
230 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

The Virtual Microscope
Ümit Çatalyürek, Michael D. Beynon, Chialin Chang, Tahsin Kurc, Alan Sussman, and Joel Saltz

Abstract—We present the design and implementation of the
Virtual Microscope, a software system employing a client/server
architecture to provide a realistic emulation of a high power light
microscope. The system provides a form of completely digital
telepathology, allowing simultaneous access to archived digital
slide images by multiple clients. The main problem the system
targets is storing and processing the extremely large quantities of
data required to represent a collection of slides. The Virtual Mi-
croscope client software runs on the end user’s PC or workstation,
while database software for storing, retrieving and processing
the microscope image data runs on a parallel computer or on a
set of workstations at one or more potentially remote sites. We
have designed and implemented two versions of the data server
software. One implementation is a customization of a database
system framework that is optimized for a tightly coupled parallel
machine with attached local disks. The second implementation
is component-based, and has been designed to accommodate
access to and processing of data in a distributed, heterogeneous
environment. We also have developed caching client software, im-
plemented in Java, to achieve good response time and portability
across different computer platforms. The performance results
presented show that the Virtual Microscope systems scales well, so
that many clients can be adequately serviced by an appropriately
configured data server.

Index Terms—Data caching, digital microscopy, grid computing,
parallel computing, telepathology.

I. INTRODUCTION

DESPITE numerous advances in the understanding of dis-
ease processes, most basic aspects of anatomic pathology

have changed little over time. The pathologist supervises
the gross dissection of tissue, which is fixed, dehydrated in
organic solvents, embedded in paraffin, sectioned and stained.
The tissue specimen is typically directly examined using a
light microscope. The pathologist renders a diagnosis upon
the microscopic examination of the tissue sections, and the
glass slide and paraffin blocks are inevitably relegated to

Manuscript received July 10, 2001; revised August 19, 2002 and September
13, 2002. This work was supported by the National Science Foundation
under Grants #ACI-9619020 (UC Subcontract #10152408), #EIA-0121177,
#ACI-0130437, and #ACI-9982087, the Office of Naval Research under Grant
#N6600197C8534, Lawrence Livermore National Laboratory under Grant
#B500288 and #B517095 (UC Subcontract #10184497), and the Department of
Defense, Advanced Research Projects Agency, USAF, AFMC through Science
Application International Corporation under Grant #F30602-00-C-0009 (SAIC
Subcontract #4400025559).

Ü. Çatalyürek, T. Kurc, and J. Saltz are with the Department of Biomedical
Informatics, The Ohio State University, Columbus, OH 43210 USA (e-mail:
catalyurek.1@osu.edu; kurc.1@osu.edu; saltz.3@osu.edu).

M. D. Beynon was with the Department of Computer Science, University of
Maryland, College Park, MD 20742 USA (e-mail: beynon@cs.umd.edu). He is
currently at MIT Lincoln Laboratory, Cambridge, MA 02139 USA.

C. Chang and A. Sussman are with the Department of Computer Sci-
ence, University of Maryland, College Park, MD 20742 USA (e-mail:
chialin@cs.umd.edu; als@cs.umd.edu).

Digital Object Identifier 10.1109/TITB.2004.823952

some cumbersome archive. A similar system is employed for
cytopathology, but an added complication is that the slide is
often unique and irreplaceable. Thus, the dissemination of case
material for consultative, investigative or educational purposes
remains laborious, and, to a large extent, pathologists only
have access to locally available case material for comparison
in difficult cases.

Over the past 10 years, there has been increasing interest in
technologies that make it possible to examine specimens at a dis-
tance. There are currently two forms of telepathology imaging:
static and dynamic [13], [30], [37]–[39]. In static-image
telepathology, the referring pathologist captures a small set
of digital images that are transmitted to the consultant. The
consulting pathologist relies on the referring pathologist to
select tissue fields. In the dynamic mode, live images of mi-
croscope slides are transmitted and visualized in real time. The
dynamic form of telepathology can be carried out by a remotely
controlled real microscope. The remote pathology consultant is
abel to control the microscope stage and to select the image to
be viewed. Advanced microscopes provide the functionality for
selecting various color filters or applying different illumination
modes. They also can allow the simultaneous viewing of a slide
by multiple clients, although only one client can control the
microscope. One main advantage of using a real microscope
is that live specimens can be viewed in real time. A software
system that allows access to digitized microscopy slides, on
the other hand, can provide a cost-effective, complementary
tool for dynamic telepathology. By simply emulating the
usual behavior of a physical microscope, such a system can
replace cabinets full of slides with a digital storage subsystem.
Retrieving a slide then becomes a matter of accessing the slide
database, without requiring physical access to the slide. As in a
real microscope, it can provide simultaneous access to the slides
by multiple users, who can access and individually manipulate
the same slide or different slides at the same time. In addition,
new software modules can be added to perform various types
of additional processing, such as three dimensional image
reconstruction from data found in multiple focal planes and on
multiple microscope slides, image segmentation and pattern
recognition to better characterize known malignancies, and
content-based image retrieval, to find all slides with features
similar to those in a sample slide [18], [40].

While the hardware for digitizing tissue samples and
microscopy slides more effectively is rapidly becoming com-
mercially available [24], the software support required to store,
retrieve, and process digitized slides to provide interactive re-
sponse times for the standard behavior of a physical microscope
remains a challenging issue. A the basic level, the system should
emulate the usual behavior of a physical microscope, including
continuously moving the stage and changing magnification and
focus. The processing for viewing a slide requires projecting

1089-7771/03$17.00 © 2003 IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

ÇATALYÜREK et al.: THE VIRTUAL MICROSCOPE 231

high resolution data onto a grid of suitable resolution (governed
by the desired magnification) and appropriately compositing
pixels mapping onto a single grid point, to avoid introducing
spurious artifacts into the displayed image.

The main difficulty in providing the basic functionality is
storing and processing the extremely large quantities of data re-
quired to represent a large collection of slides. For example, with
a digitizing microscope a single spot of a slide at a single
depth of focus requires a resolution of 1000 by 1000 pixels. With
a three-byte RGB color value per pixel, an image at that resolu-
tion produces a data size of 3 MB. To completely cover a slide
of 3.5 by 2.5 cm requires a grid of about 5070 such
spots, resulting in an uncompressed file size of 10.5 GB. How-
ever, such as image captures only a single focal plane. Because
histopathology involves interpretation of the three-dimensional
(3-D) nature of tissue or individual cells, a single focal plane
may not allow adequate characterization of the material. To ac-
quire a slide at 5 focal planes increases the file size to 52.5 GB,
and a higher power substantially increases the volume of these
datasets with more spots and more focal planes. Storage needs
are exacerbated by the fact that hospitals can generate many
thousands of slides per year. For instance, at the Johns Hopkins
Hospital the histology laboratory processes 420 000 routine,
special-stain, and immunohistochemical slides per year. Clearly
there is an enormous storage requirement. There are also the at-
tendant difficulties in achieving rapid response time for various
types of inquiries into the slide image database.

This paper describes the design and implementation of a com-
plete software system, called the Virtual Microscope (VM), that
implements a realistic digital emulation of a high power light
microscope, through a client/server hardware and software ar-
chitecture [2], [17]. The client software runs on an end user’s
PC or workstation, providing a graphical user interface (GUI)
for viewing slides, while the database software for storing, re-
trieving and processing the microscope image data runs on a
parallel computer or on a cluster of workstations at a potentially
remote site. In terms of telepathology imaging, the Virtual Mi-
croscope can best be described as a form of completely digital
telepathology. The contributions of this paper are as follows.

• We describe an implementation of the VM server using an
object-oriented framework, called the Active Data Reposi-
tory (ADR), for developing databases of multidimensional
datasets on distributed memory parallel machines. Our
previous work [11], [16] used VM as a motivating ap-
plication scenario for the design of ADR. In this paper,
we focus on the efficient implementation of VM using
ADR. The Virtual Microscope implementation described
in the prior work suffered from the overhead of extra func-
tion calls, resulting in about 85% slower execution than
the original custom VM server implementation. The cur-
rent implementation eliminates the extra function calls and
achieves much better response times. The current ADR
implementation of the VM server is only 6.6% slower than
the original VM server [2], [17]. We also examine the ef-
fect on performance of partitioning a VM dataset into data
chunks, and look at the scalability of the ADR implemen-
tation, when the number of clients and the number of pro-
cessors are varied.

• We compare the performance of the ADR implementation
of the VM server against a component-based implemen-
tation. We experimentally evaluate the two implementa-
tions so as to identify when it is beneficial to use the com-
ponent-based implementation over the ADR implementa-
tion, and vice versa.

• We present the design and implementation of a client with
data caching capabilities. Our experimental results show
that data caching at the client improves client response
time. It reduces contention among clients for scarce re-
sources, such as bandwidth in a wide-area network and
processing and I/O in the data server. Caching also im-
proves client response time by reducing the amount of data
requested from a (potentially remote) server.

In Section II, we provide an overview of the components of
the Virtual Microscope system. Section III presents the imple-
mentation of the Virtual Microscope server using the Active
Data Repository. An experimental evaluation of the implemen-
tation is also discussed in this section. The component-based
implementation of the VM server and the performance compar-
ison of the ADR implementation to the component-based imple-
mentation are presented in Section IV. We describe and experi-
mentally evaluate the design and implementation of the caching
client in Section V. Conclusions are given in Section VI.

II. OVERALL SYSTEM ARCHITECTURE

The basic functionality of the Virtual Microscope imple-
ments an accurate emulation of a high power light microscope.
A number of operations must be supported to provide this
functionality:

1) fast browsing through the slide to locate an area of in-
terest;

2) local browsing to observe the region surrounding the cur-
rent view;

3) changing magnification;
4) changing the focal plane.

