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Biomedical Informatics

The Ohio State University
bozdagd@bmi.osu.edu

Ashwin S. Kumar
Computer Science and

Engineering
Biomedical Informatics

The Ohio State University
ashwin@bmi.osu.edu

Umit V. Catalyurek
Biomedical Informatics

Electrical and Computer
Engineering

The Ohio State University
umit@bmi.osu.edu

ABSTRACT
Biclustering is a very popular method to identify hidden
co-regulation patterns among genes. There are numerous
biclustering algorithms designed to undertake this challeng-
ing task, however, a thorough comparison between these
algorithms is even harder to accomplish due to lack of a
ground truth and large variety in the search strategies and
objectives of the algorithms. In this paper, we address this
less studied, yet important problem and formally analyze
several biclustering algorithms in terms of the bicluster pat-
terns they attempt to discover. We systematically formulate
the requirements for well-known patterns and show the con-
straints imposed by biclustering algorithms that determine
their capacity to identify such patterns. We also give exper-
imental results from a carefully designed testbed to evaluate
the power of the employed search strategies. Furthermore,
on a set of real datasets, we report the biological relevance
of clusters identified by each algorithm.

Categories and Subject Descriptors
J.3 [Biology and genetics]

Keywords
Biclustering, microarray, gene expression

1. INTRODUCTION
Analyzing variations in expression levels of genes under dif-
ferent conditions (samples) is important to understand the
underlying complex biological processes that the genes par-
ticipate in. In gene expression data analysis, expression lev-
els of genes in each sample are represented by a real-valued
data matrix with rows and columns representing the genes
and the samples, respectively. The goal is to identify genes
that have correlated expression values in various samples.

Clustering is the most widely used technique to discover in-
teresting patterns in gene expression data. Genes assigned

to the same cluster are likely to have related biological func-
tions, hence they are good candidates for further wet labora-
tory analysis. Most of the traditional clustering algorithms
operate in full space, i.e., take all columns (samples) into
account while assigning a row (gene) into a cluster [8, 18].
In gene expression data analysis, however, due to the diver-
sity of sample sources, functionally related genes may not
exhibit a similar pattern in all samples but in a subset of
them. To address this observation, biclustering (subspace
clustering) approaches have emerged, where only a subset
of columns are considered to determine the assignment of
rows into clusters [4]. Since such a subset of columns are
also initially unknown, biclustering can be viewed as simul-
taneous clustering of rows and columns.

Following the work of Cheng and Church [4], biclustering
has quickly become popular in analyzing gene expression
data and numerous biclustering algorithms have been pro-
posed [7, 9, 10, 11, 12, 14, 17, 19, 20, 21]. Since each al-
gorithm focuses on identification of different bicluster pat-
terns, it is a very challenging task to thoroughly evaluate
these algorithms. Comparative analysis of biclustering tech-
niques has only been considered in a few studies in the lit-
erature [13, 16]. In this work, we attempt to address this
problem and systematically compare several biclustering al-
gorithms to answer the following three crucial questions re-
garding these algorithms:

• What kind of bicluster patterns can it discover?

• How powerful is the search technique?

• Are the resulting clusters biologically relevant?

We classify biclustering patterns into two, based on whether
the pattern is defined on a single cluster or multiple clus-
ters. If a bicluster pattern is defined on a single bicluster,
we call the pattern a local pattern. Otherwise, we call the
pattern a global pattern. Example of a local pattern is a
scaling pattern, where every row in a bicluster is a multi-
ple of another row (when considered across the columns in
the bicluster). In a local pattern, no information is required
about the elements outside the bicluster. This is in contrast
to global patterns, where the membership of a row (column)
to a bicluster depends on the elements of the row (column)
external to the bicluster, and/or on the membership of the
row (column) to other biclusters. Such external dependen-
cies bring an additional layer of complexity in analysis of



αi πj βi Simplified âij (i ∈ I, j ∈ J) Bicluster pattern

0 any constant
any 0 constant a constant Constant bicluster

constant constant 0
constant constant constant

0 any varying
any 0 varying βi Constant rows

varying constant any
any constant varying

constant varying 0 πj Constant columns
constant varying constant
constant varying varying πj + βi Shifting
varying varying 0 αi × πj Scaling
varying varying varying αi × πj + βi Shift-scale

