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Abstract. We propose a two-step biclustering approach to mine co-regulation
patterns of a given reference gene to discover other genes that function in a com-
mon biological process. Currently, several successful methods utilize Pearson
Correlation Coefficient (PCC) based gene expression analysis across all samples
in datasets. However, microarray datasets are fraught withspurious samples or
samples of diverse origin, and many genes/proteins that function in the same bi-
ological pathway may be missed. The novel PCC based biclustering algorithm
introduced in this paper identifies subsets of genes with high correlation by strin-
gently filtering the data and reducing false negatives due tospurious or unrelated
samples in a dataset. Then, correlation information extracted from resulting bi-
clusters are synthesized. We applied our method using the breast cancer associ-
ated tumor suppressors, BRCA1 and BRCA2, as the reference proteins to reveal
genes and proteins important in the complex process of breast tumor formation.
Experiments on 20 very large datasets showed that the top-ranked genes were
remarkably enriched for genes that regulate the mitotic spindle and cytokinesis.
The results imply that BRCA1 and BRCA2 proteins, which are considered to be
DNA repair factors, have critical function regarding the mitotic spindle as well.
Initial biological verification reveal that this identifiedfactor function to control
both centrosome dynamics, and also, surprisingly, DNA repair. Thus, this biclus-
tering approach is successful at identifying proteins withhighly related function
from extremely complex datasets, and permits novel insights into gene function.

1 Introduction

Proteins that function in concert in a given cellular process often have their encoding
mRNA co-expressed [1]. Therefore, examining transcription levels of genes under dif-
ferent conditions provides insight about functions of genes, and eventually development
and treatment of complex diseases. DNA microarray technology has become the central
enabling technology in genomic research by allowing measurement of expression lev-
els of thousands of genes in parallel. In a microarray experiment, expression levels of
genes in various samples are arranged in a matrix calledgene expression data. Samples
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Fig. 1: Overview of the proposed approach.

are usually collected from different individuals and may correspond to different en-
vironmental conditions. Mining gene expression data to discover biologically relevant
knowledge is a challenging task and has been the focus of manyresearch efforts [2–5].

In this work, our objective is to develop a method that utilizes multiple gene ex-
pression datasets to identify genes exhibiting co-regulation with respect to a reference
gene. Identifying genes co-regulated with a gene of important function is crucial to un-
derstand biochemical and genetic pathways in which the geneparticipates. A straight-
forward approach towards this aim is to cluster genes in eachdataset using a correlation
or similarity metric such asPearson Correlation Coefficient (PCC)[6]; then count the
number of times each gene co-occurs in the same cluster with the reference gene over
all datasets. PCC is a very effective and widely used metric in this type of analysis to
quantify co-regulation between pairs of genes [3, 5].

A major drawback in this approach is that the entire set of samples in a dataset
are used to decide cluster membership or correlation with the reference gene. Since
samples are usually collected from diverse sources, genes and proteins that function
together may only be similarly expressed in a subset of the samples. Moreover, most
clustering techniques generate exclusive partitions of genes, therefore disregard the fact
that a single gene may be involved in more than one biologicalpathway. To overcome
these limitations we propose a new biclustering algorithm,calledCorrelated Pattern
Biclusters (CPB), that identifies groups of genes highly correlated with a given refer-
ence gene in empirically defined subsets of samples. We introduce novel techniques in
CPB to address two important issues in biclustering of gene expression data: (1) min-
ing datasets only to discover correlated patterns that contain the given reference gene,
(2) extension of the use of PCC in biclustering context. In addition, CPB algorithm
allows overlapping clusters and also captures negative correlation through use of PCC.

To reach our ultimate goal of identifying genes that consistently exhibit correlation
with the reference gene, we also propose a method to extract correlation information
from identified biclusters in an intuitive way. The proposedmethod evaluates unique-
ness of information captured in each bicluster and computesa correlation scorefor
each gene based on how frequently and in how distinct biclusters it co-occurs with the
reference gene. Then, correlation scores from all datasetsare combined to filter out
inconsistent information. The overview of our approach is illustrated in Figure 1.