The system design of the Virtual Microscope aims to support
these four operations efficiently. The overall system employs
a multitier software architecture with three main tiers; client,
server frontend, and data server. The client is a graphical user
interface that allows a user to perform the four basic actions,
and generates requests to the server frontend as a result of user
actions. The frontend interacts with clients and translates client
requests into queries to the data server. The data server manages
digitized slides, processes the queries and returns image data to
the client.

A. Client Interface

The Internet-downloadable Java client program, shown in
Fig. 1, provides a graphical user interface so that users can
control browsing through slides by dragging and clicking
the mouse. The current client is fully implemented inJava
2 to achieve portability across different platforms. The client
software is designed to run on an end user’s PC or workstation.
The client can run as a stand-alone application to be able to use
the local disk of the client machine for caching. It can also be
used as a helper application for an Internet browser. That is,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

232 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

Fig. 1. The Virtual Microscope client.

a user viewing a web page conaining slide thumbnail images
can start the Virtual Microscope client by simply clicking on a
hyperlink. Upon starting up, the client program connects to the
frontend, and, in a separate thread, listens for connections from
the data server. The communication between the client program
and the frontend and data server is done via TCP/IP sockets.

After selecting a slide, a client receives athumbnail image,
which is a low-resolution overview of the entire slide image,
from the data server. A slide can be viewed at any of several
available magnifications. In response to the user’s actions,
queries are generated by the client and sent to the server. The
Virtual Microscope Java client consist of two windows:

1) Thedisplay window shows the selected portion of a slide
at a selected magnification (the window on the right in
Fig. 1).

2) The control window provides the standard operations
supported by the Virtual Microscope as described previ-
ously (the window on the left in Fig. 1). The control panel
has five subcomponents:

• a sampleselection box
• a magnificationselection box
• a focal planeselection box
• a thumbnailimage, and
• four directionalbuttons.

The thumbnail image in the control window presents a small,
low magnification version of the entire slide and provides a user
with two types of browsing operations. First, the user can locate
the interesting portion of a slide rapidly by dragging the mouse
on the small box (query box) inside the thumbnail window.
Second, the user can move the microscope stage by small in-
crements in one of the four directions (i.e., up, down, left, right)
by clicking the corresponding directional button. The query box
inside the window indicates the current portion of the image
shown in the display panel.

Both the control window and the display window are resiz-
able. When the user resizes the display window, the size of the
query box inside the thumbnail window also changes accord-
ingly. The display window is continuously updated while the

user is panning through the image, either using actual image
data cached at the client from previous queries (see Section V)
or from the lower resolution thumbnail image. Once the user
stops dragging and releases the mouse button, a query is gen-
erated and is satisfied either from the client cache or from the
server, with the display area updated from the full image data at
the desired resolution.

B. Server Frontend

The frontend interacts with clients and receives client
requests, translates them into queries for the data server, and
schedules them for processing by the data server. The frontend
is a sequential program and runs on a workstation. Having
a separate frontend has two main advantages. First, since
clients can generate queries asynchronously, the existence of
a frontend relieves the data server from being interrupted by
the clients during processing of queries. Second, if a client
is behind a firewall, the result of a query must be funneled
through the frontend. In normal operation, the result is sent
back to the client directly from the data server.

C. Data Server

The data server is the program responsible for efficiently
serving image data. In order to produce an image, the data has
to be read from disk and an image of the specified magnifi-
cation must be reconstructed. Since the ultimate goal of the
Virtual Microscope is to provide users with the illusion that
they are using a physical microscope, the system must be able
to support the standard functions of a physical microscope
in software with a similar level of responsiveness and ease
of use. These requirements present technical challenges in
the design and implementation of the data server. The image
database must provide low latency retrieval of large volumes of
two dimensional image data (representing a portion of a focal
plane of a given slide) from disk as well as efficient directory
management for a large collection of slides.

As data from disks becomes available in memory, further pro-
cessing is required to produce an image at the magnification

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

ÇATALYÜREK et al.: THE VIRTUAL MICROSCOPE 233

level desired by the client. A query is processed by projecting
high resolution data onto a grid of suitable resolution (governed
by the magnification level requested by the client) and appropri-
ately compositing pixels that map to a single grid point, to avoid
introducing spurious artifacts into the displayed image. In order
to achieve good performance, the server should be a scalable
program. It should be designed to run on a parallel machine or
on a cluster of workstations, with each node having several local
disks. In addition, the server should be able to take advantage of
asynchonous I/O operations and overlap the computation for a
bolck with I/O for other blocks.

In the next section, we describe an implementation of the data
server using an object-oriented framework, called the Active
Data Repository (ADR), to address the above challenges.

III. V IRTUAL MICROSCOPESERVER USING

THE ACTIVE DATA REPOSITORY

We have developed the Active Data Repository (ADR) [11],
[16] to provide support for integrating application-specific
processing with the storage and retrieval of multidimensional
datasets on a parallel machine with a disk farm. In a multidi-
mensional dataset, each data item is associated with a point in a
multidimensional space. For instance, a digitized VM slide can
be viewed as a 3-D dataset; each focal plane is a two-dimen-
sional (2-D) image, and multiple focal planes constitute the
third dimension. A reference to the data of interest is described
by a range query, which is a multidimensional box defined
in the underlying attribute space of the dataset. Only the data
items whose associated points fall inside the multidimensional
box are retrieved—an index (e.g., an R-tree [21]) can be used
to quickly locate the data items to be retrieved. The main data
processing steps consist of mapping the input data items to
output data items, and aggregating all the input data items that
map to the same output data item. An intermediate data struc-
ture, called anaccumulator, can be used to hold intermediate
results during processing.

A. Active Data Repository

The Active Data Repository consists of a set of modular ser-
vices, implemented as a C++ class library, and a runtime system.
Several of the services allow customization for user-defined pro-
cessing. An application developer has to provide accumulator
data structures for holding intermediate results, and functions
that operate onin-core data to implement application-specific
processing ofout-of-coredata. A unified interface is provided
for customizing ADR services via C++ class inheritance and
virtual functions. The runtime infrastructure supports common
operations such as index creation and lookup, management of
system memory, and scheduling of data retrieval and processing
operations across a parallel machine. Multiple application-spe-
cific customizations of ADR services can co-exist in a single
ADR instance, and the runtime system can manage multiple
datasets simultaneously.

ADR provides support for implementing afront-end process,
and a customizedback-end(see Fig. 2). The front-end interacts
with clients, translates client requests into queries and sends one

Fig. 2. An application suite implemented using ADR. The shaded bars
represent functions added to ADR by the user as part of the customization
process. Client A is a sequential program while client B is a parallel program.

or more queries to the parallel back-end. The back-end is re-
sponsible for storing datasets and carrying out application-spe-
cific processing of the data on the parallel machine. The cus-
tomizable ADR services in the back-end include: 1) anattribute
space servicethat manages the registration and use of user-
defined mapping functions; 2) adataset servicethat manages
the datasets stored in the ADR back-end and provides utility
functions for loading datasets into ADR; 3) anindexing service
that manages various indices (default and user-provided) for the
datasets stored in ADR; and 4) adata aggregation servicethat
manages the user-provided functions to be used in aggregation
operations, and functions to generate the final outputs. This ser-
vice also encapsulates the data types of both the intermediate
results (i.e., accumulator) used by those functions and the final
output datasets.

1) Datasets in ADR:A dataset in ADR is stored as a set of
data chunks, each of which consists of a subset of data items.
A chunk is the unit of data retrieval in ADR. That is, a chunk
is retrieved as a whole during processing. Retrieving data in
chunks instead of as individual data items reduces I/O over-
heads (e.g., disk seek time), resulting in higher application level
I/O band-width. As every data item is associated with a point
in a multidimensional attribute space, every chunk is associated
with a minimum bounding rectangle (MBR) that encompasses
the coordinates of all the items in the chunk. The dataset is par-
titioned into data chunks by the application developer, and data
chunks in a dataset can have different sizes. Since data is ac-
cessed through range queries, it is desirable to have data items
that are close to each other in the multidimensional space placed
in the same data chunk.

Data chunks are distributed across the disks in the system to
fully utilize the aggregate storage space and disk bandwidth. In
order to take advantage of the data access patterns exhibited by
range queries, data chunks that are close to each other in the un-
derlying attribute space should be assigned to different disks. By
default, the ADR data loading service employs a Hilber curve-
based declustering algorithm [15], [28] to distribute the chunks
across the disks. Hilbert curve algorithms are fast and exhibit
good clustering and declustering properties. Other declustering
algorithms, such as those based on graph partitioning [29], can
also be used by the application developer. Each chunk is as-
signed to a single disk, and is read and written only by the
local processor to which the disk is attached. After data chunks

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

234 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

are assigned to disks, a mulit-dimensional index is constructed
using the MBRs of the chunks. The index on each processor is
used to quickly locate the chunks with MBR’s that intersect a
given range query. An R-tree [21] implementation is provided as
the default indexing method in ADR, but user-defined indexing
methods can also be implemented.

2) Processing in ADR:The processing of a query in ADR
is accomplished in two steps: aquery planis computed in the
query planningstep, and the actual data retrieval and processing
is carried out in thequery executionstep according to the query
plan.

Query planning is carried out in three phases:index lookup,
tiling andworkload partitioning. In the index lookup phase, in-
dices associated with the datasets are used to identify all the
chunks that intersect with the query. If the output/accumulator
data structure is too large to fit entirely in memory, it is parti-
tioned intotiles in the tiling phase. The ADR data aggregation
service provides C++ base classes, which are customized by an
application developer for tiling the accumulator data structure.
Each tile contains a subset of the accumulator elements so that
the total size of a tile is less than the amount of memory avail-
able for the accumulator. In the current ADR implementation,
the workload partitioning step replicates the entire accumulator
tile on each back-end processor, and each processor is respon-
sible for processing local input data chunks. In the query execu-
tion step, the processing of an ouput tile is carried out according
to the query plan. A tile is processed in four phases.

1) Initialization . Accumulator elements for the current tile
are allocated space in memory and initialized in each pro-
cessor.