Table 1: Well known bicluster patterns, corresponding expected value expressions, and constraints on αi, πj

and βi factors to obtain each of these patterns. Constant refers to non-zero constant values, varying refers to
non-constant values, and any refers to any value without any constraints.

global patterns. Therefore, as a first step to understand
bicluster patterns, in this work, we focus our attention to
local patterns. In particular, we consider identification of
local shifting (additive) and scaling (multiplicative) patterns
which are extremely useful to characterize co-regulation re-
lationships among genes. We analyze quality criteria and
search strategies of several algorithms, and discuss the types
of bicluster patterns each algorithm can identify. For this
purpose we identified and analyzed four algorithms that can
discover local patterns: Cheng and Church [4], OPSM [2],
HARP [22] and CPB [3]. In order to decouple the objective
and the search technique of an algorithm as much as possi-
ble, we designed an extensive testbed consisting of synthetic
datasets that correspond to various input scenarios. Fur-
thermore, we included two additional well-known algorithms
that seek global patterns (SAMBA [19] and MSSRCC [5])
in our experimental studies, and we applied the algorithms
on real datasets to provide insight about the biological rel-
evance of resulting clusters.

The paper is organized as follows. In the following section,
we describe the shifting and scaling patterns and bicluster
quality metrics. Analytical discussion about the considered
algorithms are given in Section 3. We report results from
our experiments in Section 4, and conclude in Section 5.

2. BICLUSTER PATTERNS AND QUALITY
METRICS

In this section, we introduce the notation and show how var-
ious local patterns can be modeled as a variation of shifting
and scaling patterns.

A gene expression data matrix A = (R, C) can be repre-
sented by a set of rows R and a set of columns C denoting
genes and samples, respectively. Each entry in this matrix
is denoted by (r, c) and the expression level of gene r in
sample c is represented by arc, r ∈ R, c ∈ C. A bicluster
B = (I, J) is composed of a subset of rows I ⊂ R and a
subset of columns in J ⊂ C, where all aij , for i ∈ I and
j ∈ J , are expected to fit to a predetermined target pattern,
possibly with small deviations. Therefore, each aij value in

a bicluster can be decomposed into two components:

aij = âij + εij (1)

where âij is the expected value of aij that would maximize
its match to the target pattern and εij is the deviation from
the expected value. εij is also referred to as a residue and it
is commonly used to quantify the quality of a bicluster. The
most commonly used bicluster quality metric is the Mean
Squared Residue (MSR) [4], which is defined as

MSR =
1

|I||J |
X

j∈J,i∈I

ε2ij (2)

A bicluster that matches perfectly to a target pattern has
εij = 0, hence its MSR score is also 0.

Types of patterns searched by most biclustering algorithms
can be modeled using an appropriate expression for âij . For
example, shifting patterns and scaling patterns can be rep-
resented as âij = πj + βi and âij = αi × πj , respectively.
Here, αi and βi represent scaling and shifting factors as-
sociated with row i, and πj represents a base value asso-
ciated with column j. A more general expression that en-
compasses both shifting and scaling patterns can be stated
as âij = αi × πj + βi [1, 15]. We refer to this pattern as a
shift-scale pattern, since it represents a simultaneously shift-
ing and scaling pattern. The shift-scale pattern expression
can be reduced to simpler pattern expressions by applying
some constraints on αi, πj and βi factors. For instance, if
αi is constrained to be equal to a constant α, the shift-scale
pattern expression reduces to âij = α × πj + βi = π′

j + βi,
which is a shifting pattern expression. A set of well known
bicluster patterns and corresponding expected value expres-
sions are given in Table 1. Furthermore, constraints on αi,
πj and βi factors to obtain each of these patterns are also
shown in this table.

3. ANALYSIS OF BICLUSTERING ALGO-
RITHMS

In this section, we formally analyze four biclustering algo-
rithms that seek local patterns in terms of the types of pat-
terns they can discover and discuss their search strategies.



