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The Virtual Microscope

Umit Catalyiirek, Michael D. Beynon, Chialin Chang, Tahsin Kurc, Alan Sussman, and Joel Saltz

Abstract—We present the design and implementation of the some cumbersome archive. A similar system is employed for
Virtual Microscope, a software system employing a client/server cytopathology, but an added complication is that the slide is
architecture to provide a realistic emulation of a high power light  5fan unique and irreplaceable. Thus, the dissemination of case

microscope. The system provides a form of completely digital - L L .
telepathology, allowing simultaneous access to archived digital material for consultative, investigative or educational purposes

slide images by multiple clients. The main problem the system fémains laborious, and, to a large extent, pathologists only

targets is storing and processing the extremely large quantities of have access to locally available case material for comparison
data required to represent a collection of slides. The Virtual Mi- in difficult cases.

croscope client software runs on the end user’s PC or workstation,  Qver the past 10 years, there has been increasing interest in
while database software for storing, retrieving and processing o -pnologies that make it possible to examine specimens at a dis-

the microscope image data runs on a parallel computer or on a t T tv two f ftel thol . .
set of workstations at one or more potentially remote sites. We @Nce. here are currently two forms of teiepathology imaging.

have designed and implemented two versions of the data serversStatic and dynamic [13], [30], [37]-{39]. In static-image
software. One implementation is a customization of a database telepathology, the referring pathologist captures a small set
system framework that is optimized for a tightly coupled parallel  of digital images that are transmitted to the consultant. The
Qagmeoﬁvgzt %tgzzgeda'r?;ar']f;s'ése-elh‘é;?cr?gg Lgnpéirgoenqtr;‘gggtconsulting pathologist relies on the referring pathologist to
accessao and proceésing of data in a distr?buted, heterogeneousgel(ECt tlssug fields. In the Qynamlc mOde? Ilve. |mage§ of mi-
environment. We also have developed caching client software, im- Croscope slides are transmitted and visualized in real time. The
plemented in Java, to achieve good response time and portability dynamic form of telepathology can be carried out by a remotely
across different computer platforms. The performance results controlled real microscope. The remote pathology consultant is
presented show that the Virtual Microscope systems scales well, soghe| to control the microscope stage and to select the image to
that many clients can be adequately serviced by an appropriately e \iewed. Advanced microscopes provide the functionality for
configured data server. . . ! . . . L
selecting various color filters or applying different illumination
Index Terms—Pata caching, digital microscopy, grid computing, modes. They also can allow the simultaneous viewing of a slide
parallel computing, telepathology. by multiple clients, although only one client can control the
microscope. One main advantage of using a real microscope
|. INTRODUCTION is that live specimens can be viewed in real time. A software

, ) system that allows access to digitized microscopy slides, on
ESPITE numerous advances in the understanding of difiy other hand, can provide a cost-effective, complementary

ease processes, most basic aspects of anatomic patho[ggy for dynamic telepathology. By simply emulating the

have changed little over time. The pathologist supervisggum behavior of a physical microscope, such a system can

the gross dissection of tissue, which is fixed, dehydrated I'QéJIace cabinets full of slides with a digital storage subsystem.

organic solvents, embedded in paraffin, sectioned and staingdjeying a slide then becomes a matter of accessing the slide
The tissue specimen is typically directly examined using @anase without requiring physical access to the slide. As in a
light microscope. The pathologist renders a diagnosis upQl| microscope, it can provide simultaneous access to the slides

the microscopic examination of the tissue sections, and l%?multiple users, who can access and individually manipulate
glass slide and paraffin blocks are inevitably relegated {Re same slide or different slides at the same time. In addition,

new software modules can be added to perform various types
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high resolution data onto a grid of suitable resolution (governed ¢ We compare the performance of the ADR implementation
by the desired magnification) and appropriately compositing  of the VM server against a component-based implemen-
pixels mapping onto a single grid point, to avoid introducing  tation. We experimentally evaluate the two implementa-
spurious artifacts into the displayed image. tions so as to identify when it is beneficial to use the com-

The main difficulty in providing the basic functionality is ponent-based implementation over the ADR implementa-
storing and processing the extremely large quantities of data re- tion, and vice versa.
quired to represent a large collection of slides. For example, with ¢ We present the design and implementation of a client with
a digitizing microscope a singB90x spot of a slide at a single data caching capabilities. Our experimental results show
depth of focus requires a resolution of 1000 by 1000 pixels. With ~ that data caching at the client improves client response
a three-byte RGB color value per pixel, an image at that resolu- time. It reduces contention among clients for scarce re-
tion produces a data size of 3 MB. To completely cover a slide ~ Sources, such as bandwidth in a wide-area network and
of 3.5 by 2.5 cm requires a grid of about S0 such200x processing and I/O in the data server. Caching also im-
spots, resulting in an uncompressed file size of 10.5 GB. How-  Proves clientresponse time by reducing the amount of data
ever, such as image captures only a single focal plane. Because 'equested from a (potentially remote) server.
histopathology involves interpretation of the three-dimensionalIn Section Il, we provide an overview of the components of
(3-D) nature of tissue or individual cells, a single focal planthe Virtual Microscope system. Section Ill presents the imple-
may not allow adequate characterization of the material. To anentation of the Virtual Microscope server using the Active
guire a slide at 5 focal planes increases the file size to 52.5 ABata Repository. An experimental evaluation of the implemen-
and a higher power substantially increases the volume of thégton is also discussed in this section. The component-based
datasets with more spots and more focal planes. Storage néagsementation of the VM server and the performance compar-
are exacerbated by the fact that hospitals can generate misoy of the ADR implementation to the component-based imple-
thousands of slides per year. For instance, at the Johns Hopkirentation are presented in Section V. We describe and experi-
Hospital the histology laboratory processes 420 000 routirmagntally evaluate the design and implementation of the caching
special-stain, and immunohistochemical slides per year. Cleaglient in Section V. Conclusions are given in Section VI.
there is an enormous storage requirement. There are also the at-
tendant difficulties in achieving rapid response time for various
types of inquiries into the slide image database.

This paper describes the design and implementation of acomThe basic functionality of the Virtual Microscope imple-
plete software system, called the Virtual Microscope (VM), thafents an accurate emulation of a high power light microscope.
implements a realistic digital emulation of a high power lighft number of operations must be supported to provide this
microscope, through a client/server hardware and software &toctionality:
chitecture [2], [17]. The client software runs on an end user’s 1) fast browsing through the slide to locate an area of in-
PC or workstation, providing a graphical user interface (GUI) terest;
for viewing slides, while the database software for storing, re- 2) local browsing to observe the region surrounding the cur-
trieving and processing the microscope image data runs on a rent view;
parallel computer or on a cluster of workstations at a potentially 3) changing magnification;
remote site. In terms of telepathology imaging, the Virtual Mi- 4) changing the focal plane.
croscope can best be described as a form of completely digithle system design of the Virtual Microscope aims to support
telepathology. The contributions of this paper are as follows.these four operations efficiently. The overall system employs

We d i imol . fth . a multitier software architecture with three main tiers; client,
* We describe an implementation of the VM server using alyryer frontend, and data server. The client is a graphical user

object-oriented framework, called the Active Data Reposjtertace that allows a user to perform the four basic actions,
tory (ADR), for developing databases of multidimensionanq generates requests to the server frontend as a result of user
datasets on distributed memory parallel machines. Oygions. The frontend interacts with clients and translates client
previous work [11], [16] used VM as a motivating apyequests into queries to the data server. The data server manages

plication scenario for the design of ADR. In this papefigitized slides, processes the queries and returns image data to
we focus on the efficient implementation of VM usinghe client.

