wighrétierence gene. Since
samples are usually collected from diverse sources, gemtpmteins that function
together may only be similarly expressed in a subset of theptes. Moreover, most
clustering techniques generate exclusive partitions négetherefore disregard the fact
that a single gene may be involved in more than one biologiadiway. To overcome
these limitations we propose a new biclustering algoritballed Correlated Pattern
Biclusters (CPB)that identifies groups of genes highly correlated with agivefer-
ence gene in empirically defined subsets of samples. Wedintenovel techniques in
CPB to address two important issues in biclustering of gemesssion data: (1) min-
ing datasets only to discover correlated patterns thatadotihe given reference gene,
(2) extension of the use of PCC in biclustering context. Idiggih, CPB algorithm
allows overlapping clusters and also captures negativelkedion through use of PCC.

To reach our ultimate goal of identifying genes that coesiy exhibit correlation
with the reference gene, we also propose a method to extaalation information
from identified biclusters in an intuitive way. The proposadthod evaluates unique-
ness of information captured in each bicluster and compaitasrrelation scorefor
each gene based on how frequently and in how distinct bensigt co-occurs with the
reference gene. Then, correlation scores from all dataset€ombined to filter out
inconsistent information. The overview of our approacHlisstrated in Figure 1.

Our motivating application was from breast cancer reseastiere there are two
important reference proteins, BRCA1 and BRCAZ2, highly pieare breast cancer spe-
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Table 1: A sample dataset and biclusters identified by sewesthods from this dataset. (a) Sam-
ple matrix (b) Additive model (c) Multiplicative model (dy@posed CPB algorithm (e) OPSM.

cific tumor suppressors. Both of these proteins functiomenrepair of DNA damage.
In addition, BRCA1 also functions at an organelle calledtemome, which is criti-
cal for cell division. To determine genes co-regulated VBRCA1 and BRCA2 we
applied the method proposed in this paper on very large etstasublicly available at
Gene Expression Omnibus (GEQ) database [7]. The resultfvae in Section 5.

2 Background

Biclustering was first introduced to gene expression dat#yais by Cheng and Church [8].
This is followed by numerous biclustering algorithms toritigy additive, multiplica-
tive [9, 10], or even more complex relationships [2, 11-1etjfeen the rows and columns
of a data matrix. In additive (multiplicative) models, thiference (ratio) between cor-
responding elements of any two rows and the differenceojratween corresponding
elements of any two columns in a bicluster are constantemergl, additive models are
useful to capture shifting patterns, whereas multiplieathodels are useful to capture
scaling patterns in the data. However, neither of them cantity shifting and scaling
patterns simultaneously. Furthermore, these models areegirictive in the sense that
constant difference (ratio) constraints are applied ohlbotv and column dimensions.
In Figures 1b and 1c, example biclusters that can be idehtiéispectively by additive
and multiplicative models from the sample matrix in Figueeate shown.

In this work, we propose the CPB algorithm that utilizesistetal co-expression
measure PCC as a similarity metric between rows of a bialuB@C is a strong metric
to evaluate positive as well as negative co-regulation betwows, and is commonly
used in clustering gene expression data [3, 5] due to its powmpturing both shifting
and scaling patterns. In Figure 1d, an example biclustettified by the CPB algorithm,
where there is perfect correlation (or negative correfgtlmetween each pair of rows is
given. As shown in this figure, PCC allows capturing bothtsinifand scaling patterns
that would be separately identified by additive and multitive models, respectively.

Application of PCC in biclustering context is not a triviask and requires over-
coming two challenges. Firstly, PCC lacks transitivity peaty. Therefore, instead of
measuring closeness to a reference pattern, one has to tmalppairwise PCC val-
ues between rows in the same bicluster to measure qualityackbe this problem, we
empirically show that if two rows have a sufficiently high melation with a reference
pattern, there is a lower bound for PCC between each thesetg The second chal-
lenge is that, PCC is only meaningful to measure coherentvecka rows but is too
restrictive if it is used to measure coherence between cadusimultaneously. For in-



stance, in the example in Figure 1, if high PCC between eaklopeolumns was also
enforced, only the biclusters that were identified by addititnd multiplicative mod-
els would be found to match the ensuing criteria. In CPB atlgor, we enforce the
coherence between columns by including a column in a befustly if it does not de-
crease correlation among the rows in the bicluster. To edérthe impact of including
a column, we map columns to real numbers and capture tenddrggne expression
changes in the bicluster. Then, we compute root mean sqeared(RMSE) for each
column to evaluate the fit of the column to this tendency patte