Our motivating application was from breast cancer research, where there are two
important reference proteins, BRCA1 and BRCA2, highly penetrant breast cancer spe-
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1 2 3 8
2 3 4 9
5 6 7 12
2 4 6 16
3 6 9 24

15 14 13 8

(d)

1 2 3 8 95
2 3 4 9 21
5 6 7 12 51
2 4 6 16 18
3 6 9 24 30

(e)

Table 1: A sample dataset and biclusters identified by several methods from this dataset. (a) Sam-
ple matrix (b) Additive model (c) Multiplicative model (d) proposed CPB algorithm (e) OPSM.

cific tumor suppressors. Both of these proteins function in the repair of DNA damage.
In addition, BRCA1 also functions at an organelle called centrosome, which is criti-
cal for cell division. To determine genes co-regulated withBRCA1 and BRCA2 we
applied the method proposed in this paper on very large datasets publicly available at
Gene Expression Omnibus (GEO) database [7]. The results aregiven in Section 5.

2 Background

Biclustering was first introduced to gene expression data analysis by Cheng and Church [8].
This is followed by numerous biclustering algorithms to identify additive, multiplica-
tive [9, 10], or even more complex relationships [2, 11–14] between the rows and columns
of a data matrix. In additive (multiplicative) models, the difference (ratio) between cor-
responding elements of any two rows and the difference (ratio) between corresponding
elements of any two columns in a bicluster are constants. In general, additive models are
useful to capture shifting patterns, whereas multiplicative models are useful to capture
scaling patterns in the data. However, neither of them can identify shifting and scaling
patterns simultaneously. Furthermore, these models are too restrictive in the sense that
constant difference (ratio) constraints are applied on both row and column dimensions.
In Figures 1b and 1c, example biclusters that can be identified respectively by additive
and multiplicative models from the sample matrix in Figure 1a are shown.

In this work, we propose the CPB algorithm that utilizes statistical co-expression
measure PCC as a similarity metric between rows of a bicluster. PCC is a strong metric
to evaluate positive as well as negative co-regulation between rows, and is commonly
used in clustering gene expression data [3, 5] due to its power in capturing both shifting
and scaling patterns. In Figure 1d, an example bicluster identified by the CPB algorithm,
where there is perfect correlation (or negative correlation) between each pair of rows is
given. As shown in this figure, PCC allows capturing both shifting and scaling patterns
that would be separately identified by additive and multiplicative models, respectively.

Application of PCC in biclustering context is not a trivial task and requires over-
coming two challenges. Firstly, PCC lacks transitivity property. Therefore, instead of
measuring closeness to a reference pattern, one has to compute all pairwise PCC val-
ues between rows in the same bicluster to measure quality. Totackle this problem, we
empirically show that if two rows have a sufficiently high correlation with a reference
pattern, there is a lower bound for PCC between each these tworows. The second chal-
lenge is that, PCC is only meaningful to measure coherence between rows but is too
restrictive if it is used to measure coherence between columns simultaneously. For in-



stance, in the example in Figure 1, if high PCC between each pair of columns was also
enforced, only the biclusters that were identified by additive and multiplicative mod-
els would be found to match the ensuing criteria. In CPB algorithm, we enforce the
coherence between columns by including a column in a bicluster only if it does not de-
crease correlation among the rows in the bicluster. To estimate the impact of including
a column, we map columns to real numbers and capture tendencyof gene expression
changes in the bicluster. Then, we compute root mean squarederror (RMSE) for each
column to evaluate the fit of the column to this tendency pattern.