ADR. The Virtual Microscope implementation described
in the prior work _suffgred from the overhead of ext_ra funcA. Client Interface
tion calls, resulting in about 85% slower execution than

the original custom VM server implementation. The cur- The Internet-downloadable Java client program, shown in
rentimplementation eliminates the extra function calls arfdg. 1, provides a graphical user interface so that users can
achieves much better response times. The current ABRNtrol browsing through slides by dragging and clicking
implementation of the VM server is only 6.6% slower thathe mouse. The current client is fully implemented Java

the original VM server [2], [17]. We also examine the ef2 to achieve portability across different platforms. The client
fect on performance of partitioning a VM dataset into datgoftware is designed to run on an end user’s PC or workstation.
chunks, and look at the scalability of the ADR implementhe client can run as a stand-alone application to be able to use
tation, when the number of clients and the number of prthe local disk of the client machine for caching. It can also be
cessors are varied. used as a helper application for an Internet browser. That is,

Il. OVERALL SYSTEM ARCHITECTURE
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Fig. 1. The Virtual Microscope client.

a user viewing a web page conaining slide thumbnail imageser is panning through the image, either using actual image
can start the Virtual Microscope client by simply clicking on alata cached at the client from previous queries (see Section V)
hyperlink. Upon starting up, the client program connects to tlee from the lower resolution thumbnail image. Once the user
frontend, and, in a separate thread, listens for connections fretaps dragging and releases the mouse button, a query is gen-
the data server. The communication between the client programated and is satisfied either from the client cache or from the
and the frontend and data server is done via TCP/IP socketsserver, with the display area updated from the full image data at
After selecting a slide, a client receivesrmumbnail image the desired resolution.
which is a low-resolution overview of the entire slide image,
from the data server. A slide can be viewed at any of sevefal Server Frontend
available magnifications. In response to the user's actions,The frontend interacts with clients and receives client
queries are generated by the client and sent to the server. féguests, translates them into queries for the data server, and
Virtual Microscope Java client consist of two windows: schedules them for processing by the data server. The frontend
1) Thedisplay window shows the selected portion of a slidés a sequential program and runs on a workstation. Having
at a selected magnification (the window on the right ia separate frontend has two main advantages. First, since
Fig. 1). clients can generate queries asynchronously, the existence of
2) The control window provides the standard operations frontend relieves the data server from being interrupted by
supported by the Virtual Microscope as described prewihe clients during processing of queries. Second, if a client
ously (the window on the left in Fig. 1). The control paneis behind a firewall, the result of a query must be funneled

has five subcomponents: through the frontend. In normal operation, the result is sent
» asampleselection box back to the client directly from the data server.
» amagnificationselection box
« afocal planeselection box C. Data Server
+ athumbnailimage, and The data server is the program responsible for efficiently
» four directional buttons. serving image data. In order to produce an image, the data has

The thumbnail image in the control window presents a smalf be read from disk and an image of the specified magnifi-
low magnification version of the entire slide and provides a useation must be reconstructed. Since the ultimate goal of the
with two types of browsing operations. First, the user can locatrtual Microscope is to provide users with the illusion that
the interesting portion of a slide rapidly by dragging the mougkey are using a physical microscope, the system must be able
on the small box (query box) inside the thumbnail windovio support the standard functions of a physical microscope
Second, the user can move the microscope stage by smallimsoftware with a similar level of responsiveness and ease
crements in one of the four directions (i.e., up, down, left, rightif use. These requirements present technical challenges in
by clicking the corresponding directional button. The query bake design and implementation of the data server. The image
inside the window indicates the current portion of the imag#atabase must provide low latency retrieval of large volumes of
shown in the display panel. two dimensional image data (representing a portion of a focal
Both the control window and the display window are resizslane of a given slide) from disk as well as efficient directory
able. When the user resizes the display window, the size of thi@nagement for a large collection of slides.
guery box inside the thumbnail window also changes accord-As data from disks becomes available in memory, further pro-
ingly. The display window is continuously updated while theessing is required to produce an image at the magnification
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level desired by the client. A query is processed by projecting ...<*"* o e ADR Front-end Process
high resolution data onto a grid of suitable resolution (governec' - ~—
by the magnification level requested by the client) and appropri-

application front-end

ately compositing pixels that map to a single grid point, to avoid o /v Hﬁ‘“"‘m o
introducing spurious artifacts into the displayed image. In ordel L [ e e
to achieve good performance, the server should be a scalab \ //f\
program. It should be designed to run on a parallel machine o [ . W, . /,\,\// s
on a cluster of workstations, with each node having several locs M| M ] TR e e \ e
disks. In addition, the server should be able to take advantage « A R~ 1 X FAN N e
asynchonous I/O operations and overlap the computation for || st | fauribue pce | [ memati | indexing . :7" ey
bolck with 1/0 for other blocks. ' ' e

In the next section, we describe an implementation of the dati - application cusiomization i A

server using an object-oriented framework, called the Active

Data Repository (ADR), to address the above challenges. Fig. 2. An application suite implemented using ADR. The shaded bars
represent functions added to ADR by the user as part of the customization
process. Client A is a sequential program while client B is a parallel program.

I1l. VIRTUAL MICROSCOPESERVER USING

or more queries to the parallel back-end. The back-end is re-
THE ACTIVE DATA REPOSITORY

sponsible for storing datasets and carrying out application-spe-

, . ific processing of the data on the parallel machine. The cus-
We have d_eveloped the Act|_ve Data_l Reposn_ory_(ADR) [11 bmizable ADR services in the back-end include: 1atribute
[16] to provide support for integrating application-specific

rocessing with the storage and retrieval of multidimensions ace servicghat manages the registration and use of user-
P 9 9e . . . defined mapping functions; 2) @ataset servicéhat manages
datasets on a parallel machine with a disk farm. In a multi