αi πj βi Bicluster pattern

0 any any constant bicluster, constant rows
constant any any constant bicluster, constant columns, shifting

any 0 any constant bicluster, constant rows
any constant any constant bicluster, constant rows

Table 2: All possible non-trivial cases to satisfy condition in (8) for Cheng and Church algorithm.

3.1 Cheng and Church Algorithm
The first and the most popular expression for residue εij is
defined by Cheng and Church [4]:

εij = aij − aiJ − aIj + aIJ (3)

where aiJ , aIj and aIJ are the mean of the entries in of row
i, column j, and the entire bicluster, respectively, for i ∈ I
and j ∈ J . In their biclustering algorithm [4], Cheng and
Church considered minimization of MSR as their objective.

Aguilar-Ruiz [1] showed that defining εij as in (3) allows
capturing shifting pattens, but not shift-scale patterns. In
their analysis they considered a bicluster that has a perfect
shift-scale pattern, i.e., they set aij = αi × πj + βi. Let α
and β denote the mean values of αi and βi over the rows in
I, and π denote the mean value of πj over the columns in
J . Then,

aiJ =
1

|J |
X
j∈J

aij

=
1

|J |
X
j∈J

(αi × πj + βi)

= αi × π + βi (4)

aIj =
1

|I|
X
i∈I

aij

=
1

|I|
X
i∈I

(αi × πj + βi)

= α× πj + β (5)

aIJ =
1

|I||J |
X

i∈I,j∈J

aij

=
1

|I||J |
X

i∈I,j∈J

(αi × πj + βi)

= α× π + β (6)

Plugging these values in (3) gives

εij = (αi × πj + βi)− (αi × π + βi)

−(α× πj + β) + (α× π + β)

= (αi − α)(πj − π) (7)

In order to have a zero MSR value, each residue εij should
also be zero. This condition can be expressed as

(αi − α)(πj − π) = 0 (8)

for all i ∈ I and j ∈ J [1]. Possible ways of non-trivially sat-
isfying this condition and corresponding bicluster patterns
from Table 1 are shown in Table 2. Biclusters with scaling
or shift-scale patterns cannot have a zero MSR value when
Cheng and Church (CC) algorithm is used, as can be seen
from this table. Therefore, those patterns may not be iden-
tified with CC and other algorithms that use the residue
definition in (3).

CC is an iterative algorithm that starts with I = R and
J = C. At each iteration, single or a group of rows/columns
are removed from the bicluster to improve the MSR value.
This is followed by a row/column addition phase where rows
or columns are iteratively added to the cluster until a user-
specified threshold MSR value is reached. To decide which
row or column to move, a score similar to MSR is defined for
each row and each column. The score for row i and column
j are respectively the sum of the squared residues across the
columns in J and rows in I. CC algorithm discovers biclus-
ters one at a time and each discovered bicluster is masked
by random numbers in the original matrix before the search
for the next one begins. Returned biclusters depend on the
value of the threshold MSR which in turn depends on the
range of data values. Therefore, choosing an appropriate
MSR threshold is not trivial and may have a significant im-
pact on the resulting biclusters.

3.2 HARP Algorithm
In [22], Yip et al. introduced a quality metric slightly dif-
ferent from MSR. In the HARP algorithm they proposed,
quality of a bicluster is measured as the sum of the rele-
vance indices of the columns. Relevance index RIj for col-
umn j ∈ J is defined as

RIj = 1−
σ2

Ij

σ2
.j

(9)

where σ2
Ij (local variance) and σ2

.j (global variance) are the
variance of the values aij in column j for i ∈ I and i ∈ R,
respectively. Note that the relevance index for a column
is maximized if its local variance is zero, provided that the
global variance is not. Local variance is computed as

σIj =
1

|I|
X
i∈I

(aij − aIj)
2 (10)

where aIj denotes the mean of the values in column j over
the rows in the bicluster. In order to understand the types
of biclusters that can be identified using relevance index,
again consider a bicluster with potentially shifting and scal-
ing patterns, thus set aij = αi × πj + βi. Then, aIj can be