2) Local Reduction. Each processor retrieves and pro-
cesses data chunks stored on local disks. Data items in
a data chunk are mapped to accumulator elements and
aggregated using user-defined functions. Partial results
are stored in the local copy of the accumulator tile on a
processor.

3) Global Combine. Partial results computed in each pro-
cessor in phase 2 are combined across the processors via
inter-processor communication to compute final results
for the accumulator.

4) Output Handling . The final output for the current tile
is computed from the corresponding accumulator values
computed in phase 3. The output is either sent back to a
client or stored back into ADR.

A query iterates through these phases repeatedly until all tiles
have been processed and the entire output has been computed.
The output can be returned to the client from the backend nodes,
either through a socket interface or via Meta-Chaos [14]. The
socket interface is used for sequential clients, while the Meta-
Chaos interface is mainly used for parallel clients.

Note that ADR assumes the order the input data items are
processed does not affect the correctness of the result, i.e., ag-
gregation operations are commutative and associative. There-
fore, the runtime system can order the retrieval of input data
chunks to minimize I/O overheads. Moreover, disk operations,
network operations and processing are overlapped as much as
possible during query processing. Overlap is achieved by main-
taining explicit queues for each kind of operation (data retrieval,
message sends and receives, data processing) and switching be-

Fig. 3. Virtual Microscope customization of the Active Data Repository.

tween queued operations as required. Pending asynchronous
I/O and communication operations in the operation queues are
polled and, upon their completion, new asynchronous opera-
tions are initiated when more work is required and memory
buffer space is available. Data chunks are therefore retrieved
and processed in a pipelined fashion. For portability reasons, the
current ADR implementation uses the POSIXlio_listio
interface for its nonblocking I/O operations, and MPI [33] as its
underlying interprocessor communication layer.

The backend can execute multiple queries concurrently. Each
query is assigned its own workspace (e.g., memory for the accu-
mulator data structure). The runtime system switches between
queries to issue I/O and communication operations, and han-
dles the computation for a query when the corresponding I/O
and communication operations complete.

B. The Virtual Microscope Implementation Using ADR

We now discuss how digitized microscopy images are stored
for the efficient processing of VM queries, and describe the
VM-specific customization of the ADR services (see Fig. 3).

1) Storing Digitized Images:Managing extremely large
quantities of data is the major problem in the design and
implementation of the Virtual Microscope. The large volume of
image data requires effective use of a large number of disk units,
which in turn requires effective placement of multidimensional
data sets (each slide consisting of multiple 2-D focal planes)
onto a large disk farm to maximize disk access parallelism and
minimize disk access latency.

We focus onparallelismand locality of data retrieval from
secondary storage. Disk access parallelism reduces the volume
of data retrieved from individual disk units, thereby minimizing
overall query processing time. On the other hand, disk access
locality affects the amount of time spent to locate the data ob-
jects on a single disk (i.e., disk seek and latency).

The digitized image from a slide is essentially a three dimen-
sional data set, because each slide may consist of multiple focal
planes. In other words, each digitized slide consists of several
2-D images stacked on top of one another. However, the por-
tion of the entire image that must be retrieved to provide a view
into the slide for any given set of microscope parameters (area
of interest, magnification and focal plane) is two dimensional.
Therefore, to optimize performance, each 2-D image (a focal

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

ÇATALYÜREK et al.: THE VIRTUAL MICROSCOPE 235

plane) should be an independent unit for the data declustering
algorithm to maximize disk parallelism, whereas the entire 3-D
data set (a set of focal planes) should be considered together by
the data clustering algorithm to improve data locality on each
disk (changing focal planes does not change the area of interest
within a plane). If each focal plane of the slide is stored as a
single image, it constitutes a very large image. For example, the
size of the tissue slides in our archive varies from 10 K10
K pixels to 60 K 60 K pixels. In other words, these images
require from 300 MB to 10.8 GB of storage. While current
storage technology provides adequate capacity to store these
large image, in order to process the images efficiently they must
be partitioned into blocks (ortiles). If the whole image must
be processed, the size chosen for the tiles should depend on the
processing require for each tile and the processing power and
I/O capabilities of the server hardware. Even if the processing
that will be carried out on each tile does not require very much
computation, storing very large tiles may reduce overall system
performance if disk I/O becomes a bottleneck. In the Virtual
Microscope system, the VM data server does not process the
whole image for each query. Most queries require processing
only a small portion of the image. Hence, the size of the tiles
must be big enough to efficiently use the disk subsystem, but
not so big that too much unneeded data is retrieved and pro-
cessed. The shape of each tile can also affect the amount of data
retrieved from disk. Tiles that are elongated in one dimension
are likely to result in retrieval of much unneeded data. For ex-
ample, if a slide is partitioned in the x-dimension into vertical
strips, a query that spans the entire x-dimension, but only a small
portion of the y-dimension, will, will cause the data for the en-
tire slide to be read from disk. Thus, in the VM implementation,
we partition a slide into tiles that are close to square in shape.

The images should also be stored in a compressed form. In the
current implementation we have selected JPEG compression as
the default method because of the availability of fast and stable
compression/decompression libraries [22]. As we have pointed
out previously [2], wavelet-based image compression appears
to be the most appropriate technique for the Virtual Microscope
system. However, we have tested two public domain wavelet
compression libraries that implement that JPEG-2000 standard
[10], [23], [26] and found that they are about 10 to 20 times
slower for decompressing microscope images than the public
domain implementation of the JPEG library from the Indepen-
dent JPEG Group [22].

An image tile is used as the unit of data storage and retrieval in
the Virtual Microscope customization of ADR. That is, a tile and
its associated metadata (position of the tile in the whole image
and its size) are stored as a single chunk in an ADR data file. The
chunks are distriubuted across the system disks using a Hilbert
curve-based declustering algorithm (see Section III-A1).

2) Customization of ADR Services:ADR provides an
algorithm-independent interface that is used by the data
aggregation service. During the processing of a query, the
server process finds the image blocks that intersect the query
region, and reads them from disks. A retrieved image block
is first decompressed, since image blocks are stored on disks
in a compressed format to reduce storage requirements. Then
the block isclipped to the query region. Finally, each clipped

block issubsampledto achieve the magnification (zoom) level
specified by the query. The aggregation service is customized
by implementing these four operations in a virtual method that
is called by the ADR runtime system when a data chunk is
available in memory. New image processing functionality for
the Virtual Microscope system can be added by implementing
new aggregation functions.

In the implementation of the indexing service customization,
we have exploited the fact that the image tiles are nonoverlap-
ping and that the slides are fully rectangular images without
holes. The tiles are numbered in row-major order; hence, given
the location of the tile the data chunk that contains the tile in
JPEG format can be determined very quickly. If the system
needs to store datasets with holes in the images, or images that
are not rectangular, the default R-tree indexing method in ADR
can be employed.

The output of a VM query is a 2-D image produced by clip-
ping the input image tiles to the query window and subsampling
the clipped tiles to get the desired magnification. A 2-D array
can be used as an accumulator to hold pixels from the clipped
and subsampled input image tiles. In that case, the 2-D array is
replicated in each processor, and the final image is computed in
the global combine and output handling steps of the query ex-
ecution phase in ADR. However, the clipping and subsampling
of an image tile can be done independently of other image tiles,
and image tiles contain disjoint subsets of the pixels in the en-
tire slide. As a result, each processor needs to allocate only the
portions of the output image that are computed by processing
the local image tiles. Bysparselyallocating the accumulator in
this way, we can reduce the aggregate system memory required
for the accumulator, and do not need to perform the ADR global
combine step. The resulting image blocks are stored in memory
during the local aggregation step, and directly sent to the client
in the output handling step. The client assembles and displays
the image blocks from the data server to form the query output.

C. Experimental Results

In this section we present experimental performance results
for the ADR version of the Virtual Microscope server running
on a Linux PC cluster. The PC cluster consists of one front-end
node and five processing nodes, with a total of 800 GB of disk
storage. Each processing node has an 800 MHz Pentium III
CPU, 128 MB main memory, and two 5400 RPM Maxtor 80
GB EIDE disks. The processing nodes are interconnected via
100 Mb/s switched Ethernet. The front-end node is also con-
nected to the same switch.

We have used the driver program described in [5] to emu-
late the behavior of mulitple simultaneous end users (clients).
The implementation of the client driver is based on a workload
model that has been statistically generated from traces collected
from real experienced users. Interesting regions are modeled as
points in the slide, and provided as an input file to the driver
program. When a user pansnearan interesting region, there is
a high probability a request will be generated. The driver adds
noise to requests to avoid multiple clients asking for the same
region. In addition, the driver avoids having all the clients scan
the slide in the same manner. The slide is swept through in either

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

236 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

Fig. 4. Sweeping patterns over interesting points.

(a) (b)

Fig. 5. Performance results for the Virtual Microscope ADR server running on 5 processors for varying image chunk sizes. Average response times of theserver
for the queries to produce an output image.

(a) (b)

Fig. 6. Performance figures for Virtual Microscope ADR server on varying number of processors for generating the output image. In this experiment, each client
submits 100 queries to the server.

an up-down fashion or a left-right fashion, as shown in Fig. 4, as
observed from real users. For the experiments presented in this
section, each client generates 100 queries. The generated query
set contains queries at different resolutions, hence some of the
queries (those at lower resolutions) require processing more data
at the VM data server, since the data is stored at the highest reso-
lution. For example, a query at 50magnification requires pro-
cessing 64 times more data than a query requesting an output at
400 magnification. The response times that are shown in Figs.
5–7 are the average response times for a single query. In the ex-
periments we have used a tissue slide of size 32 33627 840
pixels.