) : ) . . . The datasets stored in the ADR back-end and provides utility
mensional dataset, each data item is associated with a point HiRetions for loading datasets into ADR; 3) mmlexing service

multidimensional space. For instance, a digitized VM slide caft manages various indices (default and user-provided) for the
be viewed as a 3-D dataset; each focal plane is a two-dimepyasets stored in ADR; and 4pata aggregation servictat
sional (2-D) image, and multiple focal planes constitute thganages the user-provided functions to be used in aggregation
third dimension. A reference to the data of interest is deSC”bSSerations, and functions to generate the final outputs. This ser-
by arange query which is a multidimensional box definedyjce also encapsulates the data types of both the intermediate
in the underlying attribute space of the dataset. Only the daults (i.e., accumulator) used by those functions and the final
items whose associated points fall inside the multidimensiongltput datasets.
box are retrieved—an index (e.g., an R-tree [21]) can be usedl) Datasets in ADR:A dataset in ADR is stored as a set of
to quickly locate the data items to be retrieved. The main dadata chunks, each of which consists of a subset of data items.
processing steps consist of mapping the input data itemsAahunk is the unit of data retrieval in ADR. That is, a chunk
output data items, and aggregating all the input data items tigretrieved as a whole during processing. Retrieving data in
map to the same output data item. An intermediate data strabunks instead of as individual data items reduces /O over-
ture, called araccumulator can be used to hold intermediateheads (e.qg., disk seek time), resulting in higher application level
results during processing. I/O band-width. As every data item is associated with a point
in a multidimensional attribute space, every chunk is associated
with a minimum bounding rectangle (MBR) that encompasses
the coordinates of all the items in the chunk. The dataset is par-
The Active Data Repository consists of a set of modular sditioned into data chunks by the application developer, and data
vices, implemented as a C++ class library, and a runtime systerhunks in a dataset can have different sizes. Since data is ac-
Several of the services allow customization for user-defined proessed through range queries, it is desirable to have data items
cessing. An application developer has to provide accumulatbat are close to each other in the multidimensional space placed
data structures for holding intermediate results, and functioimsthe same data chunk.
that operate olin-core data to implement application-specific Data chunks are distributed across the disks in the system to
processing obut-of-coredata. A unified interface is provided fully utilize the aggregate storage space and disk bandwidth. In
for customizing ADR services via C++ class inheritance aratder to take advantage of the data access patterns exhibited by
virtual functions. The runtime infrastructure supports commamange queries, data chunks that are close to each other in the un-
operations such as index creation and lookup, managementleflying attribute space should be assigned to different disks. By
system memory, and scheduling of data retrieval and processitggault, the ADR data loading service employs a Hilber curve-
operations across a parallel machine. Multiple application-sg@sed declustering algorithm [15], [28] to distribute the chunks
cific customizations of ADR services can co-exist in a singlacross the disks. Hilbert curve algorithms are fast and exhibit
ADR instance, and the runtime system can manage multigleod clustering and declustering properties. Other declustering
datasets simultaneously. algorithms, such as those based on graph partitioning [29], can
ADR provides support for implementingi@nt-end process also be used by the application developer. Each chunk is as-
and a customizedack-endsee Fig. 2). The front-end interactssigned to a single disk, and is read and written only by the
with clients, translates client requests into queries and sends @l processor to which the disk is attached. After data chunks

A. Active Data Repository
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are assigned to disks, a mulit-dimensional index is constructet
using the MBRs of the chunks. The index on each processor i
used to quickly locate the chunks with MBR’s that intersect a
given range query. An R-tree [21] implementation is provided as
the default indexing method in ADR, but user-defined indexing
methods can also be implemented.

2) Processing in ADR:The processing of a query in ADR
is accomplished in two steps:cuery planis computed in the
query planningstep, and the actual data retrieval and processin¢_—________ =
is carried out in theuery executiostep according to the query \2:'::‘, H 'g,""'.;‘::,'J e T

= NN

Query planning is carried out in three phaseslex lookup, e = | D2z s %
tiling andworkload partitioning In the index lookup phase, in- \% .l L. LA s
dices associated with the datasets are used to identify all the
chunks that intersect with the query. If the output/accumulatBiEl- 3. Virtual Microscope customization of the Active Data Repository.
data structure is too large to fit entirely in memory, it is parti-

tioned intotilesin the tiling phase. The ADR data aggregatioq\lveen queued operations as required. Pending asynchronous

service prowdes Ct+ basg plasses, which are customized bxlﬁpand communication operations in the operation queues are
application developer for tiling the accumulator data structur?

1T

icroscope Front-end
I Fromt-end

Query Submission Qiery Interface
Service Service

a2

Image blocks

plan. |tm-ammin

7’

. : olled and, upon their completion, new asynchronous opera-
Each tile contains a subset of the accumulator elements so tf

h s fatie s han th ¢ s are initiated when more work is required and memory

tbel t?(ta sh|ze ofat eI IS esls thant € amxgrgg mlemory AVaffjtfer space is available. Data chunks are therefore retrieved
able for the accumu a}tor. n the cgrrent imp ementation, processed in a pipelined fashion. For portability reasons, the
the workload partitioning step replicates the entire accumulaiaJ

i h back-end d h . Irrent ADR implementation uses the POSIX listio
t|.e on each back-eénd processor, and each processor IS reSRg e for ts nonblocking I/O operations, and MPI[33] as its
sible for processing local input data chunks. In the query exe

! ; o . %derlying interprocessor communication layer.
tion step, the processing of an ouput t|_Ie is carried out accordlngThe backend can execute multiple queries concurrently. Each
to the query plan. A tile is processed in four phases. query is assigned its own workspace (e.g., memory for the accu-
1) Initialization . Accumulator elements for the current tilemulator data structure). The runtime system switches between
are allocated space in memory and initialized in each prgueries to issue I/O and communication operations, and han-
cessor. dles the computation for a query when the corresponding I/O
2) Local Reduction. Each processor retrieves and proand communication operations complete.
cesses data chunks stored on local disks. Data items in
a data chunk are mapped to accumulator elements g9dThe Virtual Microscope Implementation Using ADR
aggregated using user-defined functions. Partial results , o ) )
are stored in the local copy of the accumulator tile on a e now discuss how digitized microscopy images are stored
processor. for the efficient processing of VM queries, and describe the
3) Global Combine. Partial results computed in each proVM-specific customization of the ADR services (see Fig. 3).
cessor in phase 2 are combined across the processors vi) Storing Digitized ImagesManaging extremely large
inter-processor communication to compute final resulg#antities of data is the major problem in the design and
for the accumulator. implementation of the Virtual Microscope. The large volume of
4) Output Handling. The final output for the current tile image data requires effective use of a large number of disk units,
is computed from the corresponding accumulator valugghich in turn requires effective placement of multidimensional
computed in phase 3. The output is either sent back talata sets (each slide consisting of multiple 2-D focal planes)
client or stored back into ADR. onto a large disk farm to maximize disk access parallelism and