αi πj βi Bicluster pattern

0 any 0 none
0 any constant constant bicluster

constant any 0 constant bicluster, constant columns
constant any constant constant bicluster, constant columns

any 0 0 none
any 0 constant constant bicluster

Table 3: All possible non-trivial cases to satisfy condition in (12) for the HARP algorithm.

simplified as in (5), and the local variance becomes

σ2
Ij =

1

|I|
X
i∈I

`
(αi × πj + βi)− (α× πj + β)

´2

=
1

|I|
X
i∈I

`
(αi − α)× πj − (βi − β)

´2
(11)

Therefore, local variance of column j ∈ J becomes zero only
if

(αi − α)× πj − (βi − β) = 0 (12)

for all i ∈ I. Note that the bicluster quality is maximized
only if the local variance of all columns in J are zero. There-
fore, the constraint in (12) should be satisfied for all j ∈ J
to maximize quality. In Table 3, all possible ways of non-
trivially satisfying this condition and corresponding biclus-
ter patterns are given.

As shown in Table 3, the only types of bicluster patterns
that maximize the quality in HARP algorithm are constant
bicluster and constant column patterns. Thus, one can con-
clude that the HARP algorithm is not suitable to discover
constant row, shifting, scaling or shift-scale patterns.

3.3 Correlated Pattern Biclusters Algorithm
(CPB)

The goal in CPB [3] algorithm is to identify biclusters, where
the Pearson’s Correlation Coefficient (PCC) between every
pair of rows i ∈ I are above a threshold with respect to the
columns j ∈ J . PCC between two rows i, ` ∈ I with respect
to the columns j ∈ J is defined as:

PCC =

P
j∈J(aij − aiJ)(a`j − a`J)qP

j∈J(aij − aiJ)2
P

j∈J(a`j − a`J)2
(13)

where aiJ and a`J respectively denote the mean of the en-
tries in rows i and ` over the columns in the bicluster. To
investigate the relationship between PCC and shifting and
scaling patterns, let aij = αi × πj + βi as before. Then, aiJ

is simplified as given in (4). Thus,

aij − aiJ = (αi × πj + βi)− (αi × π + βi)

= αi(πj − π) (14)

Similarly,

a`j − a`J = α`(πj − π) (15)

Plugging (14) and (15) into (13) gives

PCC =

P
j∈J αi(πj − π)α`(πj − π)qP

j∈J(αi(πj − π))2
P

j∈J(α`(πj − π))2

=
αiα`

P
j∈J(πj − π)2q

α2
i α

2
`

` P
j∈J(πj − π)2

´2
(16)

= 1

provided that the denominator is not zero. This result in-
dicates that if a bicluster has a shift-scale pattern, there is
perfect correlation between any pair of rows in I with re-
spect to the columns in J . In Table 4, all possible cases
that ensure a non-zero denominator value in the PCC ex-
pression is given. The table shows that besides shift-scale
patterns, PCC can also be used to discover shifting, scaling
and constant column patterns. However it may not be effec-
tive identifying constant bicluster or constant row patterns.

CPB algorithm starts by randomly initializing I and J sets
and iteratively improves the bicluster by moving rows and
columns in and out of the cluster. To represent the general
tendency of rows in the columns of the bicluster, a tendency
vector is T is utilized. A row is included in the cluster only if
its PCC with this tendency vector is above a certain thresh-
old. Each row is associated with a scaling and a shifting
factor, αi and βi, and each column is associated with a ten-
dency value tj , which is the jth element of the tendency
vector T . For each aij value in the bicluster, a correspond-
ing normalized a′ij value is computed by first subtracting βi

from aij , and then dividing by αi. tj is then updated by
setting it equal to the mean of a′ij values across the rows
in I. Then, least squares fitting is applied to the values a′ij
in each row i to find parameters that maximize their fit to
the updated tj values. The slope and intercept of the fit are
assigned to αi and βi respectively, and the entire process is
repeated until all αi, βi and tj values converge. Then, the
bicluster is updated to ensure that only rows having large
PCC with the new T vector, and columns having entries
with small a′ij − tj difference over all rows are included. In
general, since the search strategy of the CPB algorithm ac-
counts for both shifting and scaling factors, it is well-suited
for identifying shift-scale patterns.