Mapping columns to real numbers induces an ordering of the columns similar to
OPSM [2] and OP-cluster [11] algorithms. In a bicluster identified by OPSM algorithm,
the direction of expression level change between any two columns is the same for all
rows in the bicluster. OP-cluster is an extension to OPSM such that equivalence levels
are defined to tolerate small differences between expression levels. Example of biclus-
ters that would be identified by these algorithms for the example matrix in Figure 1a
is illustrated in Figure 1e. In OPSM, the coherence between columns is defined in a
more loose sense than CPB, and results in inclusion of a relatively less related column
(column 5) in the bicluster. In addition to considering the direction of change, using
PCC in CPB algorithm allows considering magnitude of changeas well to eliminate
inclusion of such columns. Moreover, it allows capturing negative correlation which is
not handled by these algorithms. To the best of our knowledge, our work is the first
work that uses PCC as an objective function for biclustering.

3 Correlated Pattern Biclusters Algorithm

Let R andC denote the set of rows and columns of a data matrixA , respectively, and
each elementarc represents the relation between rowr and columnc . A biclusterB =
(X, Y ) can be defined by a subset of rowsX = {x1, . . . , xn} and a subset of columns
Y = {y1, . . . , ym} , wheren ≤ N , andm ≤ M [4]. In our algorithm, we use PCC
metric to decide membership of a row to a biclusterB = (X, Y ) . We denote absolute
value of PCC between rowsr, s ∈ R with respect to columns inY by pcc(r, s, Y ) .
For a rowr to be included inX , we requirepcc(r, xi, Y ) to be greater than a threshold
for all xi ∈ X . We also impose a constraint on the minimum size ofY to avoid getting
large PCC values merely by chance. The objective of the proposed CPB algorithm can
be formally defined as follows. Given a data matrixA , reference rowrr , PCC threshold
ρ and minimum number of columnsγ , identify a set of biclustersB = (X, Y ) such
that rr ∈ X , m ≥ γ andpcc(xi, xj , Y ) ≥ ρ for all rows xi, xj ∈ X .

3.1 The Algorithm

Algorithm 1 outlines the proposed biclustering algorithm CPB. The algorithm starts
with an initial biclusterB = (X, Y ) and improves it by iteratively moving rows and
columns in and out of the bicluster using a search technique similar to mean-shift [15].
In mean-shift, the goal is to find the densest region with a certain radius (window size)
in the search space. At each iteration, the center of mass of the points that are at a
distance smaller than the given radius to the center of the current solution is computed.



Algorithm 1 Correlated Pattern Biclusters.
1: function CPB(A, rr, w, γ, ρ′ )
2: B = (X, Y ) whereX = {rr} andY is a random subset of columns of A.
3: ρ′

c ← 2/3ρ′ ; ρ′

∆ = 1/12ρ′ ; γc = m ; γ∆ = m−γ

4

4: repeat ⊲ Outer loop
5: step← 0
6: repeat
7: step← step + 1 ; Bsave ← B
8: Compute reference vectorT and normalization parameters
9: if step mod 2 = 1 then

10: UpdateX such thatpcc(xi, T, Y ) > ρ′

c for all xi ∈ X
11: else
12: Let r be the row with smallestpcc(r, T, Y ) > ρ′

c

13: UpdateY such thatRMSE(yk) > RMSE(r) for all yk ∈ Y
14: until step > 20 or B = Bsave

15: ρ′

c ← ρ′

c + ρ′

∆ ; γc ← γc − γ∆

16: until ρ′

c > ρ′

17: return B = (X, Y )

Then, the center of the solution is moved to this computed center of mass and the
process is repeated until convergence. Similarly in CPB algorithm, we compare PCC
between each row and a reference vectorT =< t1, . . . , tm > that represents general
tendency of rows inX with respect to the columns in the bicluster while deciding
which rows to move. VectorT is analogous to cluster center in k-means or mean-shift
techniques. Ifpcc(r, T, Y ) for a row r is above a certain threshold, we includer into
set X and updateT by only considering the rows inX . On the other hand, using a
similar criterion for columns is too restrictive for our objective as explained in Section 2.
Instead, a good criterion for inclusion of a columnc into Y should measure the impact
of c on PCC between rowsxi ∈ X . For this purpose, we useroot mean squared error
(RMSE)to evaluate similarity of tendencies of rows inX with respect to columnc .