A query iterates through these phases repeatedly until all tifg&1mize disk access latency. _
e focus onparallelismandlocality of data retrieval from

have been processed and the entire output has been computet!. : ;
The output can be returned to the client from the backend nodg&condary storage. Disk access parallelism reduces the volume

either through a socket interface or via Meta-Chaos [14]. Tiédata retrieved from i.ndiv?dual disk units, thereby miljimizing
socket interface is used for sequential clients, while the Met@verall query processing time. On the other hand, disk access
Chaos interface is mainly used for parallel clients. locality affects the amount of time spent to locate the data ob-
Note that ADR assumes the order the input data items df&tS on asingle disk (i.e., disk seek and latency). _

processed does not affect the correctness of the result, i.e., ag-he digitized image from a slide is essentially a three dimen-
gregation operations are commutative and associative. Theté@nal data set, because each slide may consist of multiple focal
fore, the runtime system can order the retrieval of input dadanes. In other words, each digitized slide consists of several
chunks to minimize 1/O overheads. Moreover, disk operation&;D images stacked on top of one another. However, the por-
network operations and processing are overlapped as muctii@g of the entire image that must be retrieved to provide a view
possible during query processing. Overlap is achieved by mainto the slide for any given set of microscope parameters (area
taining explicit queues for each kind of operation (data retrievaif interest, magnification and focal plane) is two dimensional.
message sends and receives, data processing) and switchind berefore, to optimize performance, each 2-D image (a focal
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plane) should be an independent unit for the data declusterbiigck is subsampledo achieve the magnificatiorzgon) level
algorithm to maximize disk parallelism, whereas the entire 3-§pecified by the query. The aggregation service is customized
data set (a set of focal planes) should be considered togethebipymplementing these four operations in a virtual method that
the data clustering algorithm to improve data locality on eadh called by the ADR runtime system when a data chunk is
disk (changing focal planes does not change the area of intel@stilable in memory. New image processing functionality for
within a plane). If each focal plane of the slide is stored asthe Virtual Microscope system can be added by implementing
single image, it constitutes a very large image. For example, thew aggregation functions.
size of the tissue slides in our archive varies from 18 KO In the implementation of the indexing service customization,
K pixels to 60 Kx 60 K pixels. In other words, these imagesve have exploited the fact that the image tiles are nonoverlap-
require from 300 MB to 10.8 GB of storage. While currenping and that the slides are fully rectangular images without
storage technology provides adequate capacity to store thhekes. The tiles are numbered in row-major order; hence, given
large image, in order to process the images efficiently they mulsé location of the tile the data chunk that contains the tile in
be partitioned into blocks (atiles). If the whole image must JPEG format can be determined very quickly. If the system
be processed, the size chosen for the tiles should depend onrideds to store datasets with holes in the images, or images that
processing require for each tile and the processing power amé not rectangular, the default R-tree indexing method in ADR
I/O capabilities of the server hardware. Even if the processiegn be employed.
that will be carried out on each tile does not require very much The output of a VM query is a 2-D image produced by clip-
computation, storing very large tiles may reduce overall systgsing the input image tiles to the query window and subsampling
performance if disk 1/O becomes a bottleneck. In the Virtughe clipped tiles to get the desired magnification. A 2-D array
Microscope system, the VM data server does not process tzh be used as an accumulator to hold pixels from the clipped
whole image for each query. Most queries require processiagd subsampled input image tiles. In that case, the 2-D array is
only a small portion of the image. Hence, the size of the tileeplicated in each processor, and the final image is computed in
must be big enough to efficiently use the disk subsystem, lithie global combine and output handling steps of the query ex-
not so big that too much unneeded data is retrieved and pegution phase in ADR. However, the clipping and subsampling
cessed. The shape of each tile can also affect the amount of @dritan image tile can be done independently of other image tiles,
retrieved from disk. Tiles that are elongated in one dimensi@amd image tiles contain disjoint subsets of the pixels in the en-
are likely to result in retrieval of much unneeded data. For etire slide. As a result, each processor needs to allocate only the
ample, if a slide is partitioned in the x-dimension into verticgbortions of the output image that are computed by processing
strips, a query that spans the entire x-dimension, but only a sntak local image tiles. Bgparselyallocating the accumulator in
portion of the y-dimension, will, will cause the data for the erthis way, we can reduce the aggregate system memory required
tire slide to be read from disk. Thus, in the VM implementatiorfor the accumulator, and do not need to perform the ADR global
we partition a slide into tiles that are close to square in shapeombine step. The resulting image blocks are stored in memory
The images should also be stored in a compressed form. Inthging the local aggregation step, and directly sent to the client
current implementation we have selected JPEG compressiorirathe output handling step. The client assembles and displays
the default method because of the availability of fast and stalthe image blocks from the data server to form the query output.
compression/decompression libraries [22]. As we have pointed
out previously [2], wavelet-based image compression appeg's
to be the most appropriate technique for the Virtual Microscope
system. However, we have tested two public domain waveletin this section we present experimental performance results
compression libraries that implement that JPEG-2000 stand&pdthe ADR version of the Virtual Microscope server running
[10], [23], [26] and found that they are about 10 to 20 timesn a Linux PC cluster. The PC cluster consists of one front-end
slower for decompressing microscope images than the pubiiede and five processing nodes, with a total of 800 GB of disk
domain implementation of the JPEG library from the Indepesstorage. Each processing node has an 800 MHz Pentium II|
dent JPEG Group [22]. CPU, 128 MB main memory, and two 5400 RPM Maxtor 80
Animage tile is used as the unit of data storage and retrieval&B EIDE disks. The processing nodes are interconnected via
the Virtual Microscope customization of ADR. That s, atile and00 Mb/s switched Ethernet. The front-end node is also con-
its associated metadata (position of the tile in the whole imagected to the same switch.
and its size) are stored as a single chunk in an ADR data file. TheAe have used the driver program described in [5] to emu-
chunks are distriubuted across the system disks using a Hildate the behavior of mulitple simultaneous end users (clients).
curve-based declustering algorithm (see Section I11-Al). The implementation of the client driver is based on a workload
2) Customization of ADR Service®iDR provides an model that has been statistically generated from traces collected
algorithm-independent interface that is used by the ddt@m real experienced users. Interesting regions are modeled as
aggregation service. During the processing of a query, theints in the slide, and provided as an input file to the driver
server process finds the image blocks that intersect the quprggram. When a user pansaran interesting region, there is
region, and reads them from disks. A retrieved image bloekhigh probability a request will be generated. The driver adds
is first decompressedsince image blocks are stored on diskaoise to requests to avoid multiple clients asking for the same
in a compressed format to reduce storage requirements. Thegion. In addition, the driver avoids having all the clients scan
the block isclippedto the query region. Finally, each clippedthe slide in the same manner. The slide is swept through in either

Experimental Results
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Fig. 5. Performance results for the Virtual Microscope ADR server running on 5 processors for varying image chunk sizes. Average response sienesrof the
for the queries to produce an output image.
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Fig. 6. Performance figures for Virtual Microscope ADR server on varying number of processors for generating the output image. In this expehici@nt; ea
submits 100 queries to the server.