3.4 Order Preserving Submatrix (OPSM)
An order preserving submatrix is defined as a submatrix
(bicluster) where there exists a permutation of columns in J
such that the sequence of values in every row i ∈ I is strictly
increasing [2]. This condition be stated as

aij < aik iff a`j < a`k (17)



αi πj βi Bicluster pattern

constant varying any constant columns, shifting
varying varying any scaling, shift-scale

Table 4: All possible non-trivial cases that i) ensure the denominator is non-zero in the PCC expression in
(16) for CPB algorithm, ii) satisfy condition in (18) for OPSM algorithm.

for all i, ` ∈ I and for all j, k ∈ J , such that i 6= ` and j 6= k.
In other words,

aij − aik < 0 iff a`j − a`k < 0 (18)

Assuming that the bicluster has a shift-scale pattern, con-
dition in (18) becomes

(αi × πj + βi)− (αi × πk + βi) < 0

iff (α` × πj + β`)− (α` × πk + β`) < 0

which can be rearranged as

αi(πj − πk) < 0 iff α`(πj − πk) < 0 (19)

In order to satisfy the condition in (18), αi and α` should
be non-zero, and, πj and πk should be varying. The possi-
ble scenarios satisfying this condition are the same as those
given in Table 4. In other words, OPSM may potentially
identify the same type of biclusters as CPB.

The expected value expression âij that OPSM algorithm
seeks can be stated as

âij = αi × πi
j + βi (20)

where πi is a vector of length |J | associated with row i.
Although this expression is less restrictive compared to the
shift-scale pattern expression (since πi

j do not have to be the
same for rows i ∈ I), the condition in (17) still needs to be

satisfied. Let πi denote the mean of πi
j values across rows

j ∈ J . Setting aij to the âij expression in (20) and plugging
it in the PCC equation in (13) gives

PCC =

P
j∈J αi(π

i
j − πi)α`(π

`
j − π`)qP

j∈J(αi(πi
j − πi))2

P
j∈J(α`(π`

j − π`))2

=

P
j∈J(πi

j − πi)(π`
j − π`)qP

j∈J(πi
j − πi)2

P
j∈J(π`

j − π`)2
(21)

provided that αi and α` are not zero. One can observe that
the expression in (21) is equal to the PCC between vectors πi

and π`. Therefore, the distribution of PCC values between
rows in an order preserving submatrix is the same as the
distribution of PCC values between any two vectors having
the same column ordering.

Using this observation, we designed a small experiment to
see the practical values of PCC in an order preserving sub-
matrix. We generated 20 row vectors of length t and sorted
the values in each vector to ensure that they have the same
column ordering. The values for the vectors were chosen
from a uniform distribution between 0 and 1. The smallest
PCC value between any pair of these vectors was found to
be 0.83, 0.94 and 0.96 for t = 20, t = 40 and t = 60, respec-
tively. These results show that even when random values

are used, requiring to have the same column ordering re-
sults in extremely high PCC values between the rows of a
bicluster. This implies that the type of the bicluster pat-
tern sought by the OPSM algorithm resembles a shift-scale
pattern especially as the number columns gets larger.

4. EXPERIMENTAL RESULTS
In this section we report results from our extensive experi-
ments on synthetically generated as well as real datasets to
demonstrate the performances of the algorithms discussed.