In each iteration of CPB, first, reference vectorT and parameters related to normal-
ization of data values are computed; then, either setX or setY are updated. We do not
update both sets simultaneously to avoid large fluctuationsin the bicluster structure, that
may slow down or prevent convergence. In the spirit of the mean-shift technique, while
updatingX , we include intoX each rowr that haspcc(r, T, Y ) above PCC thresh-
old ρ′c . While updatingY , we first determine rowr that has the smallestpcc(r, T, Y )
above thresholdρ′c . Then we include each columnc into Y that has smaller RMSE
than row r . Iterations to update bicluster end when neitherX nor Y changes at an
iteration or after 20 iterations (convergence is usually achieved in 5-10 iterations). We
use the CPB algorithm with different parameters and initializations to discover possibly
overlapping clusters that contain rows correlated with thereference row.

3.2 Computing normalization parameters and the reference vector

In order to make tendency of rows inX comparable, we apply normalization to ac-
count for different scaling and shifting patterns of rows inthe bicluster. We compute a
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Fig. 2: (a) Distribution of PCC between pairs of 200 random vectors with e elements that have
PCC with reference vector greater than a thresholdρ1 . (b) Relationship between PCC and RMSE
on random vectors.

normalized data valuêaxiyk
=

axiyk
−αxi

βxi

for eachxi ∈ X and yk ∈ Y , whereαxi

andβxi
are shifting and scaling parameters associated with rowxi , respectively. Then,

each elementtk of reference vectorT is computed as the arithmetic mean ofâxiyk

on all rowsxi ∈ X . We computeT , αxi
andβxi

using an iterative process. Initially
we setαxi

= 0 and βxi
= 1 , and computeT . Then, we apply least squares fitting

on pairs{(t1, axiy1
), . . . , (tm, axiym

)} to obtain the best shifting and scaling parame-
ters that maximize alignment of each rowxi with the reference vectorT . We assign
intercept and slope obtained in least squares fitting toαxi

and βxi
, respectively.T is

updated using these parameters, and the process iterates until convergence.

3.3 Updating rows of a bicluster

For a rowr to be a member of setX , we requirepcc(r, xi, Y ) > ρ for all xi ∈ X .
To avoid testing this condition against allxi ∈ X , we utilize the reference vectorT ,
and only test whetherpcc(r, T, Y ) is greater than another thresholdρ′ instead.ρ′ is
selected such thatpcc(r, T, Y ) > ρ′ must ensurepcc(r, xi, Y ) > ρ for all xi ∈ X .
However, PCC lacks transitivity property [16] and has a fairly complex formula that
strongly depends on the values and the length of the vectors.Therefore, it is difficult,
if not impossible, to analytically compute a lower bound forρ′ as a function ofρ . To
empirically determine the value ofρ′ for a givenρ , we designed a simple experiment.
First, we generated a reference random vector withe elements. Then we generated
more random vectors and kept only those having absolute value of PCC with the refer-
ence vector greater thanρ′ . After generating 200 such vectors we plotted the distribu-
tion of the absolute value of PCC between each pair of these vectors (see Figure 2a).
The distributions verify that a lower bound forρ′ exists and increases withρ .

In Algorithm 1, we start with a relaxed thresholdρ′ and slowly tighten it at Line 16.
While tighteningρ′ , we relax the constraint on minimum number of columns. This al-
lows sweeping the search space between two extreme combinations of these parameters.
In our code we use 5 tightening steps and initial values forρ′c andγc are set to2/3ρ′ ,
and the number of columns in the initial bicluster, respectively (Line 3).
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Fig. 3: Example biclusters on an example data matrix with reference rowrr = r6 .