Mapping columns to real numbers induces an ordering of thenwas similar to
OPSM [2] and OP-cluster [11] algorithms. In a bicluster itifged by OPSM algorithm,
the direction of expression level change between any tworgos is the same for all
rows in the bicluster. OP-cluster is an extension to OPSM ¢hat equivalence levels
are defined to tolerate small differences between expnessiels. Example of biclus-
ters that would be identified by these algorithms for the gX¥anmatrix in Figure 1la
is illustrated in Figure 1e. In OPSM, the coherence betwednnens is defined in a
more loose sense than CPB, and results in inclusion of duellatess related column
(column 5) in the bicluster. In addition to considering thigedtion of change, using
PCC in CPB algorithm allows considering magnitude of chaagjevell to eliminate
inclusion of such columns. Moreover, it allows capturingatve correlation which is
not handled by these algorithms. To the best of our knowledgework is the first
work that uses PCC as an objective function for biclustering

3 Correlated Pattern Biclusters Algorithm

Let R and C denote the set of rows and columns of a data matrjxespectively, and
each element,.. represents the relation between revand columrc. A bicluster B =
(X,Y) can be defined by a subset of rods= {x, ..., z,} and a subset of columns
Y = {y1,...,ym}, Wheren < N, andm < M [4]. In our algorithm, we use PCC
metric to decide membership of a row to a biclusie= (X, Y"). We denote absolute
value of PCC between rows s € R with respect to columns itY” by pce(r, s,Y).
For arowr to be included inX , we requirepce(r, z;, Y') to be greater than a threshold
forall z; € X . We also impose a constraint on the minimum siz& ao avoid getting
large PCC values merely by chance. The objective of the mep&PB algorithm can
be formally defined as follows. Given a data matrixreference row-, , PCC threshold
p and minimum number of columns, identify a set of biclusterd3 = (X,Y") such
thatr, € X, m >~ andpce(z;, z;,Y) > p forall rows z;,z; € X.

3.1 TheAlgorithm

Algorithm 1 outlines the proposed biclustering algorithrREC The algorithm starts
with an initial biclusterB = (X,Y’) and improves it by iteratively moving rows and
columns in and out of the bicluster using a search techniopiéas to mean-shift [15].
In mean-shift, the goal is to find the densest region with sageradius (window size)
in the search space. At each iteration, the center of masseopaints that are at a
distance smaller than the given radius to the center of theusolution is computed.



Algorithm 1 Correlated Pattern Biclusters.

1: function CPB(A, 7, w,, p')

2 B = (X,Y) whereX = {r.} andY is a random subset of columns of A.
3 Pe—2/3p"; pla =1/12p"; ve =m; ya = 72

4: repeat > Outer loop
5: step «— 0

6: repeat

7 step «— step + 1; Bsave — B

8: Compute reference vectdr and normalization parameters

9: if step mod2 =1 then
10: UpdateX such thatpce(z;, T,Y) > p., forall z; € X
11: ese
12: Letr be the row with smallespce(r, T,Y) > p.
13: UpdateY such thatRM SE(yi) > RMSE(r) forall y, € Y
14: until step > 20 of B = Bsave
15: Pe = Pe+PAs Ve —Ye—a

16: until pl, > p’
17: return B = (X,Y)

Then, the center of the solution is moved to this computedecest mass and the
process is repeated until convergence. Similarly in CPBritlygm, we compare PCC
between each row and a reference vedoe< t4,...,t, > that represents general
tendency of rows inX with respect to the columns in the bicluster while deciding
which rows to move. Vectof” is analogous to cluster center in k-means or mean-shift
techniques. lfpcc(r, T, Y") for a row r is above a certain threshold, we includénto
set X and updatel’ by only considering the rows itX . On the other hand, using a
similar criterion for columns is too restrictive for our @ajtive as explained in Section 2.
Instead, a good criterion for inclusion of a columainto Y should measure the impact
of ¢ on PCC between rows; € X . For this purpose, we ugeot mean squared error
(RMSE)o evaluate similarity of tendencies of rows i with respect to columm.