The performance results for the VM data server using dif-
ferent chunk sizes are displayed in Fig. 5. In this figure, the

400 , 200 , 100 and 50 bars show the average respone
times of the VM data server to the queries at different resolu-
tions, where 400 is the highest resolution stored in the VM
data server. Theoverallbar displays the average response times
of the VM system to the set of queries at all resolutions. As
seen in Fig. 5(a), chunk size 256256 produces the best re-
sponse time at each resolution, and therefore for the overall av-
erage for queries that request a 512512 output image. Both
128 128 and 512 512 chunk sizes result in response times
that are approximately 33% higher. Increasing the chunk size
decreases system performance because with too large a chunk
size all of the processing nodes in the VM data server cannot
be efficiently utilized, especially for queries requesting a rela-
tively small output image. As chunk size increases, the number

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

ÇATALYÜREK et al.: THE VIRTUAL MICROSCOPE 237

(a) (b)

Fig. 7. Breakdown of query execution time into phases.

of chunks that intersect with a fixed size user decreases. For
example, with chunk size 20482048 a query requesting an
output of size 512 512 at the highest resolution intersects with
either 1, or 2 or 4 chunks. It is highly probable that most such
queries will intersect only 1 chunk because of the large chunk
size. In that case , four processors of the five-processor VM
data server will be idle. For queries that request a 10241024
output image (see Fig. 5(b)), the best response time is achieved
by a chunk size of either 256256 or 512 512. Again, in-
creasing the chunk size decreases performance. Using a chunk
size that is too small also decreases overall system performance
because reading chunks from disk becomes a bottleneck, pro-
ducing too many small disk I/O requests in the data server. Since
a 256 256 chunk size gave the best response times for queries
requesting both 512 512 and 1024 1024 output images, we
have selected 256 256 as the default chunk size for the re-
maining experiment in this section.

Fig. 6 displays the average response times for queries that re-
quest 512 512 and 1024 1024 output images, with queries
generated by multiple concurrently running clients. Each client
is an instance of the driver program and generates 100 queries.
The generated query set contains queries at different resolutions.
The response times that are shown in these figures are the av-
erage response times for a single query. As is seen in Figs. 6(a)
and (b), the performance of the ADR version of the VM server
scales very well as both the number of clients and the output
size increase. For example, for queries that request a 512512
output image and with 5 clients, the speedup for five processors
is 3.6 compared to a one processor server, whereas the speedup
is somewhat worse (3.0) for one client. For queries that request
a 1024 1024 output image, the speedup for one client with a
five processors is 3.5, and for five clients the speedup is 4.1.

Fig. 7 displays a breakdown of the execution times of the
ADR version of the VM data server. As described in Section
III-A2, query execution in ADR has four phases: initialization,
local reduction, global combine and output handling. In the VM
customization, initialization only allocates space for the accu-
mulator, which holds decompressed and clipped image chunks.
Decompression, clipping and subsampling are done in the local
reduction phase. In the VM data server there is no need for a
global combine, since the VM client stitches together the image

chunks received from the data server. In the output handling
phase, clipped and subsampled images are compressed to re-
duce network traffic and sent to the VM client. As is seen in
Fig. 7(a), most of the server time is spent in the local reduc-
tion phase and a small fraction is spent in the output handling
phase. Initialization time is so small that it is not even visible in
the figure. Fig. 7(b) displays a time breakdown for the reduction
phase. In this figure, computation corresponds to the execution
time of JPEG decompression, clipping and subsampling, after
a data chunk is retrieved from disk and is available in memory.
The remaining time in the reduction phase is denoted by over-
head. As was discussed in Section III.A.2, data chunks are re-
trieved from disks via nonblocking I/O functions to overlap I/O
with computation, and the ADR runtime system manages buffer
space and performs scheduling of I/O, network, and computa-
tion operations. Thus, in Fig. 7(b),overheadincludes nonover-
lapped I/O and other overheads incurred by the runtime system.
The overhead is very small compared to the computation time;
it is approximately 3% of the computation time, on average. Our
results show that most of the I/O is overlapped with computa-
tion, and very little overhead is incurred by the runtime system.

IV. THE VIRTUAL MICROSCOPESERVER IN A DISTRIBUTED

COMPUTING ENVIRONMENT

The ADR implementation of the Virtual Microscope aims to
provide a scalable, portable, and customizable data server op-
timized for disk-based datasets on a tightly-coupled, homoge-
neous parallel machine. Advances in networking, computing,
and storage technologies are rapidly making it possible to ef-
fectively use a networked collection of storage and computing
systems. Although a networked collection of storage and com-
puting systems offers a powerful and flexible environment, it
requires distributed access and processing of data in a heteroge-
neous environment. The heterogeneity can arise for several rea-
sons: 1) cpu/disk/memory resources are nonuniform, perhaps
caused by multiple purchases of equipment over time; 2) space
availability can dictate sub-optimal placement of the applica-
tion dataset on disks, causing nonuniform data retrieval costs;
3) these can be unexpected or nonuniform application access
patterns, including data subsetting, into the dataset; 4) shared

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

238 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

resources, such as cluster nodes, can result in varying resource
availability. To attain good performance when heterogeneity is
present, applications should be flexible. Moreover, they should
be optimized in the use of resources and be able to adapt to
changes in their availability.

Consider a scientist who wants to compare properties of a 3-D
reconstructed view of a dataset, recently generated by a digi-
tizing microscope at a collaborating institution, with the prop-
erties of a large collection of refrence datasets. The 3-D recon-
struction operation involves retrieving portions of 2-D slides (or
focal planes) from the regions in question, and then performing
feature recognition and interpolating between the slices to ex-
tract the important 3-D features. A description of these features
and the associated properties are then compared against a data-
base of known features, and some appropriate similarity mea-
sure is computed. The final result is the set of reference features
found that are close in some way to those found in the new raw
dataset, along with the corresponding view renderings to visu-
alize.

In this scenario, the required resources (new raw dataset, ref-
erence database, and the scientist) can all be at locations dis-
tributed across a wide-area network. The storage requirement
for such a collection is enormous; the size of the entire collec-
tion generated in a year in one hospital can reach up to several
hundred terabytes. Since the reference dataset is very large and
can be useful to many users, it is likely to be stored in an image
library in one or more archival storage systems. Moreover, the
archival storage systems may be located at different departments
in a hospital or at different hospitals. The new raw dataset would
be stored at the site where the slides were digitized. If the hosts
containing the data are high capacity archival systems that do
not allow the execution of the 3-D reconstruction code (or make
it prohibitively expensive), it becomes unclear how to structure
the application for efficient execution. Ideally, we would like
to execute portions of the application at strategic points in the
available collection of machines. For example, if the portion of
code that performs the range select on the new raw dataset could
be run on the host where the data lives, the amount of data to
be transmitted over the wide-area network would be reduced.
A computation farm could be an ideal location for the feature
recognition and 3-D reconstruction due to the parallelism in-
herent in the codes.

There is a large body of research on building computational
grids and providing support for enabling execution of appli-
cations in a wide-area environment [12], [19]. There is also
hardware and software research on archival storage systems, in-
cluding distributed parallel storage systems [27], file systems
[35], high-performance I/O systems [36] and remote I/O [34].
However, providing support for efficient subsetting and pro-
cessing of very large scientific datasets stored in archival storage
systems in a distributed environment remains a challenging re-
search issue. We have developed a middleware infrastructure,
called DataCutter [4], [6], [8], that enables processing of scien-
tific datasets stored in archival storage systems in a distributed,
heterogeneous environment. In this section we describe an im-
plementation of the Virtual Microscope server using the Data-
Cutter infrastructure. We compare the DataCutter implementa-
tion of VM to the Active Data Repository implementation in a
heterogeneous environment.

A. DataCutter

DataCutter provides a set of core services, namely an
indexing service and a filtering service, on top of which more
application specific services can be implemented. The indexing
service provides support for accessing subsets of datasets via
multidimensional range queries. To ensure scalability to very
large datasets, DataCutter uses a multilevel hierarchical in-
dexing scheme, implemented atop the R-tree index method [3].
The filtering service supports the filter-stream programming
framework for executing application-specific processing as a
set of components, calledfilters, in a distributed environment.
Processing, network and data copying overheads are minimized
by the ability to place filters on different hosts. The filtering ser-
vice can be used to instantiate and execute collections of filters
on various hosts, including networks of workstations and SMP
clusters. The filtering service is designed to allow many filters
to carry out resource constrained, pipelined communication
and pipelined processing of data. DataCutter allows users to
define multiple linked filters as well as sets of concurrent filter
instances that are used collectively to perform computation;
work can be directed to any running instance. DataCutter can
be used to support data subsetting and user-defined filtering of
large multidimensional datasets in a distributed environment. It
can also be used to support the generation of new data products
that can be subsequently visualized or stored.

1) Multilevel Indexing for Subsetting Very Large
Datasets: We assume that a scientific dataset consists of
a set of data files and a set of index files. Data files contain
the data elements of a dataset; data files can be distributed
across multiple storage systems. Each data file is viewed
as consisting of a set ofdata chunks, as in ADR. Efficient
spatial data structures have been developed for indexing and
accessing multidimensional datasets, such as R-trees and their
variants [3]. However, storing very large datasets may result
in a large set of data files, each of which may itself be very
large. Therefore a single index for an entire dataset could be
very large. Thus, it may be expensive, both in terms of memory
space and CPU cycles, to manage the index, and to perform a
search to find intersecting data chunks using a single index file.
Assigning an index file for each data file in a dataset could also
be expensive because it is then necessary to access all the index
files for a given search. To alleviate some of these problems,
we have developed a multilevel hierarchical indexing scheme
implemented viasummary index filesanddetailed index files.
The elements of a summary index file associate metadata (i.e.,
an MBR) with one or more data chunks and/or detailed index
files. Detailed index file entries themselves specify multiple
data chunks. Each detailed index file is associated with some
set of data files, and stores the index and metadata for all data
chunks in those data files. There are no restrictions on which
data files are associated with a particular detailed index file for
a dataset. Data files can be organized in an application-specific
way into logical groups, and each group can be associated with
a detailed index file for better performance. R-trees are used as
the indexing method for summary and detailed index files.