an up-down fashion or a left-right fashion, as shown in Fig. 4, d90x, 200x, 100x and 50« bars show the average respone
observed from real users. For the experiments presented in tinges of the VM data server to the queries at different resolu-
section, each client generates 100 queries. The generated gtiens, where 408 is the highest resolution stored in the VM
set contains queries at different resolutions, hence some of tlega server. Theverallbar displays the average response times
gueries (those at lower resolutions) require processing more datdhe VM system to the set of queries at all resolutions. As
atthe VM data server, since the data is stored at the highest reseen in Fig. 5(a), chunk size 256256 produces the best re-
lution. For example, a query at 50magnification requires pro- sponse time at each resolution, and therefore for the overall av-
cessing 64 times more data than a query requesting an outpwrage for queries that request a 51312 output image. Both
400x magnification. The response times that are shown in Figk28x 128 and 512 512 chunk sizes result in response times
5-7 are the average response times for a single query. In thetbat are approximately 33% higher. Increasing the chunk size
periments we have used a tissue slide of size 32338840 decreases system performance because with too large a chunk
pixels. size all of the processing nodes in the VM data server cannot
The performance results for the VM data server using dibe efficiently utilized, especially for queries requesting a rela-
ferent chunk sizes are displayed in Fig. 5. In this figure, thevely small output image. As chunk size increases, the number
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Fig. 7. Breakdown of query execution time into phases.
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of chunks that intersect with a fixed size user decreases. Ebunks received from the data server. In the output handling
example, with chunk size 20482048 a query requesting anphase, clipped and subsampled images are compressed to re-
output of size 51% 512 at the highest resolution intersects witlluce network traffic and sent to the VM client. As is seen in
either 1, or 2 or 4 chunks. It is highly probable that most sudfig. 7(a), most of the server time is spent in the local reduc-
queries will intersect only 1 chunk because of the large chutikn phase and a small fraction is spent in the output handling
size. In that case , four processors of the five-processor Midhase. Initialization time is so small that it is not even visible in
data server will be idle. For queries that request a 202824 the figure. Fig. 7(b) displays a time breakdown for the reduction
output image (see Fig. 5(b)), the best response time is achiepdase. In this figure, computation corresponds to the execution
by a chunk size of either 256256 or 512x 512. Again, in- time of JPEG decompression, clipping and subsampling, after
creasing the chunk size decreases performance. Using a chaidata chunk is retrieved from disk and is available in memory.
size that is too small also decreases overall system performaiibe remaining time in the reduction phase is denoted by over-
because reading chunks from disk becomes a bottleneck, gread. As was discussed in Section Ill.A.2, data chunks are re-
ducing too many small disk I/O requests in the data server. Sirtdeved from disks via nonblocking 1/0 functions to overlap 1/0
a 256x 256 chunk size gave the best response times for quenigish computation, and the ADR runtime system manages buffer
requesting both 512 512 and 1024 1024 output images, we space and performs scheduling of I/O, network, and computa-
have selected 256 256 as the default chunk size for the retion operations. Thus, in Fig. 7(b)yerheadncludes nonover-
maining experiment in this section. lapped 1/0 and other overheads incurred by the runtime system.
Fig. 6 displays the average response times for queries thatTae overhead is very small compared to the computation time;
quest 512 512 and 1024 1024 output images, with queriesit is approximately 3% of the computation time, on average. Our
generated by multiple concurrently running clients. Each cliergsults show that most of the 1/O is overlapped with computa-
is an instance of the driver program and generates 100 quertés, and very little overhead is incurred by the runtime system.
The generated query set contains queries at different resolutions.
The response times that are shown in these figures are the ay;,
. . . - V. THE VIRTUAL MICROSCOPESERVER IN A DISTRIBUTED
erage response times for a single query. As is seen in Figs. 6(a COMPUTING ENVIRONMENT
and (b), the performance of the ADR version of the VM server
scales very well as both the number of clients and the outputThe ADR implementation of the Virtual Microscope aims to
size increase. For example, for queries that request a &2 provide a scalable, portable, and customizable data server op-
output image and with 5 clients, the speedup for five processtirsized for disk-based datasets on a tightly-coupled, homoge-
is 3.6 compared to a one processor server, whereas the speeshgus parallel machine. Advances in networking, computing,
is somewhat worse (3.0) for one client. For queries that requesid storage technologies are rapidly making it possible to ef-
a 1024x 1024 output image, the speedup for one client withfectively use a networked collection of storage and computing
five processors is 3.5, and for five clients the speedup is 4.1.systems. Although a networked collection of storage and com-
Fig. 7 displays a breakdown of the execution times of thmuting systems offers a powerful and flexible environment, it
ADR version of the VM data server. As described in Sectiorequires distributed access and processing of data in a heteroge-
[1I-A2, query execution in ADR has four phases: initializationpeous environment. The heterogeneity can arise for several rea-
local reduction, global combine and output handling. In the VIdons: 1) cpu/disk/memory resources are nonuniform, perhaps
customization, initialization only allocates space for the accaaused by multiple purchases of equipment over time; 2) space
mulator, which holds decompressed and clipped image chun&egailability can dictate sub-optimal placement of the applica-
Decompression, clipping and subsampling are done in the lotiah dataset on disks, causing nonuniform data retrieval costs;
reduction phase. In the VM data server there is no need foBathese can be unexpected or nonuniform application access
global combine, since the VM client stitches together the imagatterns, including data subsetting, into the dataset; 4) shared
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resources, such as cluster nodes, can result in varying resodcédataCutter
availability. To attain good performance when heterogeneity is
present, applications should be flexible. Moreover, they shouldDataCutter provides a set of core services, namely an
be optimized in the use of resources and be able to adapir@exing service and a filtering service, on top of which more
changes in their availability. application specific services can be implemented. The indexing
Consider a scientist who wants to compare properties of a 3sBrvice provides support for accessing subsets of datasets via
reconstructed view of a dataset, recently generated by a digiultidimensional range queries. To ensure scalability to very
tizing microscope at a collaborating institution, with the proparge datasets, DataCutter uses a multilevel hierarchical in-
erties of a large collection of refrence datasets. The 3-D recqfexing scheme, implemented atop the R-tree index method [3].
struction operation involves retrieving portions of 2-D slides (Ofhe filtering service supports the filter-stream programming
focal planes) from the regions in question, and then performifgmework for executing application-specific processing as a
feature recognition and interpolating between the slices to &gt of components, callditers, in a distributed environment.
tract the important 3-D features. A description of these featurﬁ%cessing, network and data copying overheads are minimized
and the associated properties are then compared against a ¢gfghe ability to place filters on different hosts. The filtering ser-
base of known features, and some appropriate similarity M&gse can be used to instantiate and execute collections of filters
sure is computed. The final result is the set of reference featuggsyarious hosts, including networks of workstations and SMP
found that are close in some way to those found in the new rasters. The filtering service is designed to allow many filters
dataset, along with the corresponding view renderings to ViS4 carry out resource constrained, pipelined communication
alize. _ _ and pipelined processing of data. DataCutter allows users to
In this scenario, the required resources (new raw dataset, iglfine myltiple linked filters as well as sets of concurrent filter
erence database, and the scientist) can all be at locations ﬁii§fances that are used collectively to perform computation:

tributed across a wide-area network. The storage requirem@Rly can be directed to any running instance. DataCutter can

:or sucha (:,[Oléle.(:t'on IS enormouhs; th.? T'Ze of thehentlrte colleﬁé used to support data subsetting and user-defined filtering of
lon generated In g year in one hospital can reach up 1o Sevglgyq 1 tigimensional datasets in a distributed environment. It
hundred terabytes. Since the reference dataset is very large also be used to support the generation of new data products
can be useful to many users, it is likely to be stored in an ima At can be subsequently visualized or stored

library in one or more archival storage systems. Moreover, the : . :
archival storage systems may be located at different departm tl) Multilevel Indexing for ~Subsetting Very Large