In each iteration of CPB, first, reference vecioand parameters related to normal-
ization of data values are computed; then, eithepSeir setY are updated. We do not
update both sets simultaneously to avoid large fluctuatiotie bicluster structure, that
may slow down or prevent convergence. In the spirit of themesift technique, while
updating X , we include intoX each rowr that haspce(r, T,Y") above PCC thresh-
old p!.. While updatingY”, we first determine row that has the smallegtcc(r, 7,Y)
above thresholg’,. Then we include each columninto Y that has smaller RMSE
than rowr. lterations to update bicluster end when neittiérnor Y changes at an
iteration or after 20 iterations (convergence is usuallyieed in 5-10 iterations). We
use the CPB algorithm with different parameters and intédlons to discover possibly
overlapping clusters that contain rows correlated withréference row.

3.2 Computing normalization parameter sand the reference vector

In order to make tendency of rows iN comparable, we apply normalization to ac-
count for different scaling and shifting patterns of rowghe bicluster. We compute a
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normalized data valué,,,, = “”57 for eachz; € X andy, € Y, wherea,,

andj,, are shifting and scaling parémeters associated withapwespectively. Then,
each element;, of reference vectofl’ is computed as the arithmetic meanaf,,,

on all rowsz; € X.We computel’, «,, andj,, using an iterative process. Initially
we seta,, = 0 and 3,, = 1, and computel’. Then, we apply least squares fitting
on pairs{(ti, az,y,); - - -, (tm, ¢,4,.)} t0 Obtain the best shifting and scaling parame-
ters that maximize alignment of each rawy with the reference vectdr’. We assign
intercept and slope obtained in least squares fitting toand 5., , respectivelyT" is
updated using these parameters, and the process itergiteunergence.

3.3 Updating rowsof a bicluster

For a rowr to be a member of seX', we requirepce(r, z;,Y) > p forall z; € X.
To avoid testing this condition against al] € X, we utilize the reference vectdr,
and only test whethepee(r, T,Y") is greater than another threshait instead.p’ is
selected such thaice(r,7,Y) > p’ must ensurepce(r, z;,Y) > p forall z; € X.
However, PCC lacks transitivity property [16] and has alyagcomplex formula that
strongly depends on the values and the length of the vecthesefore, it is difficult,
if not impossible, to analytically compute a lower bound féras a function ofp. To
empirically determine the value gf for a givenp, we designed a simple experiment.
First, we generated a reference random vector witelements. Then we generated
more random vectors and kept only those having absolutewd#IRCC with the refer-
ence vector greater thasi. After generating 200 such vectors we plotted the distribu-
tion of the absolute value of PCC between each pair of thesmnge(see Figure 2a).
The distributions verify that a lower bound fef exists and increases with

In Algorithm 1, we start with a relaxed threshadd and slowly tighten it at Line 16.
While tighteningp’, we relax the constraint on minimum number of columns. This a
lows sweeping the search space between two extreme conoigat these parameters.
In our code we use 5 tightening steps and initial valuesfoand~. are setto2/3y’,
and the number of columns in the initial bicluster, respetyi (Line 3).
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3.4 Updating columnsof a bicluster

We useRM SE to assess coherence of tendencies of royws X in a given column.
RMSE(yy) for a columny, € Y is computed as\/% St (g, — tr)?. For a
columnc ¢ Y, we computeRM SE(c) in a similar way, by using a valug. analogous
to t; that quantifies tendency of rows € X in columne.

In CPB, only the columns havin M SE below a thresholdt are included in
the bicluster. In order to have control on the ratio of the bemof rows to the num-
ber of columns in the bicluster, we selectin relation to p’. To establish this rela-
tion, first we note thatR M SE can also be computed for rows, and it is a compara-
ble metric for rows and columns. For a ros¢ € X, RMSE(x;) is computed as
\/% S i (Gg,y, — tr)?. Then, we observe thatM SE(r) generally implies a high
pee(r,T,Y) (see Figure 2b). Therefore, by settingo the RM SE of row r that has
the smallesiec(r, T,Y) above threshol@’, (Line 12), we expect that the ratio/m
in the resulting bicluster is close to the ratié/M/ . In order to obtain biclusters with
different n/m ratios, we use parameter. Then, when updating séf, x times the
number of columns withRM S E above the threshold are included irita

To ensure that the reference raw has a larger impact in decision mechanisms
of the algorithm, we assign a larger weight to the referemmee when computing the
vectorT and RM SE values. Total contribution from rows except is multiplied by
(1 — w) and contribution fromr,. is multiplied by w, wherew is an input parameter.
Large values fotv allows discovering patterns that more closely resemblevhereas
small values increase sensitivity, hence offers higherégice to noise.