3.4 Updating columns of a bicluster

We useRMSE to assess coherence of tendencies of rowsxi ∈ X in a given column.

RMSE(yk) for a columnyk ∈ Y is computed as
√

1
n

∑n

i=1(âxiyk
− tk)2 . For a

columnc /∈ Y , we computeRMSE(c) in a similar way, by using a valuetc analogous
to tk that quantifies tendency of rowsxi ∈ X in columnc .

In CPB, only the columns havingRMSE below a thresholdǫ are included in
the bicluster. In order to have control on the ratio of the number of rows to the num-
ber of columns in the bicluster, we selectǫ in relation to ρ′ . To establish this rela-
tion, first we note thatRMSE can also be computed for rows, and it is a compara-
ble metric for rows and columns. For a rowxi ∈ X , RMSE(xi) is computed as
√

1
m

∑m

k=1(âxiyk
− tk)2 . Then, we observe thatRMSE(r) generally implies a high

pcc(r, T, Y ) (see Figure 2b). Therefore, by settingǫ to theRMSE of row r that has
the smallestpcc(r, T, Y ) above thresholdρ′c (Line 12), we expect that the ration/m
in the resulting bicluster is close to the ratioN/M . In order to obtain biclusters with
different n/m ratios, we use parameterκ . Then, when updating setY , κ times the
number of columns withRMSE above the threshold are included intoY .

To ensure that the reference rowrr has a larger impact in decision mechanisms
of the algorithm, we assign a larger weight to the reference row when computing the
vectorT andRMSE values. Total contribution from rows exceptrr is multiplied by
(1 − ω) and contribution fromrr is multiplied by ω , whereω is an input parameter.
Large values forω allows discovering patterns that more closely resemblerr ; whereas
small values increase sensitivity, hence offers higher tolerance to noise.

4 Combining correlation information

In this section, we explain our method to extract correlation information from identi-
fied biclusters. For this purpose, first we quantify uniqueness of information captured
by each bicluster. Then, for each row we compute acorrelation scorebased on co-
occurrence frequency and uniqueness information associated with the row with respect
to the reference row. Finally, we combine correlation scores from different datasets.

If two biclustersBv = (Xv, Yv) and Bw = (Xw, Yw) do not overlap except for
the reference rowrr , then these two biclusters represent two distinct relationships be-
tween rows and columns of the data matrix. In the context of gene expression, this may
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Fig. 4: 1/|IR(r, xi)∩IC(c, yk)| values for eachxi ∈ X1 andyk ∈ Y1 for (a) r = r2 , c = c4 ,
(b) r = r5 , c = c4 . (c) OS(r, c) for each rowr and columnc .

correspond to two different biological functions associated with the reference gene. On
the other hand, ifXw ⊆ Xv andYw ⊆ Yv the relationship inBw is already captured
by Bv . In the latter case we discardBw from the result set.

Let IR(. . .) denote the set of biclusters that contain all rows specified in the argu-
ment list. Similarly, letIC(. . .) denote the set of biclusters that contain all columns
specified in the argument list. Consider a rowr , a columnc and a biclusterBv =
(Xv, Yv) such thatr ∈ Xv and c ∈ Yv . To measure uniqueness of information inBv

with respect to other biclusters in setIR(r)∩IC(c) on the relationship betweenr and
c , we define abicluster uniquenessmeasureBU(Bv, r, c) as follows.