2) Processing of Data: Filters and Streams:Recent research
on programming models for developing applications in the Grid

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

ÇATALYÜREK et al.: THE VIRTUAL MICROSCOPE 239

has converged on the use of component-based models [1], [20],
[25], [31], [32], in which an application is composed of multiple
interacting computational objects. In the DataCutter project, we
have developed a framework, called filter-stream programming,
for developing data intensive applications in a distributed envi-
ronment. The filter-stream programming model represents pro-
cessing components of a data-intensive application as a set of fil-
ters, which are designed to be efficient in their use of resources.
Data exchange between any two filters is described via streams,
which are uni-directional pipes that deliver data in fixed size
buffers. The basic idea behind the use of the filter-stream pro-
gramming model is to some-what constrain the behavior of a
generic message passing application, so that the application can
expose information that is useful for improving performance in
several ways. Filters are location-independent, because stream
namesare used to specify filter to filter connectivity, rather than
endpoint location on a specific host. This allows the placement
of filters on different hosts in a distributed environment. There-
fore, processing, network and data copying overheads can be
minimized by the ability to place filters on different platforms.

A filter is a user-defined object with methods to carry out ap-
plication-specific processing on data. A filter is specified by the
application code to execute, and the layout of input and output
streams it will use. Currently, filter code is expressed using a
C++ language binding by subclassing a filter base class. This
provides a well-defined interface between the filter code and the
filtering service. The interface for filters consists of an initializa-
tion function, a processing function, and a finalization function.

class ApplicationFilter: public DCFilter Baset
public:

int init (int argc, char *argv[]) ;
int process(streamt st[]) ;
int finalize(void) ;

A streamis an abstraction used for all filter communication,
and specifies how filters are logically connected. It provides
the means of uni-directional data flow between two filters,
from up-stream filter to downstream filter. Bi-directional data
exchange is achieved by creating two streams in opposite
directions. All transfers to and from streams are through a
buffer abstraction. A buffer represents a contiguous memory
region containing useful data. Streams transfer data in fixed
size buffers. The size of a buffer is determined in theinit
call; a filter discloses a minimum and an optional maximum
value for each of its streams. The actual size of the buffer
allocated by the filtering service is guaranteed to be at least
the minimum value. The optional maximum value is preferred
buffer size hint to the filtering service. The size of the data in a
buffer can be smaller than the size of the buffer. Therefore, the
buffer contains a pointer to the start, the length of the portion
containing useful data, and the maximum size of the buffer. In
the current prototype implementation we use TCP for stream
communication, but any point-to-point communication library
could be added.

DataCutter provides several degrees of flexibility to improve
application performance [7]–[9]. The choice of placement rep-

resents an important degree of freedom in affecting application
performance by placing filters with affinity to data sources near
the sources, minimizing communication volume on slow links,
and placing filters to deal with heterogeneity. Parallelism in ex-
ecuting application-defined queries via group instances and par-
allel filters is another degree of freedom. Group instances enable
inter-queryparallelism by concurrent instances of filter groups,
because multiple queries can be processed concurrently by dif-
ferent group instances. Parallel filters, on the other hand, allow
a finer level ofintra-queryparallelism via multiple copies of a
single filter within a single filter group.

A filter group is a set of running filters that are logically re-
lated and are used together to perform a computation. Multiple
concurrent running instances of any number of filter groups is
supported by the DataCutter runtime system. Each filter within
a filter group is executed in a separate POSIX thread context,
which allows for concurrent execution. Work can be appended
to any running group instance and is handled in first-in–first-out
(FIFO) order by an instance. There is no ordering between work
appended to concurrent group instances.

If an application implemented using filters involves pipelined
processing of data, the performance of the application depends
on how well the stages of pipeline are balanced in terms of rel-
ative processing time of the stages and the ratio of commu-
nication cost between two stages to the computation cost of
each stage. The performance penalty that is observed in an un-
balanced pipeline can be addressed by using what we refer to
as transparent copies, where the filter is unaware of the con-
current filter replication. We define acopy setto be all trans-
parent copies of a given filter that are executing on a particular
host. The DataCutter filtering service maintains the illusion of a
single logical point-to-point stream for communication between
a logical producer and a logical consumer in the filter group.
When this logical producer and/or logical consumer has trans-
parent copies, the filter service must decide for each producer
which consumer to send a buffers to. Each copy set shares a
single buffer queue, so there is perfect demand-based balance
within a single host. For distribution between copy sets (dif-
ferent hosts), we have investigated several policies: 1) Round
robin distribution of buffers among copy sets, 2) Round robin
among copy sets based on the number of copies on that host,
and 3) a Demand Driven sliding window mechanism. The De-
mand Driven policy is designed to send buffer to the filter that
will result in the fastest processing. To approximate this, we in-
stead send it to the filter that is showing recent good perfor-
mance. When a consumer filter processes a data buffer received
from a producer, it sends back an acknowledgment message to
the producer that indicates the buffer is now being processed.
The producer chooses the consumer filter with the fewest unac-
knowledged buffer to send a data buffer. The effect is to direct
more buffer to faster consumers, with a cost of extra acknowl-
edgment message traffic.

B. The Virtual Microscope Server Using DataCutter

The filter decomposition used for the Virtual Microscope
system is shown in Fig. 8. This filter pipeline structure is
natural for query-response applications. The figure depicts the
main dataflow path of image data through the system. The

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

240 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

Fig. 8. Virtual Microscope decomposition.

thickness of the stream arrows indicate the relative volume of
data that flows on the different streams. In this implementation
each of the main processing steps in the server is a filter.

• read data (R): Full-resolution data chunks that intersect
the query region are read from disk, and written to the
output stream.

• decompress (D):Image blocks are read individually from
the input stream. Each block is decompressed using JPEG
decompression and converted into three byte RGB format.
The image block is then written to the output stream.

• clip (C): Uncompressed image blocks are read from the
input stream. Portions of the block that lie outside the
query region are removed, and the clipped image block
is written to the output stream.

• zoom (Z): Image blocks are read from the input stream,
subsampled to achieve the magnification requested in the
query, and then written to the output stream.

• view (V): Image blocks are received for a given query,
collected into a single reply, and sent to the client using
the standard Virtual Microscope client/server protocol.

C. Experimental Results

1) Serving Digitized Microscopy Images From an Archival
StorageSystem:We have implemented a simple data server for
digitized microscopy images, stored in the IBM HPSS archival
storage system at the University of Maryland [4], [6]. The HPSS
setup has 10 terabytes (1 TB is 1000 GB) of tape storage space,
500 GB of disk cache, and is accessed through a 10-node IBM
SP multicomputer. One node of the SP is used to run the filter
that carries out index lookup, and the client was run on a SUN
workstation connected to the SP node through the department
Ethernet. The Virtual Microscope client trace driver was again
used to drive the experiments. The driver was always executed
on the same host as theview filter, which is referred to as the
client host. The server host is where theread data filter is run,
which is the machine containing the dataset.

We experimented with different placements to theread data
(R), decompress(D), clip (C), zoom(Z), andview(V) filters by
running some of the filters (and the filtering service) on the same
SP node where the indexing service is executed, as well as on the
SUN workstation where the client is run. In the next set of ex-
periments (Fig. 9), we consider varying the server load. In these
experiments, we used a scaled version of a VM dataset. The
scaled dataset in 250 GB compressed (5.7 TB uncompressed),
and corresponds to a 2-D image with 1.4 M1.4 M RGB pixels.
The image is regularly partitioned in to data chunks and stored
in 1024 files on the HPSS. In all experiments, we use a sub-
sampling factor of 8. The execution times are response times
seen by the visualization client averaged over three repeated
runs for three queries, , and . covers 5 5 chunks

of the image, and cover 4 times and 16 times the area
covered by , respectively.

Fig. 9(a) and (b) shows query execution times when the server
load is the same as the client load and when the server load
is doubled. The different loads were emulated by artificially
slowing down the set of filters running on the server host such
that the total running time was increased. For example, thezoom
filter runs twice as long in the 2 case because the filter is de-
layed. As is seen from the figures, running the filters at the client
(R-DCZV) achieves better performance than running them at
the server (RDCZ-V) as server load increases (or the client host
becomes relatively faster). This result is not unexpected, but the
experiment quantifies the effect for this particular configuration.
The use of a different client to server network, or hosts with dif-
ferent relative speeds would significantly change the observed
trends and tradeoff points.

2) A Comparison of ADR and DataCutter Servers:We now
present an experimental comparison of the ADR and DataCutter
implementations of the Virtual Microscope server. The experi-
ments were carried out using a PC cluster and an SMP machine,
both running Linux, at University of Maryland. The PC cluster
has single-processor nodes, interconnected via Switched Fast
Ethernet. Each node has a Pentium III 650 MHz CPU, 128 MB
of main memory, and two 75 GB IDE disks. The SMP machine
has 8 Pentium III 550 MHz processors, 4 GB of main memory,
and 18 GB of disk space. In these experiments we used the same
tissue slide that was used for the experiments in Section III-C.
The slide consists of a single focal plane of 32 33627 840
pixels. We used the client emulation driver program [5] to gen-
erate queries to the data server.

In the first set of experiments, we measure the effect of
varying background load on some of the server nodes on the
performance of the ADR server. Fig. 10 shows the average
response time achieved by the ADR server. The response
time was measured in the client driver program, which also
performs the final stitching of partial images received from the
server backend nodes. Each bar in the graphs represents the
average response time for 100 queries. In these experiments,
the input tissue slide was partitioned into chunks of 256256
pixels, and the chunks were distributed across the nodes for
each machine configuration so that each node has the same
number of data chunks. For the experiments, background
load was added to half of the nodes in each configuration by
executing a user level job that consumes CPU time, at the same
priority as the filter code. For the machine configuration with
one processor, no background job was run. For 2-, 4-, and
8-processor configurations, we ran 1, 4, and 16 background
jobs, denoted by1bg, 4bg, and 16bg in the figures, on half of
the processors in each configuration. As is seen from Fig. 10,
the performance of the ADR server degrades significantly as
background load increases. As was discussed in Section III,
each backend node in the ADR server processes only the data
stored on its local disk. As more background jobs are executed
on some of the nodes, those nodes spend more time to process
data chunks, even though a nearly equal number of data chunks
are distributed to each node.