. . ) . d.?&asets:We assume that a scientific dataset consists of
in a hospital or at different hospitals. The new raw dataset wou . . ) . )
a, set of data files and a set of index files. Data files contain

be stored at the site where the slides were digitized. If the hogts ) . o
containing the data are high capacity archival systems that%lqc()a data elements of a dataset; data files can be distributed

not allow the execution of the 3-D reconstruction code (ormaﬂgroSS multiple storage systems. Each data file is viewed

it prohibitively expensive), it becomes unclear how to structuf® consisting of a set afata chunksas in ADR. Efficient

the application for efficient execution. Ideally, we would IikeSpatial data structures have been developed for indexing and

to execute portions of the application at strategic points in tRECESSINg mu|t|d|men5|ongl datasets, such as R-trees and their
available collection of machines. For example, if the portion JA1ants [3]. However, storing very large datasets may result
code that performs the range select on the new raw dataset cdtii@ 12r9e set of data files, each of which may itself be very
be run on the host where the data lives, the amount of datd@E9€- Therefore a single index for an entire dataset could be
be transmitted over the wide-area network would be reduc@'Y large. Thus, itmay be expensive, both in terms of memory
A computation farm could be an ideal location for the featurdPac€ and CPU cycles, to manage the index, and to perform a
recognition and 3-D reconstruction due to the parallelism i§€arch to find intersecting data chunks using a single index file.
herent in the codes. Assigning an index file for each data file in a dataset could also
There is a large body of research on building computatior’%? expensi\{e because it is then necessary to access all the index
grids and providing support for enabling execution of applfiles for a given search. To alleviate some of these problems,
cations in a wide-area environment [12], [19]. There is aldye have developed a multilevel hierarchical indexing scheme
hardware and software research on archival storage systemsiffilemented vissummary index fileanddetailed index files
cluding distributed parallel storage systems [27], file systenl§ie elements of a summary index file associate metadata (i.e.,
[35], high-performance 1/0O systems [36] and remote 1/O [34?” MBR) with one or more data chunks and/or detailed index
However, providing support for efficient subsetting and prdiles. Detailed index file entries themselves specify multiple
cessing of very large scientific datasets stored in archival storédffa chunks. Each detailed index file is associated with some
systems in a distributed environment remains a challenging &€t of data files, and stores the index and metadata for all data
search issue. We have developed a middleware infrastructi@@ynks in those data files. There are no restrictions on which
called DataCutter [4], [6], [8], that enables processing of scieflata files are associated with a particular detailed index file for
tific datasets stored in archival storage systems in a distributédjataset. Data files can be organized in an application-specific
heterogeneous environment. In this section we describe an ingy into logical groups, and each group can be associated with
plementation of the Virtual Microscope server using the Data-detailed index file for better performance. R-trees are used as
Cutter infrastructure. We compare the DataCutter implementhe indexing method for summary and detailed index files.
tion of VM to the Active Data Repository implementation in a 2) Processing of Data: Filters and Stream&ecent research
heterogeneous environment. on programming models for developing applications in the Grid
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has converged on the use of component-based models [1], [28kents an important degree of freedom in affecting application
[25], [31], [32], in which an application is composed of multiplgperformance by placing filters with affinity to data sources near
interacting computational objects. In the DataCutter project, wlee sources, minimizing communication volume on slow links,
have developed a framework, called filter-stream programmirayd placing filters to deal with heterogeneity. Parallelism in ex-
for developing data intensive applications in a distributed endcuting application-defined queries via group instances and par-
ronment. The filter-stream programming model represents pwdlel filters is another degree of freedom. Group instances enable
cessing components of a data-intensive application as a set ofifiter-queryparallelism by concurrent instances of filter groups,
ters, which are designed to be efficient in their use of resourcegcause multiple queries can be processed concurrently by dif-
Data exchange between any two filters is described via strearfiesent group instances. Parallel filters, on the other hand, allow
which are uni-directional pipes that deliver data in fixed siza finer level ofintra-queryparallelism via multiple copies of a
buffers. The basic idea behind the use of the filter-stream pgingle filter within a single filter group.

gramming model is to some-what constrain the behavior of aA filter group is a set of running filters that are logically re-
generic message passing application, so that the application leded and are used together to perform a computation. Multiple
expose information that is useful for improving performance iconcurrent running instances of any number of filter groups is
several ways. Filters are location-independent, because stresupported by the DataCutter runtime system. Each filter within
namesre used to specify filter to filter connectivity, rather tham filter group is executed in a separate POSIX thread context,
endpoint location on a specific host. This allows the placemenhich allows for concurrent execution. Work can be appended
of filters on different hosts in a distributed environment. Therg¢e any running group instance and is handled in first-in—first-out
fore, processing, network and data copying overheads can(BH#-O) order by an instance. There is no ordering between work
minimized by the ability to place filters on different platforms.appended to concurrent group instances.

A filter is a user-defined object with methods to carry out ap- If an application implemented using filters involves pipelined
plication-specific processing on data. A filter is specified by therocessing of data, the performance of the application depends
application code to execute, and the layout of input and outpart how well the stages of pipeline are balanced in terms of rel-
streams it will use. Currently, filter code is expressed usingadive processing time of the stages and the ratio of commu-
C++ language binding by subclassing a filter base class. Thigation cost between two stages to the computation cost of
provides a well-defined interface between the filter code and thach stage. The performance penalty that is observed in an un-
filtering service. The interface for filters consists of an initializabalanced pipeline can be addressed by using what we refer to
tion function, a processing function, and a finalization functiorms transparent copieswhere the filter is unaware of the con-

current filter replication. We define eopy setto be all trans-

class ApplicationFilter: public DG-ilter_Baset { parent copies of a given filter that are executing on a particular
public: host. The DataCultter filtering service maintains the illusion of a
int init (int argc, char *argv[l{...}; single logical point-to-point stream for communication between
int process(streamt st[]) {...}; a logical producer and a logical consumer in the filter group.

int finalize(void) {. . .}; When this logical producer and/or logical consumer has trans-

} parent copies, the filter service must decide for each producer

which consumer to send a buffers to. Each copy set shares a

A streamis an abstraction used for all filter communicationsingle buffer queue, so there is perfect demand-based balance
and specifies how filters are logically connected. It provide&ithin a single host. For distribution between copy sets (dif-
the means of uni-directional data flow between two filterderent hosts), we have investigated several policies: 1) Round
from up-stream filter to downstream filter. Bi-directional dat&obin distribution of buffers among copy sets, 2) Round robin
exchange is achieved by creating two streams in opposk@ong copy sets based on the number of copies on that host,
directions. All transfers to and from streams are throughadd 3) @ Demand Driven sliding window mechanism. The De-
buffer abstraction. A buffer represents a contiguous memo®and Driven policy is designed to send buffer to the filter that
region containing useful data. Streams transfer data in fix@dll result in the fastest processing. To approximate this, we in-
size buffers. The size of a buffer is determined in thié stead send it to the filter that is showing recent gOOd perfor-
call; a filter discloses a minimum and an optional maximurfance. When a consumer filter processes a data buffer received
value for each of its streams. The actual size of the bufffem a producer, it sends back an acknowledgment message to
allocated by the filtering service is guaranteed to be at ledBe producer that indicates the buffer is now being processed.
the minimum value. The optional maximum value is preferre-ahe producer chooses the consumer filter with the fewest unac-
buffer size hint to the filtering service. The size of the data inlghowledged buffer to send a data buffer. The effect is to direct
buffer can be smaller than the size of the buffer. Therefore, tA¥ore buffer to faster consumers, with a cost of extra acknowl-
buffer contains a pointer to the start, the length of the porti®igment message traffic.
containing useful data, and the maximum size of the buffer. In ] )
the current prototype implementation we use TCP for stredfn 1N€ Virtual Microscope Server Using DataCutter
communication, but any point-to-point communication library The filter decomposition used for the Virtual Microscope
could be added. system is shown in Fig. 8. This filter pipeline structure is

DataCutter provides several degrees of flexibility to improveatural for query-response applications. The figure depicts the
application performance [7]-[9]. The choice of placement repaain dataflow path of image data through the system. The
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of the image¢7 and ¢8 cover 4 times and 16 times the area
@ @ @ covered by?16, respectively.