BU(Bv, r, c) =

∑

xi∈Xv−{rr}

∑

yk∈Yv

1

|IR(r, xi) ∩ IC(c, yk)|

(|Xv| − 1)|Yv|
(1)

If Bv does not overlap with any other bicluster at rowr and columnc , then
IR(r, xi) ∩ IC(c, yk) only containsBv for all xi ∈ X and yk ∈ Yv in (1). In
this caseBU(Bv, r, c) takes its maximum possible value of1 . This means thatBv

captures the relationship between rowr and columnc exclusively.BU(Bv, r, c) de-
creases as overlap betweenBv and biclusters inIR(r) ∩ IC(c) increases. In the case
that Bv completely overlaps with all clusters inIR(r) ∩ IC(c) , information on the
relationship between rowr and columnc is shared between all of these clusters. Then
BU(Bv, r, c) takes its minimum value of1/|IR(r)∩ IC(c)| (note that this case is not
actually possible since we remove biclusters that are subsets of other biclusters before-
hand). Computing cluster uniqueness as given in (1) is useful to avoid some relation-
ships to be over-emphasized due to convergence of biclustering algorithm to solutions
close to each other in the search space.

An example matrix and three biclusters are shown in Figure 3.Consider bicluster
B1 = (X1, Y1) and rowr2 and columnc4 of the matrix . SinceIR(r2) ∩ IC(c4) =
{B1, B2} , overlaps betweenB1 andB2 need to be considered when computingBU(B1, r2, c4) .
Figure 4a shows values1/|IR(r2, xi) ∩ IC(c4, yk)| for each xi ∈ X1 and yk ∈
Y1 . Applying these values to (1) givesBU(B1, r2, c4) = 0.91 . Corresponding val-
ues to computeBU(B1, r5, c4) are given in Figure 4b. HereIR(r5) ∩ IC(c4) =
{B1, B2, B3} , thusBU(B1, r5, c4) = 0.9 .

Using bicluster uniqueness measure, we compute anoverlap scoreOS(r, c) for
every row-column pair(r, c) to quantify the amount of different relationships identified



betweenr and c . We computeOS(r, c) by summingBU(Bv, r, c) for all biclusters
in IR(r)∩ IC(c) . In other words,OS(r, c) =

∑

Bv∈IR(r)∩IC(c) BU(Bv, r, c) . Then,
the we compute acorrelation scoreCS(r) for each rowr by summing overlap scores
of the pairs(r, c) across all columns, i.e.CS(r) =

∑

c∈C OS(r, c) . Summing overlap
scores across columns gathers total evidence on how frequently and in how distinct
relationships rowr is correlated with the reference rowrr .

In Figure 4c,OS(r, c) is given for pair(r, c) Summing these values across columns
givesCS(r1) = CS(r4) = 4 , CS(r7) = CS(r8) = 5 , CS(r2) = CS(r3) = 7.8 and
CS(r5) = 12.6 . As expected, rows that appear in larger number of biclusters and in
more diverse relationships together with the reference rowhave larger correlation score.

To increase significance and consistency of our findings, we apply our method on
different datasets separately and combine correlation scores. To achieve this in a mean-
ingful way, we require datasets to have the same row labels. In gene expression data
analysis, this requirement can be met by merging results only from datasets obtained
using the same microarray chip. Even though such datasets could be combined into a
single data matrix, this approach requires undoing any normalization previously carried
out on each dataset. Since data are collected from differentsources, this approach may
not be practical or even possible if information about the normalization procedures are
unavailable. As an alternative approach, we use the following three-step method: First,
for each dataset, we divide correlation score of each row by that of the reference row in
the same dataset. Then, in order to make contribution from each dataset equal, we scale
correlation scores such that sum of the scores in each dataset is the same. Finally, we
sum the scaled scores across datasets to compute a total score for each row.

5 Experimental Results

5.1 Experiments on synthetic data

To demonstrate the effectiveness of CPB, we generated datasets with embedded biclus-
ters and applied CPB to find these biclusters. We first generated a10000× 100 matrix
and a reference row vector of lengthm , filled with random real numbers between 0
and 100. Then, we generatedn − 1 additional vectors, each having perfect positive
or negative correlation with the reference vector. These vectors together represent an
n×m bicluster. Next, we added a random number between 0 andK chosen from nor-
mal distribution to each entry in the bicluster to simulate noise in the data. Finally, we
embedded the bicluster into randomly selectedn rows andm columns of the dataset.