4 Combining correlation information

In this section, we explain our method to extract correlafitformation from identi-
fied biclusters. For this purpose, first we quantify uniquesnef information captured
by each bicluster. Then, for each row we computeoarelation scorebased on co-
occurrence frequency and uniqueness information assalcigth the row with respect
to the reference row. Finally, we combine correlation sedrem different datasets.

If two biclusters B, = (X,,Y,) and B,, = (X,,Y,) do not overlap except for
the reference row,., then these two biclusters represent two distinct relatigps be-
tween rows and columns of the data matrix. In the context oégxpression, this may
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correspond to two different biological functions assomifvith the reference gene. On
the other hand, ifX,, C X, andY,, C Y, the relationship inB,, is already captured
by B, . In the latter case we discai@d,, from the result set.

Let IR(...) denote the set of biclusters that contain all rows specifigtié argu-
ment list. Similarly, let/C(...) denote the set of biclusters that contain all columns
specified in the argument list. Consider a rewa columnc and a biclusterB, =
(X,,Y,) such thatr € X,, andc € Y, . To measure uniqueness of informationfiy
with respect to other biclusters in seR(r) N IC(c) on the relationship betweenand
¢, we define aicluster uniquenesmeasureBU (B,, r, ¢) as follows.

1
) > [TR(r,z:) N IC(c,yp)]

,€X—{r-} YLEYy
1)
(1 Xo] = )]Yy|

If B, does not overlap with any other bicluster at rowand columnc, then
IR(r,xz;) N IC(e,yx) only containsB, forall z; € X andy, € Y, in (1). In
this caseBU (B, r, ¢) takes its maximum possible value of This means thaB,
captures the relationship between rewand columnc exclusively. BU (B, r, ¢) de-
creases as overlap betwe&y and biclusters i/ R(r) N IC(c) increases. In the case
that B, completely overlaps with all clusters ihR(r) N IC(c), information on the
relationship between row and columnc is shared between all of these clusters. Then
BU(B,,r,c) takes its minimum value of /| I R(r) N IC(c)| (note that this case is not
actually possible since we remove biclusters that are s$silo§®ther biclusters before-
hand). Computing cluster uniqueness as given in (1) is usefavoid some relation-
ships to be over-emphasized due to convergence of biclugtalgorithm to solutions
close to each other in the search space.

An example matrix and three biclusters are shown in Figui@dhsider bicluster
B; = (X1,Y1) and rowrs and columne, of the matrix . Sincel R(r) N IC(¢cq4) =
{B1, B2}, overlaps betweei; and B, need to be considered when computiB (B, 72, c4).
Figure 4a shows values/|IR(re,z;) N IC(cq,yy)| for eachz; € X7 and yi, €
Y7 . Applying these values to (1) giveBU (B1,72,c4) = 0.91. Corresponding val-
ues to computeBU (B, 15,c4) are given in Figure 4b. HerdR(r5) N IC(cy) =
{Bl, BQ, Bg}, thUSBU(Bl, Ts5, 04) =0.9.

Using bicluster uniqueness measure, we computewvamlap scoreO.S(r,c¢) for
every row-column paifr, ¢) to quantify the amount of different relationships identifie

BU(B,,r,c) =




betweenr and ¢. We computeOS(r, ¢) by summingBU (B, r, c) for all biclusters
in IR(r)NIC(c). InotherwordsOS(r,c) = 35 crrimnrc() BU(Bv,r,c). Then,
the we compute aorrelation scoreC'S(r) for each rowr by summing overlap scores
of the pairs(r, c) across all columns, i.€0'S(r) = > .~ OS(r, c). Summing overlap
scores across columns gathers total evidence on how frédguerd in how distinct
relationships row is correlated with the reference rowy .

In Figure 4¢c,05(r, ¢) is given for pair(r, ¢c) Summing these values across columns
givesCS(r1) = CS(ry) =4, CS(r7) =CS(rs) =5, CS(ry) = CS(r3) = 7.8 and
CS(rs) = 12.6. As expected, rows that appear in larger number of biclested in
more diverse relationships together with the referencehrave larger correlation score.

To increase significance and consistency of our findings, ppdyaour method on
different datasets separately and combine correlatioresc®o achieve this in a mean-
ingful way, we require datasets to have the same row labelgehe expression data
analysis, this requirement can be met by merging resultg foain datasets obtained
using the same microarray chip. Even though such datasaeld be combined into a
single data matrix, this approach requires undoing any atmation previously carried
out on each dataset. Since data are collected from diffsmmntes, this approach may
not be practical or even possible if information about thenmadization procedures are
unavailable. As an alternative approach, we use the fofigwhree-step method: First,
for each dataset, we divide correlation score of each rovhaydf the reference row in
the same dataset. Then, in order to make contribution frazh dataset equal, we scale
correlation scores such that sum of the scores in each dédabe same. Finally, we
sum the scaled scores across datasets to compute a to&fa@ceach row.