Figs. 11 and 12 show the performance of the ADR and
DataCutter implementation of the VM server for queries

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

ÇATALYÜREK et al.: THE VIRTUAL MICROSCOPE 241

(a) (b)

Fig. 9. Execution time of queries under varying server load. R, D, C, Z, V denote the filtersread data, decompress, clip, zoom, andview respectively. The
placement of the filters at the server and client is denoted byfserverg—fclientg. HPSS index is the index lookup time, HPPS data and Other are the the sum of
the execution time for searching segments that intersect a query, and for processing the retrieved data via filters. The subsampling factor for queries is 8.

(a) (b)

Fig. 10. Average response time of the ADR server, when the number of back-ground jobs and the number of processors are varied.

that produce 512 512 and 1024 1024 output images,
respectively, when background load is varied. In these ex-
periments, we used two different filter configuration for the
DataCutter-based VM server:DC-5F denotes the data server
with five separate filters, namelyRead, Decompress,Clip,
Zoom, andView. DC-2F, on the other hand, is the VM server
implemented using two filters. In this configuration there is one
read filter and the decompress, clip, zoom, and view operations
are combined into a single filter. For the VM server versions
implemented using DataCutter, one transparent copy of each
filter was executed on each of the nodes in the system. We used
the demand-driven sliding windows mechanism for on-the-fly
distribution of data buffers between copy sets on different hosts
(see Section IV-A2). As is seen from the figures, without back-
ground load the five-filter version of the data server,DC-5F, is
slower than the ADR version. However, the two-filter version,
DC-2F, performs as well as the ADR server. ForDC-5F, data
buffers between each stage of the pipeline are distributed using
the demand-driven sliding windows mechanism. Although this
configuration may result in better pipelining of processing
and better load balance among transparent copies, the volume
of data communication will be higher than that of both the
ADR vesion and theDC-2F configuration. In this case, the
extra communication overhead due to additional stages in the
pipeline offsets the additional pipelining and load balance
achieved. The response time of the ADR server discernibly

increases as the number of background jobs rises. Background
load also slows down the DataCutter version of the VM server.
However, its effect is much less than that on the ADR server.
For example,DC-5F is slower than ADR when there are no
background jobs, but it becomes faster with even 1 background
job on 8-processor configurations. With 4 background jobs,
both DataCutter implementations.DC-5F and DC-2F, run
faster than ADR implementation. As seen in the figure, the
performance improvement of DataCutter implementations
increases with the increasing number of background jobs. This
is because of the dynamic distribution of data buffers among
the transparent copies of a filter resulting from the demand
driven scheme. When the load on a node increases, the data
buffers from the read filter running on that node are sent by the
rutime system to other nodes that are less loaded.

Fig. 13 shows average response times using the ADR and Dat-
aCutter implementations of the VM server on the 8-processor
SMP machine, when the number of clients is varied. In this set
of experiments, we ran 8 backend processes for the ADR server.
Each client generates 100 queries and waits for the completion
of a query before submitting a new query. As was discussed
in Section IV, the DataCutter filter-stream programming model
provides the abstraction of filter group instances and transparent
copies, which can be separately or collectively employed to im-
prove application performance. In the experiments, we varied
the number of group instances and the number of copies per

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

242 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

(a) (b)

(c)

Fig. 11. Average response time of the VM servers for 512� 512 output image.

(a) (b)

(c)

Fig. 12. Average response time of the VM servers for 1024� 1024 output image.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

ÇATALYÜREK et al.: THE VIRTUAL MICROSCOPE 243

(a) (b)

Fig. 13. Average response time of different versions of the VM servers on the 8-processor SMP.

filter in each group instance to create different server config-
urations. In the figures,
denotes that there areinstances of the filter group that con-
sist of filters , and and that transparent copies of

transparent copies of , and transparent copies of
are executed for each group instance. Queries submitted by

the clients are assigned to the group instances in round-robin
fashion. Multiple queries can be executed concurrently if there
is more than one group instance, but each group instance eval-
uates one query at a time. As is seen from the figure, for a
small number of clients (e.g., 1 or 2) the ADR server performs
better than the DataCutter server versions. When there are a
few clients, it is more beneficial to execute each query in par-
allel using the maximum number of processors available. Simi-
larly, the DataCutter server configurations with fewer instances,
but more transparent copies per instance, achieve better per-
formance for small numbers of clients. When the number of
clients increases, the DataCutter implementations of the VM
server with multiple group instances perform better. For a large
number of clients, inter-query parallelism can be exploited to
improve the performance of the data server. As is seen from
Fig. 13(a), especially when the queries are small (i.e., the query
window is small), there is more interquery parallelism available
for improving application performance, as the parallel execu-
tion of a single query may incur load imbalance. When bigger
queries are executed, it is likely that good load balance will be
achieved for each query. Hence, the ADR server scales better for
bigger queries, as is seen from Fig. 13(b). Nevertheless, our re-
sults show that DataCutter provides sufficient flexibility so that
the data server configuration can be modified to accommodate
various data access patterns.

V. DATA CACHING IN THE CLIENT

In a client-server environment, the data server often needs to
interact with many clients simultaneously. This can cause high
demand on the server and network resources. For interactive
applications the system as a whole should achieve acceptably
small response times. Response time is measured as the amount
of time between the initiation of a request and when the last
piece of data is delivered. If a response takes too long, the ap-
plication may become unusable. The base Virtual Microscope
implementation attempts to achieve low response time by using
a scalable parallel server with a disk farm so that data access and

processing required by a client request can be completed quicky.
However, for a given server configuration, as more clients are
added, the server has to multiplex between more client requests.
As a result, the response time observed by an individual clients
rises. Moreover, if the connection between a client and the server
spans a wide-area network, the demands on the network can be
extremely high, and the latency incurred between clients and a
server may be very high. In order to improve the overall system
performance, the following issues should be addressed:

Reduction of wide-area network usage.Clients connected
to a server over a wide-area network make use of resources that
are shared by other applications, namely the long-haul links
and intermediate nodes in the network. Transferring high vol-
umes of data through such shared resources is expensive, thus
the latency between a client and the server may be very high.
Although the use of a parallel data server makes it possible to
efficiently store and process very large images at the server,
the output (a 2-D image) of a typical query may still be large.
For instance, the size of the output is about 1 MB for a query
window at 640 480 pixels resolution. Therefore it may not be
possible to achieve interactive viewing for clients connecting to
the server over a slow network connection. Using image com-
pression techniques, the size of the output image can be reduced
by perhaps a factor of 10, but even then a single view may re-
quire 20 to 30 seconds to transmit over a standard modem con-
nection. Therefore compression cannot be the only mechanism
used to reduce wide-area data volume for Virtual Microscope
style applications.

Reduction in the server workload.Reduced workload at the
server is an important way to improve overall system scalability.
With less applied workload, the system should see reduced uti-
lization, hence better performance as more clients are added.

One possible approach that can be taken to address these is-
sues is to cache data near a client. In earlier work [5], we ex-
amined the performance impact of a diskless proxy, where data
blocks were cached only in processor memory. A proxy behaves
as an intermediate server between a set of co-located clients and
a remote server. It appears to the remote server as a client, and
to a client as a server.

Given that there is sufficient common interest among mul-
tiple clients, several benefits can be realized with a proxy in
place. First, the response time seen by each client can be re-
duced. With efficient data caching, most client requests can be

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

244 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

served by the proxy across the local-area network, instead of the
data server across the wide-area network. Second, the amount
of redundant data sent across the wide-area network can be re-
duced. Instead of multiple clients requesting the same or over-
lapping regions of a dataset from the server, the proxy can re-
quest the data only once. Third, server scalability is improved
by reducing its utilization.

Our experimental results showed that using a proxy does
improve overall system performance. However, caching at the
proxy provides a benefit only when two requirements are met.
First, the clients need to be local to the proxy. This reduces the
long latency seen in contacting the remote server to resolve
proxy cache misses. Second, some commonality of interest
among the set of clients must exit. This reduces the working
set size in the proxy, which helps avoid cache overflow. With
both conditions satisfied, the maximum benefit occurs when
all but the first request for a block of data is in the proxy
cache. Moreover, since all client requests go through the proxy,
response time as seen by the client for requests that miss the
cache is higher than when there is no proxy.

Typical users of the Virtual Microscope (e.g., pathology con-
sultants, medical students) would also like to access the image
data via the Internet from their home, usually over a slow con-
nection. In that case, clients can be at geographically distant lo-
cations. Moreover, compared to a collaborative environment, it
is unlikely that there will be many overlapping regions of in-
terest amount the clients. As a result, there will be little benefit
from the use of a proxy. Nevertheless, a client can still benefit
from data caching, if data can be cached at the client. For this
purpose, we have designed the VM client to maintain and use
a two-level cache; the client memory is a first-level cache, and
the local disk on the client machine is a second-level cache. The
caching mechanism implemented in the client works as follows.
Images are viewed as partitioned into tiles at the client, where a
tile is a fixed sized rectangular portion of the image.1 . The tiles
are used as the units of caching for portions of the image. When
the user selects a region to view, the client determines the set
of tiles that intersect with the selected region, and tiles that are
in the cache are displayed directly. A least recently used (LRU)
policy has been adopted for both levels of the cache. When a tile
is needed to display a selected region of the image, the memory
cache is first searched. If the tile is not found in the memory
cache, the disk cache is searched and if the tile is found it is
both inserted in the memory cache and used for display. Only
tiles that are not in either cache are requested from the server,
and before display are inserted into both the memory and disk
cache.