As with most clustering algorithms, there is no single set ofparameter values of
CPB that will suit to all datasets. Therefore, when using CPB, we consider a range of
values for each parameter to scan the search space thoroughly. In our experiments on
synthetic datasets we generated 10 datasets for every combination ofn = {30, 60, 90, 120, 150} ,
m = {30, 60, 90} and K = {0, 1, 2} . First, we applied the CPB algorithm with row
column ratio parameterκ = 1 , ρ′ = 0.9 and relative weightω of reference gene se-
lected from{0.1, 0.25, 0.5, 0.75} . For each value ofω we applied CPB 21 times using
different initial clusters. The value of thresholdρ corresponding toρ′ = 0.9 was0.65 .
This value is obtained by the method explained in Section 3. We consider an embedded



GDS dataset ID 534 596 715 1067120912201284137514791615
Number of samples 75 158 87 52 54 54 50 70 60 127

GDS dataset ID1781181519561975211321902255236223732643
Number of samples104 100 121 85 76 61 58 71 130 56

Table 2: Datasets we used in our experiments from GEO [7] database.

Affymetrix probe set IDAssociated proteinAffymetrix probe set IDAssociated protein
201292at TOP2A 210052s at TPX2
202095s at BIRC5 214710s at CCNB1
202705at CCNB2 218009s at PRC1
204962s at CENPA 218039at NUSAP1
209642at BUB1 218355at KIF4A

Table 3: Intersection of top-25 lists of BRCA1 and BRCA2 reference probe sets.

bicluster identified, if the returned bicluster consists ofat least half of the rows and half
of the columns of the embedded bicluster. If all rows and columns of the embedded bi-
cluster are returned, we call the bicluster perfectly identified. When there was no noise
in the data, CPB algorithm perfectly identified 148 of the 150embedded biclusters.
When some noise is added, the bicluster structure is more difficult to discover due to re-
duced PCC values between the rows. Furthermore, it is likelythat some of the rows will
no longer have PCC above 0.9 with the reference row. In our experiments withK = 1 ,
CPB was able to identify 145 of the 150 biclusters. Of these, 140 were perfectly iden-
tified, and the for the remaining ones, all rows and at least90% of the columns were
returned by the CPB algorithm. Finally, whenK was 2, there was a more pronounced
impact of noise resulting in much reduced PCC between the rows. Still, CPB algorithm
successfully identified 131 of the 150 embedded biclusters.For 91 of these biclusters,
CPB returned at least two thirds of the columns and two thirdsof the rows.

Next, we applied a PCC based clustering approach to identifyrows having PCC
greater than 0.65 with the reference row over all columns. Even in the best case, at most
27% of the columns in a bicluster were successfully identified bythis approach. This
shows that considering all columns to compute PCC prevents detection of biclusters.

5.2 Identifying genes co-regulated with BRCA1 and BRCA2

For real data experiments we selected 20 large datasets eachobtained using Affymetrix
HG U133 GeneChip Array and having at least 50 samples (Table 2). This array has
22,215 probe sets including two probe sets for each of BRCA1 (204531 s at , 211851 x at)
and BRCA2 (208368 s at , 214727 at). For each run of CPB,κ is selected from
{1, 3, 5, 7, 9} ; ω from {0.25, 0.5, 0.75} ; and ρ′ was set to0.9 . We executed the al-
gorithm for every combination of these values, and for each parameter set we generated
21 random initial clusters. We applied the analysis four times using one of the BRCA1
or BRCA2 probe sets as the reference each time. In Table 3, we present genes that
appeared in top-25 highest correlated gene list of each of the four reference probe sets.