5 Experimental Results

5.1 Experimentson synthetic data

To demonstrate the effectiveness of CPB, we generatedadsitaigh embedded biclus-
ters and applied CPB to find these biclusters. We first ge@g@t0000 x 100 matrix
and a reference row vector of length, filled with random real numbers between 0
and 100. Then, we generated— 1 additional vectors, each having perfect positive
or negative correlation with the reference vector. Thesgors together represent an
n x m bicluster. Next, we added a random number between Orarahosen from nor-
mal distribution to each entry in the bicluster to simulatése in the data. Finally, we
embedded the bicluster into randomly selectetbws andm columns of the dataset.
As with most clustering algorithms, there is no single sepafameter values of
CPB that will suit to all datasets. Therefore, when using CR8 consider a range of
values for each parameter to scan the search space thoyolrghlr experiments on
synthetic datasets we generated 10 datasets for every eatidsi ofn = {30, 60, 90, 120, 150},
m = {30,60,90} and K = {0, 1,2}. First, we applied the CPB algorithm with row
column ratio parametet = 1, p’ = 0.9 and relative weightv of reference gene se-
lected from{0.1,0.25,0.5,0.75} . For each value ofr we applied CPB 21 times using
different initial clusters. The value of threshagldcorresponding tg’ = 0.9 was0.65.
This value is obtained by the method explained in Section&cbvwsider an embedded



GDS dataset 1D 534 596 71510671209122(0128413751479161
Number of samplgs 75| 158 87| 52 54/ 54| 50 70 60 127

GDS dataset 1[17811815195619752113219(0225523622373264
Number of samplgs104 100 121f 85 76| 61| 58 71 130 56

Table 2: Datasets we used in our experiments from GEO [7hdata

Affymetrix probe set IDAssociated protefhAffymetrix probe set IDAssociated protein
201292at TOP2A 210052s. at TPX2

202095s at BIRC5 21471Qs.at CCNB1

202705at CCNB2 218009s.at PRC1

204962s at CENPA 218039at NUSAP1
209642at BUB1 218355at KIF4A

Table 3: Intersection of top-25 lists of BRCAL and BRCAZ2 refece probe sets.

bicluster identified, if the returned bicluster consistableast half of the rows and half
of the columns of the embedded bicluster. If all rows and ewis of the embedded bi-
cluster are returned, we call the bicluster perfectly iifestt. When there was no noise
in the data, CPB algorithm perfectly identified 148 of the Esfibedded biclusters.
When some noise is added, the bicluster structure is mdteudtfto discover due to re-
duced PCC values between the rows. Furthermore, it is litkelyysome of the rows will
no longer have PCC above 0.9 with the reference row. In ouelx@nts withK = 1,
CPB was able to identify 145 of the 150 biclusters. Of thed®, @ere perfectly iden-
tified, and the for the remaining ones, all rows and at 1888t of the columns were
returned by the CPB algorithm. Finally, whéti was 2, there was a more pronounced
impact of noise resulting in much reduced PCC between the.rStill, CPB algorithm
successfully identified 131 of the 150 embedded bicluskers91 of these biclusters,
CPB returned at least two thirds of the columns and two thifdke rows.

Next, we applied a PCC based clustering approach to ideraifss having PCC
greater than 0.65 with the reference row over all columnsgrim the best case, at most
27% of the columns in a bicluster were successfully identifiedtig approach. This
shows that considering all columns to compute PCC prevestecton of biclusters.