A. Multiresolution Image Caching

The VM client caches an image at the resolution the image
was retrieved from the server. Hence, when a user selects a re-
gion of interest, the client cache may contain multiple tiles at dif-
ferent magnification levels that intersect the region of interest.
The VM client will first try to construct the requested image

1The best choice of image tile size in the client takes into account the tile size
used in the data server. A client can request that information when it initially
connects to the server.

using the tiles in the cache. If the cache already contains all
the corresponding tiles at the requested resolution, the output
image is constructed from those tiles and displayed. However,
part of the image may not be available at the requested reso-
lution. In that case, the VM client first tries to construct the
missing parts of the output image using tiles cached at higher
resolutions (using the same subsampling algorithm as in the data
server to construct the desired lower resolution image). If the en-
tire image cannot be constructed with either tiles at the requested
resolution or tiles at higher resolutions, the missing tiles are tem-
porarily displayed by blowing up (replicating pixels from) the
lower resolution tiles or, as a last resort, the thumbnail image.
The parts of the image that have not been displayed at the de-
sired resolution are requested from the data server. Fig. 14 shows
these execution steps. In Fig. 14(a), the user-selected region is
displayed from tiles that are available in the client cache. The
lower left part of the requested image is displayed from tiles
cached at the requested resolution or from tiles cached at higher
resolution. The upper left part of the image is displayed from
cached lower resolution tiles, and the right part of the image is
displayed by blowing up the thumbnail image. The VM client
requests the parts of the image that have not been displayed at
the requested resolution from the server. In Fig. 14(b) the upper
left part of the image is being replaced with the results from
queries sent to the VM server. The client continues to fill in the
image with tiles requested from the server for the right side of
the image, as displayed in Fig. 14(c).

In the current implementation, the VM client sends queries
to the VM server only at the user-specified resolution or at the
next higher resolution. For example, suppose a user selected a
region at 100 in a slide that was scanned and stored at 400.
Fig. 15 displays an illustration of the slide tiling at three resolu-
tions (100 , 200 , and 400). Although the user selection may
intersect more than one tile at the requested resolution, for the
sake of simplicity in the presentation, suppose the user selected
a region that intersects only one tile, and let the shaded tile at
100 be that tile. If the tile is already in the cache, the requested
region can be directly drawn using that tile. However, if it is not
in the cache, the VM client searches for tiles at the next higher
resolution that can be used to construct the tile at the requested
resolution. The four tiles at 200that can be used tro construct
the requested tile at 100are also shaded in Fig. 15. If the client
cache contains all four of those tiles, the VM client can imme-
diately draw the user-requested image via subsampling of the
200 tiles. If any of those tiles is not in cache, the client recur-
sively searches at the next higher resolution (400) to construct
the missing 200 tile. If the tile at 100 still cannot be fully
constructed, the client must request tiles from the data server.
The tile at 100 will be requested from the server if two or more
tiles are missing at 200. However, if only one tile is missing at
200 , the client will request the tile at 200to attempt to reduce
the workload at the data server, because a 200tile will require
fewer data chunks to be retrieved and proceed at the server than
will a 100 tile.

For efficient use of memory and disk space resources on the
client machine, images tiles are stored in JPEG format. This in-
troduces compression and decompression overload when a tile
is used. However, with JPEG compression we have been able to

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

ÇATALYÜREK et al.: THE VIRTUAL MICROSCOPE 245

Fig. 14. Virtual Microscope client query execution steps using the multiresolution image cache.

Fig. 15. An illustration of image tiling at multiple resolutions.

compress the slide images by up to a factor of 15 from the orig-
inal size without a noticeable loss in image quality. This helps
to reduce the I/O time for each tile and more than compensates
for compression/decompression overhead. Compression also al-
lows for caching many more tiles for a given cache size, further
improving overall system performance.

B. Experimental Results

For the experimental evaluation of caching client perfor-
mance, we employ an ADR version of the VM data server,
with the client generated workload the same as the described
in Section III-C. The data server runs on the five processor PC
cluster described in Section III-C. Average response times for
the VM clients are displayed in Figs. 16–18. For the caching
client, the response time also include caching overheads, such

Fig. 16. Overall average response times of caching client for varying cache
tile sizes.

as cache lookups and inserting tiles into the cache. To insert
a tile into the cache, server tiles received from the VM data
server are decompressed and stitched together as required (no
stitching is necessary if the client tiles are chosen to be the
same as the server tiles), then the constructed tile is compressed
and inserted into the client cache.

Fig. 16 displays the average response times of the caching
client using different cache tile sizes, for queries that request
512 512 or 1024 1024 output images. Each bar in the figure
shows the average response times for 500 queries using four
different cache tile sizes. As is seen in the figure, for queries

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

246 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

(a) (b)

Fig. 17. Average response times of caching client for 1000 queries, generating (a) 512� 512 output image, and (b) 1024� 1024 output image. In this experiment,
the cache tiles are 512� 512.

Fig. 18. The average response times of the noncaching and caching clients. The VM data server is run on five processors.

that request a 512 512 image, tile sizes of either 256256 or
512 512 result in the best performance, with an average re-
sponse time of about 0.4 seconds. For queries with an output
image size of 1024 1024, a tile size of 512 512 produces
the best performance, with about a 0.7-s average response time.
Using a cache tile size that is too small causes many small re-
quests to be sent to the VM server, which decreases server per-
formance. Using a cache tile size that is too large causes the data
server to process too much extra image data, and also increases
client caching overhead because of JPEG compression and de-
compression of the tiles.

Fig. 17 displays the average response times of the caching
client with respect to cache-hit ratio (i.e., the number of tiles
obtained from cache divided by the total number of tiles re-
quested), for output image sizes of 512512 and 1024 1024.
As we described in the previous section, the caching client first
determines which tiles intersect with the user query and those
tiles are searched for in the cache. We plotted the queries ac-
cording to the percentage of tiles that intersect with the query
that are available in cache versus average response time, with
the results shown in Fig. 17. Each line plotted in the figure dis-
plays the average response times for queries at varying reso-
lutions. The thick solid black line shows theoverall average
response times for each hit-ratio. As expected, the average re-

sponse time of the VM client decreases drastically with in-
creasing cache hit ratio. For example, for queries producing a
1024 1024 image at 50, if none of the required tiles are in
the cache the average response time can be as high as 19 sec-
onds. However, if all tiles are in the cache, the average response
time is only 0.3 seconds.

A comparison of the response times of the noncaching and
caching clients is displayed in Fig. 18. For the caching client,
two response times are displayed for each experiment. The
first one shows the response time of the caching client when
the client starts with an empty cache, labeledcold cache. The
second one shows the response time of the caching client when
the client has been run a second time, that is when it starts
with a nonempty cache, labeledwarm cache. For a single
client, using the caching client starting with a cold cache
reduces response time about 20% on average. The use of the
caching client also improves overall VM system performance
by reducing the load at the VM data server. For example, with
five caching clients the average response time seen by each
client is about 35% less than the average response time seen
by five noncaching clients. Starting from a nonempty cache
speeds up the response time of the caching client by more than
50%, leading to approximately 75% faster response time than
the noncaching client, on average.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

ÇATALYÜREK et al.: THE VIRTUAL MICROSCOPE 247

VI. CONCLUSION

In this paper we have discussed the design and implementa-
tion of a client/server database system that provides a realistic
emulation of a high power light microscope. The system also
provides capabilities that can never be achieved with a phys-
ical microscope, such as simultaneous viewing and manipula-
tion of the same slide by multiple end users. To solve the main
problem in providing a system that performs adequately, namely
storing and processingverylarge quantities of slide image data,
we have presented the design and implementation of two ver-
sions of the Virtual Microscope server software that target 1)
tightly coupled parallel computers with a disk farm and 2) dis-
tributed computing environments providing access to archival
storage systems. Both servers employ more general software
frameworks, the Active Data Repository and DataCutter, appro-
priately customized to provide the required Virtual Microscope
functionality. The use of such frameworks allows the server sys-
tems to take advantage of all the performance optimizations that
have been engineered into the frameworks for executing a large
class of data intensive applications on the targeted computa-
tional platforms. In addition, we have described the optimiza-
tions required in the client software to provide rapid response
times for users, in particular caching image data in both memory
and local disk on the client machine. The overall performance
results show that the resulting Virtual Microscope system can
provide scalable server performance and good client response
times. Such results show that it is becoming feasible to deploy
such a system within a clinical setting, for example allowing
a pathologist to access a slide sample at any time from an in-
expensive PC, without requiring physical access to a slide or a
microscope.

REFERENCES

[1] M. Aeschlimann, P. Dinda, J. Lopez, B. Lowekamp, L. Kallivokas, and
D. O’Hallaron, “Preliminary report on the design of a framework for
distributed visualization,” inProceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA’99), Las Vegas, NV, June 1999, pp. 1833–1839.

[2] A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo, R. Ferreira,
R. Miller, M. Silberman, J. Saltz, A. Sussman, and H. Tsang, “Digital
dynamic telepathology—The virtual microscope,” inProc. 1998 AMIA
Annual Fall Symposium, Nov. 1998.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “TheR -tree:
An efficient and robust access method for points and rectangles,” in
Proc. 1990 ACM-SIGMOD Conference, May 1990, pp. 322–331.

[4] M. Beynon, T. Kurc, A. Sussman, and J. Saltz, “Design of a framework
for data-intensive wide-area applications,” inProc. 9th Heterogeneous
Computing Workshop (HCW2000), May 2000, pp. 116–130.

[5] M. Beynon, A. Sussman, and J. Saltz, “Performance impact of proxies
in data intensive client-server applications,” inProc. 1999 International
Conference on Supercomputing, June 1999.

[6] M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz, “Data-
cutter: Middleware for filtering very large scientific datasets on archival
storage systems,” inProc. Eighth Goddard Conference on Mass Storage
Systems and Technologies/17th IEEE Symposium on Mass Storage Sys-
tems, NASA/CP 2000-209 888, Mar. 2000, pp. 119–133.

[7] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and J.
Saltz, “Distributed processing of very large datasets with Data-cutter,”
Parallel Comput., vol. 27, no. 11, pp. 1457–1478, Oct. 2001.