Fig. 9(a) and (b) shows query execution times when the server
load is the same as the client load and when the server load
Fig. 8. Virtual Microscope decomposition. is doubled. The different loads were emulated by artificially
slowing down the set of filters running on the server host such

thickness of the stream arrows indicate the relative volume it the total running time was increased. For examplezdben
data that flows on the different streams. In this implementatidiffer runs twice as long in the2 case because the filter is de-

each of the main processing steps in the server is a filter.  layed. As is seen from the figures, running the filters at the client
i . . R-DCZzV) achieves better performance than running them at
read.data (R): Full-resolution data chunks that mtersethe server (RDCZ-V) as server load increases (or the client host

the query region are read from disk, and written to thk?ecomes relatively faster). This result is not unexpected, but the
output stream.

« decompress (D)image blocks are read individually from experiment quantifies the effect for this particular configuration.

. . ’ ge use of a different client to server network, or hosts with dif-
the input stream. Each block is decompressed using JP rent relative speeds would significantly change the observed
decompression and converted into three byte RGB form EE P 9 y g

. . . ffends and tradeoff points.
The |m§ge block is then v_vntten to the output stream. 2) A Comparison of ADR and DataCutter Serveiale now
* clip (C): Uncompressed image blocks are read from the

input stream. Portions of the block that lie outside thgresent an e>.<per|menta| comparison ofthe ADR and DataCut'Fer
Implementations of the Virtual Microscope server. The experi-

query region are removed, and the clipped image bIO(r:r|1(ents were carried out using a PC cluster and an SMP machine,
is written to the output stream.

« zoom (2): Image blocks are read from the input strea both running Linux, at University of Maryland. The PC cluster
) ge ol e P . Has single-processor nodes, interconnected via Switched Fast
subsampled to achieve the magnification requested in A&, o Each node has a Pentium 11l 650 MHz CPU, 128 MB
query, ar.1d then written to the OUtPUt stream. . of main memory, and two 75 GB IDE disks. The SMP machine
« view (V): Image blocks are received for a given quer

collected into a single reply, and sent to the client usi)ﬁas 8 Pentium Il 550 MHz processors, 4 GB of main memory,

the standard Virtual Microscope client/server protocol.

"%hd 18 GB of disk space. In these experiments we used the same
tissue slide that was used for the experiments in Section IlI-C.
The slide consists of a single focal plane of 32 33B7 840

C. Experimental Results pixels. We used the client emulation driver program [5] to gen-

erate queries to the data server.

1) Serving Digitized Microscopy Images From an Archival |n the first set of experiments, we measure the effect of
StorageSystem: We have implemented a simple data server fafarying background load on some of the server nodes on the
digitized microscopy images, stored in the IBM HPSS archivperformance of the ADR server. Fig. 10 shows the average
storage system at the University of Maryland [4], [6]. The HPS@sponse time achieved by the ADR server. The response
setup has 10 terabytes (1 TB is 1000 GB) of tape storage spagfe was measured in the client driver program, which also
500 GB of disk cache, and is accessed through a 10-node IB¥drforms the final stitching of partial images received from the
SP multicomputer. One node of the SP is used to run the filiggrver backend nodes. Each bar in the graphs represents the
that carries out index lookup, and the client was run on a SUiNerage response time for 100 queries. In these experiments,
workstation connected to the SP node through the departmgt input tissue slide was partitioned into chunks of 2586
Ethernet. The Virtual Microscope client trace driver was agaffixels, and the chunks were distributed across the nodes for
used to drive the experiments. The driver was always execuiggth machine configuration so that each node has the same
on the same host as tivéew filter, which is referred to as the number of data chunks. For the experiments, background
client host. The server host is where tead datafilter is run, |oad was added to half of the nodes in each configuration by
which is the machine containing the dataset. executing a user level job that consumes CPU time, at the same

We experimented with different placements to tbad.data priority as the filter code. For the machine configuration with
(R), decompres{D), clip (C), zoom(Z), andview(V) filters by one processor, no background job was run. For 2-, 4-, and
running some of the filters (and the filtering service) on the san@eprocessor configurations, we ran 1, 4, and 16 background
SP node where the indexing service is executed, as well as onjttes, denoted byLbg 4bg and 1tg in the figures, on half of
SUN workstation where the client is run. In the next set of exhe processors in each configuration. As is seen from Fig. 10,
periments (Fig. 9), we consider varying the server load. In thetbee performance of the ADR server degrades significantly as
experiments, we used a scaled version of a VM dataset. Theckground load increases. As was discussed in Section lll,
scaled dataset in 250 GB compressed (5.7 TB uncompressedih backend node in the ADR server processes only the data
and correspondsto a 2-D image with 1.440\..4 M RGB pixels. stored on its local disk. As more background jobs are executed
The image is regularly partitioned in to data chunks and stored some of the nodes, those nodes spend more time to process
in 1024 files on the HPSS. In all experiments, we use a suttata chunks, even though a nearly equal number of data chunks
sampling factor of 8. The execution times are response tima® distributed to each node.
seen by the visualization client averaged over three repeatedrigs. 11 and 12 show the performance of the ADR and
runs for three queriegt, ¢q7, and¢8. ¢6 covers 5x 5 chunks DataCutter implementation of the VM server for queries
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that produce 512% 512 and 1024 1024 output images, increases as the number of background jobs rises. Background
respectively, when background load is varied. In these épad also slows down the DataCutter version of the VM server.
periments, we used two different filter configuration for thélowever, its effect is much less than that on the ADR server.
DataCutter-based VM serveRC-5F denotes the data serverFor example DC-5F is slower than ADR when there are no
with five separate filters, nameliRead, DecompressClip, background jobs, but it becomes faster with even 1 background
Zoom, andView. DC-2F, on the other hand, is the VM serverjob on 8-processor configurations. With 4 background jobs,
implemented using two filters. In this configuration there is onlgoth DataCutter implementation®C-5F and DC-2F, run

read filter and the decompress, clip, zoom, and view operatidiaster than ADR implementation. As seen in the figure, the
are combined into a single filter. For the VM server versiongerformance improvement of DataCutter implementations
implemented using DataCutter, one transparent copy of easbreases with the increasing number of background jobs. This
filter was executed on each of the nodes in the system. We usedecause of the dynamic distribution of data buffers among
the demand-driven sliding windows mechanism for on-the-fijpe transparent copies of a filter resulting from the demand
distribution of data buffers between copy sets on different hogstdéven scheme. When the load on a node increases, the data
(see Section IV-A2). As is seen from the figures, without baclkuffers from the read filter running on that node are sent by the
ground load the five-filter version of the data seni2€-5F, is rutime system to other nodes that are less loaded.