5.2 ldentifying genes co-regulated with BRCA1 and BRCA2

For real data experiments we selected 20 large dataset®btaihed using Affymetrix
HG U133 GeneChip Array and having at least 50 samples (Tabl€His array has
22,215 probe sets including two probe sets for each of BRCA1431_s_at, 211851 _z_at)
and BRCA2 Q08368_s_at, 214727 at). For each run of CPBg is selected from
{1,3,5,7,9}; w from {0.25,0.5,0.75}; and p’ was set t00.9. We executed the al-
gorithm for every combination of these values, and for earlameter set we generated
21 random initial clusters. We applied the analysis fouensing one of the BRCA1
or BRCA2 probe sets as the reference each time. In Table 3,resept genes that
appeared in top-25 highest correlated gene list of eachedfothir reference probe sets.
There are 90 genes that were common in top-500 list for all feference probe
sets. Analysis of Gene Ontology (GO) terms associated witlse 90 genes statisti-
cally supports the extraordinary clustering of proteire thunction in mitosis. The top-



GO term ID |GO term p-valug n| N
G0:000091(cytokinesis < 1.0 x 1072 8| 40
G0:000704%cell cycle < 1.0 x 107*2(38/720
G0:0007067mitosis < 1.0 x 10712|34{205
G0:003157¥spindle checkpoint <1.0x107*% 3 3
G0:0040001establishment of mitotic spindle localization <1.0x1071%| 4 4
G0:004584Xositive regulation of mitotic metaphase/anaphase tiansi< 1.0 x1072| 3| 3
GO0:0051301cell division < 1.0 x 10712|29/266|
G0:0051308establishment of chromosome localization <10x107*? 3 3
G0:0007051spindle organization and biogenesis 29x1071?| 5 9
G0:0031503protein complex localization 7.6 x 107 6| 8
G0:003153@positive regulation of exit from mitosis 1.0 x 1071 4| 7

Table 4: GO term enrichment results using 90 genes obtaigddtérsecting top-500 lists of
reference genes and N represent the number of genes associated with the GO terme iset
of identified genes and in the Affymetrix chip, respectively

ranked genes are remarkably enriched for genes that regthlatmitotic spindle and
cytokinesis. As given in Table 4, of these 90 genes, 38 cbtiteocell cycle, 34 relate
to mitosis and 29 involved in cell division. The enrichmehtell cycle, mitosis, and
cellular assembly are exactly what would be predicted fartics by the centrosome.
DNA replication and repair would be predicted to be a parhefBRCA1 and BRCA2
module, and this pathway would also impact the centrosome.

The results show that our algorithm is successful at idgintffrom extremely com-
plex datasets proteins with highly related function. Wigile results did reveal known
factors for the repair of DNA damage as expected, the mosifgignt results were en-
riched for centrosome and mitotic spindle related procesEkis implies that BRCAL
and BRCAZ2, which are considered to be DNA repair factors) &lsve critical func-
tion regarding the mitotic spindle. Biological testing bfd point is in progress, but in
initial tests a gene of unknown function identified by our hweet is found to control
centrosome If confirmed, this will imply that control of the mitotic spdle is a criti-
cal control element in breast cancer. In addition, sever#i® identified proteins that
function to control the centrosome were found to also cd@tidNA repair assay. This
was an unanticipated finding. Thus, biological validatinrpiogress is revealing that
this biclustering tool both reveals proteins that functiogether to control centrosomes
and also to participate in a second process of DNA damagérepa

We have also tested this method for false positives by apgltie biclustering tool
on seven more genes to verify that our method avoids syskemabrs. Two of the
genes we used for this analysis are RB1 and TP53, tumor ssgzprgenes involved
in many cancers. The other five genes were CCNB2, FGD2, TARP53 and CHPF,
which were ranked **, 5000*", 10000*", 15000t* and 20000%", respectively, when
correlation scores of four reference probe sets are cordbMé used each of these
selected genes as anchors and applied our analysis to dwetetop-25 lists for high
correlation for each of these genes. This analysis verifiat BRCA1, BRCA2, as well
as the number one hit CCNB2 are correlated with a similar genes. For each pair
of these genes there were 16 to 20 genes at the intersectiop-@b lists. On the other

% A recent work of J. D. Parvin, unpublished.



hand, the genes we selected for verification had at most one igecommon in the
top-25 list of either of BRCA1, BRCA2 or CCNB2.

6 Conclusion and Future Work

In this work, we proposed a two-step approach to mine coladign patterns, relative to
a set of reference genes, that may only exist in a subset gflsant-irst, co-regulation
patterns in microarray datasets are discovered using al IR&#€-based biclustering
algorithm. Then, correlation information is combined targuute a correlation score
with respect to the reference gene. In our experiments we BSCAL1 and BRCA2
as our reference genes. Analysis of the top-ranked geneg @D terms revealed an
extraordinary clustering of proteins that function in nsi® In the future, we plan to
compare the CPB algorithm with other biclustering algarithin terms of both objec-
tive functions and optimization techniques. Furthermare will evaluate significance
of our findings by testing the algorithm on various real dats.s
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