[8] M. D. Beynon, T. Kurc, A. Sussman, and J. Saltz, “Optimizing
execution of component-based applications using group instances,”
in Proc. IEEE Int. Symposium on Cluster Computing and the Grid
(CCGrid2001), Brisbane, Australia, May 2001.

[9] M. D. Beynon, A. Sussman, U. Catalyurek, T. Kurc, and J. Saltz, “Per-
formance optimization for data intensive grid applications,” inProc.
Third Annual International Workshop on Active Middleware Services
(AMS2001), Aug. 2001.

[10] JJ2000 [Online]. Available: http://jj2000.epfl.ch
[11] C. Chang, R. Ferreira, A. Sussman, and J. Saltz, “Infrastructure for

building parallel database systems for multi-dimensional data,” inProc.
Second Merged IPPS/SPDP Symposiums, Apr. 1999.

[12] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke.
(1999) The Data Grid: Toward an Architecture for the Distributed Man-
agement and Analysis of Large Scientific Datasets. [Online]. Available:
http://www.globus.org/

[13] D. Comaniciu, W. Chen, P. Meer, and D. J. Foran, “Multiuser
workspaces for remote microscopy in telepathology,” inProc. IEEE
Computer-Based Medical Systems, vol. 2, 1999, pp. 150–155.

[14] G. Edjlali, A. Sussman, and J. Saltz, “Interoperability of data parallel
runtime libraries,” inProc. Eleventh International Parallel Processing
Symposium, Apr. 1997.

[15] C. Faloutsos and P. Bhagwat, “Declustering using fractals,” inProc. The
2nd International Conference on Parallel and Distributed Information
Systems, San Diego, CA, Jan. 1993, pp. 18–25.

[16] R. Ferreira, T. Kurc, M. Beynon, C. Chang, A. Sussman, and J. Saltz,
“Object-relational queries into multi-dimensional databases with the
Active Data Repository,”Parallel Processing Lett., vol. 9, no. 2, pp.
173–195, 1999.

[17] R. Ferreira, B. Moon, J. Humphries, A. Sussman, J. Saltz, R. Miller,
and A. Demarzo, “The virtual microscope,” inProc. 1997 AMIA Annual
Fall Symposium, Oct. 1997, pp. 449–453. Also available as University
of Maryland Technical Report CS-TR-3777 and UMIACS-TR-97-35.

[18] D. J. Foran, D. Comaniciu, P. Meer, and L. A. Goodell, “Computer-as-
sisted discrimination among malignant lymphomas and leukemia
using immunophenotyping, intelligent image repositories, and telemi-
croscopy,”IEEE Trans. Inform. Technol. Biomed., vol. 4, pp. 265–273,
Dec. 2000.

[19] I. Foster and C. Kesselman,The GRID: Blueprint for a New Computing
Infrastructure: Morgan-Kaufmann, 1999.

[20] Global Grid Forum [Online]. Available: http://www.gridforum.org
[21] A. Guttman and R. Trees, “A dynamic index structure for spatial

searching,” inProc. 1984 ACM-SIGMOD Conference, June 1984, pp.
47–57.

[22] The Independent JPEG Group’s JPEG Software (1998, Mar.). [Online].
Available: http://www.ijg.org

[23] JasPer vl. 6 (2000). [Online]. Available: http://www.ece.ubc.ca/
mdadams/jasper/

[24] Interscope Technologies (2001). [Online]. Available: http://www.inter-
scopetech.com

[25] C. Isert and K. Schwan, “ACDS: Adapting computational data streams
for high performance,” inProc. 14th International Parallel & Dis-
tributed Processing Symposium (1PDPS 2000). Cancun, Mexico, May
2000, pp. 641–646.

[26] ISO/IEC FCD 15 444-1: Information Technology—JPEG 2000 Image
Coding System: Core Coding System [WG 1 N 1646] (2000, Mar.). [On-
line]. Available: http://www.jpeg.org/FCD15444-1.htm

[27] W. Johnston and B. Tierney, “A distributed parallel storage architecture
and its potential application within EOSDIS,” inProc. The Fourth NASA
Goddard Conference on Mass Storage Systems and Technologies, 1995.

[28] B. Moon, H. Jagadish, C. Faloustsos, and J. Saltz, “Analysis of the clus-
tering properties of the Hilbert space-filling curve,”IEEE Trans. Knowl-
edge Data Eng., vol. 13, no. 1, pp. 124–141, Feb. 2001.

[29] B. Moon and J. H. Saltz, “Scalability analysis of declustering methods
for multidimensional range queries,”IEEE Trans. Knwoledge Data
Eng., vol. 10, no. 2, pp. 310–327, Mar./Apr. 1998.

[30] S. Olsson and C. Busch, “A national telepathology trial in Sweden:
Feasibility and assessment,”Arch. Anat. Cytol. Pathol., vol. 43, pp.
234–241, 1995.

[31] B. Plale and K. Schwan, “dQUOB: Managing large data flows using dy-
namic embedded queries,”Proc. IEEE International High Performance
Distributed Computing (HPDC), Aug. 2000.

[32] M. Rodríguez-Martínez and N. Roussopoulos, “MOCHA: A self-exten-
sible database middleware system for distributed data sources,” inProc.
2000 ACM SIGMOD International Conference on Management of Data
(SIGMOD00), vol. 29, May 2000, pp. 213–224. ACM SIGMOD Record.

[33] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra,
MPI: The Complete Reference, ser. Scientific and Engineering Compu-
tation Series: MIT Press, 1996.

[34] SRB: The Storage Resource Broker [Online]. Available: http://www.
npaci.edu/DICE/SRB/index.html

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

248 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

[35] M. Teller and P. Rutherford, “Petabyte file systems based on tertiary
storage,” inProc. The Sixth NASA Goddard Space Flight Center Con-
ference on Mass Storage Systems and Technologies, Fifteenth IEEE Sym-
posium on Mass Storage Systems, 1998.

[36] R. Thakur, A. Choudhary, R. Bordaweakr, S. More, and S. Kuditipudi,
“Passion: Optimized I/O for parallel applications,”IEEE Computer, vol.
29, no. 6, pp. 70–78, June 1996.

[37] J. Z. Wang, J. Nguyen, K.-K. Lo, C. Law, and D. Regula, “Multiresolu-
tion browsing of pathology images using wavelets,” inProc. 1999 AMIA
Annual Fall Symposium, Nov. 1999, pp. 340–344.

[38] M. Weinstein and J. I. Epstein, “Telepathology diagnosis of prostate
needle biopsies,”Human Pathol., vol. 28, no. 1, pp. 22–29, Jan. 1997.

[39] R. S. Weinstein, A. Bhattacharyya, A. R. Graham, and J. R. Davis,
“Telepathology: A ten-year progress report,”Human Pathol., vol. 28,
no. 1, pp. 1–7, Jan. 1997.

[40] A. W. Wetzel, P. L. Andrews, M. J. Becich, and J. Gilbertson, “Compu-
tational aspects of pathology image classification and retrieval,”J. Su-
percomput., vol. 11, pp. 279–293, 1997.

Ümit Çatalyurek received the Ph.D., M.S., and B.S.
degrees in computer engineering and information sci-
ence from Bilkent University, Turkey, in 2000, 1994,
and 1992, respectively.

He is an Assistant Professor in the Department of
Biomedical Informatics at The Ohio State University,
Columbus. His research interests include graph and
hypergraph partitioning algorithms, grid computing,
and run-time systems and algorithms for high-perfor-
mance and data-intensive computing.

Michael D. Beynon received the Ph.D. and M.S.
degrees in computer science from the University
of Maryland, College Park, in 2001, and 1998,
respectively, and the B.S. degree in computer science
from University of New York at Albany in 1994.

He is a Staff Scientist in the Advanced Networks
and Applications Group at MIT Lincoln Laboratory.
His research interests include runtime systems
for data intensive applications, high-performance
parallel and distributed systems; computer vision
algorithms, and video surveillance systems.

Chialin Chang received the Ph.D. degree in com-
puter science from the University of Maryland, Col-
lege Park, in 2001, the M.S. degree in computer sci-
ence from the University of California at Los An-
geles in 1991, and the B.S. degree in computer sci-
ence and information engineering from the National
Taiwan University in 1987.

He works at L Labs Inc., in Taiwan. His research
interests include algorithms for data-intensive com-
puting on parallel computers, I/O systems, and high-
performance databases.

Tahsin Kurc received the Ph.D. degree in computer
science from Bilkent University, Turkey, in 1997
and the B.S. degree in electrical and electronics
engineering from Middle East Technical University,
Turkey, in 1989.

He is an Assistant Professor in the Department of
Biomedical Informatics at the Ohio State University,
Columbus. His research interests include runtime
systems for data-intensive computing in parallel and
distributed environments, and scientific visualization
on parallel computers.

Alan Sussman received the Ph.D. degree in
computer science from Carnegie Mellon University,
Pittsburgh, PA, in 1991 and the B.S.E. degree in
electrical engineering and computer science from
Princeton University, Princeton, NJ, in 1982.

He is an Assistant Professor in the Computer Sci-
ence Department at the University of Maryland, Col-
lege Park. His research interests include compilers
and run-time systems for parallel computers, high-
performance database and I/O systems, and medical
informatics.

Joel Saltz received the B.S. degree in mathematics
and physics from University of Michigan, Ann
Arbor, in 1978. He received the M.D. and Ph.D.
degrees in computer science from Duke University,
Durham, NC, in 1985 and 1986, respectively.

He is Professor and Chair of the Department of
Biomedical Informatics, Professor in the Department
of Computer and Information Systems and a Senior
Fellow of the Ohio Supercomputer Center. Prior to
coming to Ohio State, he was Professor of Pathology
and Informatics in the Department of Pathology at

Johns Hopkins Medical School and Professor in the Department of Computer
Science at the University of Maryland, College Park. His research interests are
in the development of systems software, databases and compilers for the man-
agement, processing, and exploration of very large datasets.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2021 at 18:33:57 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