There are 90 genes that were common in top-500 list for all four reference probe
sets. Analysis of Gene Ontology (GO) terms associated with these 90 genes statisti-
cally supports the extraordinary clustering of proteins that function in mitosis. The top-



GO term ID GO term p-value n N
GO:0000910cytokinesis < 1.0× 10−12 8 40
GO:0007049cell cycle < 1.0× 10−12 38 720
GO:0007067mitosis < 1.0× 10−12 34 205
GO:0031577spindle checkpoint < 1.0× 10−12 3 3
GO:0040001establishment of mitotic spindle localization < 1.0× 10−12 4 4
GO:0045842positive regulation of mitotic metaphase/anaphase transition < 1.0×10−12 3 3
GO:0051301cell division < 1.0× 10−12 29 266
GO:0051303establishment of chromosome localization < 1.0× 10−12 3 3
GO:0007051spindle organization and biogenesis 2.9× 10−12 5 9
GO:0031503protein complex localization 7.6× 10−12 6 8
GO:0031536positive regulation of exit from mitosis 1.0× 10−11 4 7
Table 4: GO term enrichment results using 90 genes obtained by intersecting top-500 lists of
reference genes.n andN represent the number of genes associated with the GO term in the set
of identified genes and in the Affymetrix chip, respectively.

ranked genes are remarkably enriched for genes that regulate the mitotic spindle and
cytokinesis. As given in Table 4, of these 90 genes, 38 control the cell cycle, 34 relate
to mitosis and 29 involved in cell division. The enrichment of cell cycle, mitosis, and
cellular assembly are exactly what would be predicted for control by the centrosome.
DNA replication and repair would be predicted to be a part of the BRCA1 and BRCA2
module, and this pathway would also impact the centrosome.

The results show that our algorithm is successful at identifying from extremely com-
plex datasets proteins with highly related function. Whileour results did reveal known
factors for the repair of DNA damage as expected, the most significant results were en-
riched for centrosome and mitotic spindle related processes. This implies that BRCA1
and BRCA2, which are considered to be DNA repair factors, also have critical func-
tion regarding the mitotic spindle. Biological testing of this point is in progress, but in
initial tests a gene of unknown function identified by our method is found to control
centrosome3. If confirmed, this will imply that control of the mitotic spindle is a criti-
cal control element in breast cancer. In addition, several of the identified proteins that
function to control the centrosome were found to also control a DNA repair assay. This
was an unanticipated finding. Thus, biological validation in progress is revealing that
this biclustering tool both reveals proteins that functiontogether to control centrosomes
and also to participate in a second process of DNA damage repair.

We have also tested this method for false positives by applying the biclustering tool
on seven more genes to verify that our method avoids systematic errors. Two of the
genes we used for this analysis are RB1 and TP53, tumor suppressor genes involved
in many cancers. The other five genes were CCNB2, FGD2, TAF7, SRP54 and CHPF,
which were ranked1st , 5000th , 10000th , 15000th and 20000th , respectively, when
correlation scores of four reference probe sets are combined. We used each of these
selected genes as anchors and applied our analysis to determine top-25 lists for high
correlation for each of these genes. This analysis verified that BRCA1, BRCA2, as well
as the number one hit CCNB2 are correlated with a similar set of genes. For each pair
of these genes there were 16 to 20 genes at the intersection oftop-25 lists. On the other

3 A recent work of J. D. Parvin, unpublished.



hand, the genes we selected for verification had at most one gene in common in the
top-25 list of either of BRCA1, BRCA2 or CCNB2.

6 Conclusion and Future Work

In this work, we proposed a two-step approach to mine co-regulation patterns, relative to
a set of reference genes, that may only exist in a subset of samples. First, co-regulation
patterns in microarray datasets are discovered using a novel PCC-based biclustering
algorithm. Then, correlation information is combined to compute a correlation score
with respect to the reference gene. In our experiments we used BRCA1 and BRCA2
as our reference genes. Analysis of the top-ranked genes using GO terms revealed an
extraordinary clustering of proteins that function in mitosis. In the future, we plan to
compare the CPB algorithm with other biclustering algorithms in terms of both objec-
tive functions and optimization techniques. Furthermore,we will evaluate significance
of our findings by testing the algorithm on various real datasets.
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