4.1 Synthetic datasets
We generated synthetic datasets by implanting biclusters in
fixed-size matrices; one in each. All matrices comprised 1000
rows and 120 columns. There were 3 types of implanted bi-
clusters, namely shift-scale biclusters, shift biclusters and
order-preserving biclusters. The datasets containing the re-
spective biclusters were named correspondingly. The shift-
scale biclusters were generated according to the shift-scale
equation discussed earlier (âij = αi × πj + βi). The αi, βi

and πj values were randomly chosen from a uniform distri-
bution between 0 and 1. The matrices were generated in
exactly the same manner, thereby ensuring that the distri-
bution of values remained the same throughout the matrix.
After generation, the elements of the matrix were shuffled,
followed by implanting of the bicluster in the matrix, as it
was. The matrix with implanted bicluster was then subject
to random permutation of its rows and columns. The shift
datasets and order-preserving datasets were constructed in
exactly the same manner, except that the value generation
was done according to their respective patterns discussed
earlier. In Figure 1, examples of 20x20 biclusters embed-
ded into 40x40 synthetic datasets, before random row and
column permutation, are displayed for each type of dataset
considered.

In general, when it comes to evaluating the quality of a bi-
clustering result, there are two main factors which are to
be taken into consideration, namely, the portion of the im-
planted bicluster the algorithm was is able to return and
the portion external or irrelevant to the implanted biclus-
ter which the algorithm returns. We define two metrics to
evaluate cluster quality, namely U, which is the uncovered
portion of the implanted bicluster and E, which is the por-
tion of the output cluster external to the implanted cluster.

4.2 Algorithms used
We have used publicly available implementation of the CC
algorithm1, and for the OPSM algorithm we used the imple-
mentation in BiCAT (Biclustering Analysis Toolbox)2. Un-

1http://cheng.ececs.uc.edu/biclustering
2http://www.tik.ethz.ch/~sop/bicat/



(a) shift-scale (b) shift (c) order preserving

Figure 1: Examples of synthetic datasets.

Algorithm Target bicluster patterns Metric/Constraint

CC [4] Local: constant bicluster, constant columns, constant rows, shifting MSR
HARP [22] Local: constant bicluster, constant columns Relevance index
CPB [3] Local: constant columns, shifting, scaling, shift-scale PCC
OPSM [2] Local: constant columns, shifting, scaling, shift-scale Ordered columns
SAMBA [19] Global: biclusters with large variance Heaviest bi-cliques
MSSRCC [5] Global: biclusters with small combined mean-squared residue MSR

Table 5: Properties of the biclustering algorithms.

fortunately, there is no publicly available implementation of
the HARP algorithm. Since in Section 3.2 we analytically
showed that the HARP algorithm is not suitable to discover
constant row, shifting, scaling or shift-scale patterns, we de-
cided to exclude HARP from experimental evaluation. We
have implemented the CPB algorithm.

To further enhance our experimental setup, we included two
well-known biclustering algorithms, namely the Minimum
Sum-Squared Residue-based CoClustering algorithm (MSS-
RCC) [5]3 and the Statistical Algorithmic Method for Bi-
cluster Analysis (SAMBA) [19]4, These two algorithms seek
global patterns, hence they are significantly different from
the other algorithms previously discussed in terms of their
search techniques and evaluation criteria.

The SAMBA algorithm [19] transforms the matrix into a
bipartite graph where the genes and conditions collectively
form the set of vertices. There is an edge between a gene
and a condition only when the gene deviates sharply from
its normal value, under that condition. It essentially finds
the K heaviest bi-cliques in the graph. It can find only
those biclusters where the variance of elements is large and
clustering stops as soon as all columns are covered. This
algorithm is deterministic.

The MSSRCC algorithm [5] performs simultaneous cluster-
ing of the data matrix, by making use of the mean-squared
residue as the objective function to be minimized. In a k-
means fashion, it first clusters columns in such a way that
that the overall residue is minimized, then performs a sim-
ilar clustering on the rows. This algorithm forces every
row/column into a cluster. Hence, it cannot detect over-
lapping clusters and it necessarily returns the number of

3http://www.cs.utexas.edu/users/dml/Software/
cocluster.html
4Implementation is available in EXPANDER (EXpression
Analyzer and DisplayER) at http://acgt.cs.tau.ac.il/
expander/.

clusters as decided by the input cluster split. This algo-
rithm is not deterministic, i.e., results are likely to change
on each run.

The properties of the biclustering algorithms considered in
this paper are summarized in Table 5.

For CPB, CC and MSSRCC, the number of runs on each
dataset was set to 100. Since OPSM and SAMBA algo-
rithms are deterministic we ran them once. For each of the
experiments on synthetic datasets, unless mentioned oth-
erwise, the values for the various parameters of algorithms
were as follows. For the CPB algorithm, the value of thresh-
old PCC was set to 0.9. The value of the threshold MSR in
CC was set to 0.01, which was found to be the best value af-
ter various trials. In SAMBA, the default values were used,
i.e., the degree limit was set to 50, number of bi-cliques, K,
to be returned to 20 and the overlap ratio to 30. In case
of OPSM, the number of best partial models to be selected
was set to 100 throughout. For MSSRCC, the cluster split
was given according to the size of the implanted bicluster,
so that the expected sizes of the output clusters were the
same as the implanted biclusters.

The implementations that ran fastest were CPB, MSSRCC
and SAMBA, followed by CC, which was also reasonably
fast. OPSM was rather time-consuming.

4.2.1 Effect of implanted bicluster type and size
For the first set of experiments, we implanted 3 different
types of biclusters, namely shift-scale, shift and order-preserving
biclusters, with 3 different bicluster sizes: small (20x20),
medium (40x40) and large (60x60). Figure 2 displays the
results of these 9 experiments. The results indicate im-
proved performances of all algorithms as we go from 20x20
datasets to 60x60 datasets. Thus, the ease of finding an
implanted bicluster increases with bicluster size. A good
performance is expected from CPB and OPSM, since both
shift and shift-scale datasets have a perfect PCC and the
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(a) 20x20 shift-scale
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(b) 40x40 shift-scale
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(c) 60x60 shift-scale
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(d) 20x20 shift
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(e) 40x40 shift
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(f) 60x60 shift
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(g) 20x20 order preserving
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(h) 40x40 order preserving
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(i) 60x60 order preserving

Figure 2: Scatter plot of U and E values of the algorithms on the base synthetic datasets with implanted
biclusters.
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(a) no noise
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(b) 5% noise
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(c) 10% noise
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(d) 20% noise

Figure 3: Results on datasets with varying noise levels. 40x40 shift datasets were used.

order-preserving dataset has a very large PCC between the
rows of the implanted bicluster as discussed in Section 3.4.
The CPB Algorithm provided the best performance overall,
finding a perfect match in most cases. A perfect match is a
cluster whose U and E values are both zero. On the 40x40
and 60x60 datasets, it hardly missed any rows and columns
and returned absolutely no external rows or columns (E=0).
CPB also found one perfect match on the 20x20 datasets.
CC performed as the second best algorithm overall, and did
not return too many external rows and columns, i.e., the E
value was consistently low throughout. OPSM performed
better than MSSRCC, especially while finding medium and
large biclusters in order preserving and shift-scale datasets.
The MSSRCC algorithm works well only in exhaustive cases,
i.e., when the entire matrix is made up of implanted biclus-
ters, which is not the case in our datasets. We verified this,
by running MSSRCC on a special 120x120 dataset compris-
ing 9 implanted clusters. The results indicated that up to
30% of the clusters found had U and E values between 0 and
5 while up to 60% of the clusters had U and E values between
80 and 100. The SAMBA algorithm does not find any of the
patterns because the algorithm cannot find shift and scale
patterns but only constant patterns with large variance.

We have also tested implanting larger biclusters (up to 500x60),
and found out that, except CPB, the performance of the al-
gorithms improved marginally as the size of the implanted
bicluster increased. CPB on the other hand, consistently
returned a perfect match in all cases.

4.2.2 Effect of noise
Our second set of experiments evaluates the effect of noise
in the input dataset. We generated three noise datasets,
corresponding to three selected noise levels: 5%, 10% and
20%. The noise datasets were prepared from the 40x40 shift
datasets by incrementing each value by a random percent-
age, up to 5%, 10% or 20% for the corresponding datasets.
The results are displayed in Figure 3. In general, we see that
with the increase in noise level, the performance of all algo-
rithms degrades as expected. CPB gave the best results and
was least affected by noise compared to other algorithms.
With increasing noise level, CPB demonstrated an increase
in U value, but the E value remained at 0. This indicates
that, even though CPB fails to identify the implanted biclus-
ter entirely under high noise, it is still successful at filtering
out external rows and columns. CC, on the other hand,
showed an increase in both U and E values with increasing
noise. OPSM was most affected by noise, because the addi-
tion of noise to the dataset no longer preserved the the same
ordering in columns.

4.2.3 Effect of overlap
In the third set of experiments (Figure 4), we have evaluated
effect of existence of overlapping clusters. We have gener-
ated 40x40 shift datasets with two implanted biclusters in-
stead of one. There were three different types of datasets
corresponding to the overlap ratio. The overlap ratio is de-
fined as the ratio of the overlapping rows and columns in the
implanted biclusters. For example, an overlap ratio of 0.5
indicates that 50% of the rows and 50% of the columns in
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(a) no overlap
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(b) 25% overlap
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(c) 50% overlap

Figure 4: Results on datasets with overlapping implanted biclusters. The overlap ratio shows the fraction of
rows and columns overlapping in two biclusters. 40x40 shift datasets were used.
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(a) GDS1406, mouse
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(b) GDS1611, yeast
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(c) GDS1739, drosophila

Figure 5: -log10 transformed p-values of the top 10 clusters for each algorithm on the three real datasets.

two implanted biclusters are overlapping. The overlap ratios
we used were 0, 0.25 and 0.5. CPB, OPSM and SAMBA
are capable of detecting overlaps. Owing to their nature,
CC and MSSRCC algorithms cannot detect overlapping pat-
terns. As the overlap increased, CC showed an increase in
U and E values and CPB remained unaffected.

4.3 Results on real datasets
We tested the algorithms on three large real datasets to de-
termine the biological relevance of their results. The datasets
we used were those of yeast (GDS1611), mouse (GDS1406)
and drosophila (GDS1739) from the Gene Expression Om-
nibus (GEO) database [6]. The yeast dataset comprises 9275
genes and 96 conditions, the mouse dataset, 12422 genes and
87 conditions, and the drosophila dataset, 13966 genes and
54 conditions. The resulting biclusters were evaluated based
on the enrichment of Gene Ontology (GO) terms. For each
bicluster, the GO term with the smallest p-value is reported.
In Figure 5, -log10 transformed p-values of the top 10 clus-
ters with the smallest associated p-values are presented for
each algorithm for each of the four datasets.

As can be seen in Figure 5(a), the clusters returned by the
MSSRCC algorithm were statistically the most significant
ones for the GDS1406 dataset, followed by those of CPB
and SAMBA algorithms. On the GDS1611 dataset on the

other hand, the clusters with the lowest associated p-values
were returned by the CPB algorithm, followed by those of
SAMBA and one of the OPSM clusters. However, the most
significant cluster was identified by the MSSRCC algorithm.
MSSRCC and CPB also performed well on the GDS1739
dataset, and CC algorithm also identified one of the most
significant clusters for this dataset. However, in general CC
and OPSM performed relatively poorly in our experiments
on real datasets.

5. CONCLUSIONS
In this paper we analyzed and compared several biclustering
algorithms including Cheng and Church, Correlated Pattern
Biclusters and OPSM, in terms of the types of bicluster pat-
terns they seek and the strength of their search strategies.
First, we analytically modeled six well known biclustering
patterns, then we examined algorithms with respect to the
types of patterns that each of them can identify based on
the constraints imposed by their quality criteria. Our math-
ematical analysis as well as experiments showed that Cor-
related Pattern Biclusters algorithm performs significantly
better than the other considered algorithms that can iden-
tify local patterns, and can be a good candidate for search-
ing simultaneously shifting and scaling patterns. The clus-
ters identified by the CPB as well as the MSSRCC algo-
rithm (which considers global patters) from real datasets



were found to be more significantly enriched than the clus-
ters identified by other algorithms. This indicates that the
patterns sought by these algorithms may have higher bio-
logical relevance. The analysis methods introduced in this
paper can be extended to formally analyze various other bi-
clustering algorithms both in terms of the target bicluster
patterns and search strategies.
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