slower than the ADR version. However, the two-filter version, Fig. 13 shows average response times using the ADR and Dat-
DC-2F, performs as well as the ADR server. HO€-5F, data aCutter implementations of the VM server on the 8-processor
buffers between each stage of the pipeline are distributed us®igP machine, when the number of clients is varied. In this set
the demand-driven sliding windows mechanism. Although thiff experiments, we ran 8 backend processes for the ADR server.
configuration may result in better pipelining of processingach client generates 100 queries and waits for the completion
and better load balance among transparent copies, the voluwh@ query before submitting a new query. As was discussed
of data communication will be higher than that of both th& Section IV, the DataCutter filter-stream programming model
ADR vesion and theDC-2F configuration. In this case, the provides the abstraction of filter group instances and transparent
extra communication overhead due to additional stages in tt@pies, which can be separately or collectively employed to im-
pipeline offsets the additional pipelining and load balangarove application performance. In the experiments, we varied
achieved. The response time of the ADR server discernililye number of group instances and the number of copies per
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filter in each group instance to create different server configrocessing required by a client request can be completed quicky.
urations. In the figuresg x (b x F1 + ¢ x F2+ d x F3) However, for a given server configuration, as more clients are
denotes that there ateinstances of the filter group that con-added, the server has to multiplex between more client requests.
sist of filters F'1, F'2, and F'3 and thatb transparent copies of As a result, the response time observed by an individual clients
F1,c transparent copies af'2, and d transparent copies of rises. Moreover, if the connection between a client and the server
F'3 are executed for each group instance. Queries submitteddpans a wide-area network, the demands on the network can be
the clients are assigned to the group instances in round-robitremely high, and the latency incurred between clients and a
fashion. Multiple queries can be executed concurrently if theserver may be very high. In order to improve the overall system
is more than one group instance, but each group instance epaformance, the following issues should be addressed:

uates one query at a time. As is seen from the figure, for arReduction of wide-area network usageClients connected
small number of clients (e.g., 1 or 2) the ADR server performs a server over a wide-area network make use of resources that
better than the DataCutter server versions. When there argra shared by other applications, namely the long-haul links
few clients, it is more beneficial to execute each query in pagnd intermediate nodes in the network. Transferring high vol-
allel using the maximum number of processors available. Simimes of data through such shared resources is expensive, thus
larly, the DataCutter server configurations with fewer instancee latency between a client and the server may be very high.
but more transparent copies per instance, achieve better pdthough the use of a parallel data server makes it possible to
formance for small numbers of clients. When the number efficiently store and process very large images at the server,
clients increases, the DataCutter implementations of the Vide output (a 2-D image) of a typical query may still be large.
server with multiple group instances perform better. For a larg@r instance, the size of the output is about 1 MB for a query
number of clients, inter-query parallelism can be exploited 9indow at 640x 480 pixels resolution. Therefore it may not be
improve the performance of the data server. As is seen frggossible to achieve interactive viewing for clients connecting to
Fig. 13(a), especially when the queries are small (i.e., the queig server over a slow network connection. Using image com-
window is small), there is more interquery parallelism availabigression techniques, the size of the output image can be reduced
for improving application performance, as the parallel execy perhaps a factor of 10, but even then a single view may re-
tion of a single query may incur load imbalance. When biggeire 20 to 30 seconds to transmit over a standard modem con-
queries are executed, it is likely that good load balance will bgction. Therefore compression cannot be the only mechanism
achieved for each query. Hence, the ADR server scales bettenjged to reduce wide-area data volume for Virtual Microscope
bigger queries, as is seen from Fig. 13(b). Nevertheless, ourggse applications.

sults show that DataCutter provides sufficient flexibility so that Reduction in the server workload.Reduced workload at the

the data server configuration can be modified to accommodaiger is an important way to improve overall system scalability.

various data access patterns. With less applied workload, the system should see reduced uti-
lization, hence better performance as more clients are added.
V. DATA CACHING IN THE CLIENT One possible approach that can be taken to address these is-

In a client-server environment, the data server often needsst¢gs is to cache data near a client. In earlier work [5], we ex-
interact with many clients simultaneously. This can cause higimined the performance impact of a diskless proxy, where data
demand on the server and network resources. For interactiecks were cached only in processor memory. A proxy behaves
applications the system as a whole should achieve acceptaihan intermediate server between a set of co-located clients and
small response times. Response time is measured as the amauiamote server. It appears to the remote server as a client, and
of time between the initiation of a request and when the lata client as a server.
piece of data is delivered. If a response takes too long, the apGiven that there is sufficient common interest among mul-
plication may become unusable. The base Virtual Microscofiple clients, several benefits can be realized with a proxy in
implementation attempts to achieve low response time by usiplgce. First, the response time seen by each client can be re-
a scalable parallel server with a disk farm so that data access dnded. With efficient data caching, most client requests can be
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served by the proxy across the local-area network, instead of titging the tiles in the cache. If the cache already contains all
data server across the wide-area network. Second, the amdhbatcorresponding tiles at the requested resolution, the output
of redundant data sent across the wide-area network can beimege is constructed from those tiles and displayed. However,
duced. Instead of multiple clients requesting the same or ovpart of the image may not be available at the requested reso-
lapping regions of a dataset from the server, the proxy can fetion. In that case, the VM client first tries to construct the
guest the data only once. Third, server scalability is improvedissing parts of the output image using tiles cached at higher
by reducing its utilization. resolutions (using the same subsampling algorithm as in the data
Our experimental results showed that using a proxy dossrver to constructthe desired lower resolutionimage). If the en-
improve overall system performance. However, caching at ttiee image cannot be constructed with either tiles at the requested
proxy provides a benefit only when two requirements are meésolution or tiles at higher resolutions, the missing tiles are tem-
First, the clients need to be local to the proxy. This reduces tperarily displayed by blowing up (replicating pixels from) the
long latency seen in contacting the remote server to resolesver resolution tiles or, as a last resort, the thumbnail image.
proxy cache misses. Second, some commonality of interd@$te parts of the image that have not been displayed at the de-
among the set of clients must exit. This reduces the workisired resolution are requested from the data server. Fig. 14 shows
set size in the proxy, which helps avoid cache overflow. Witthese execution steps. In Fig. 14(a), the user-selected region is
both conditions satisfied, the maximum benefit occurs whetisplayed from tiles that are available in the client cache. The
all but the first request for a block of data is in the proxyower left part of the requested image is displayed from tiles
cache. Moreover, since all client requests go through the proggched at the requested resolution or from tiles cached at higher
response time as seen by the client for requests that miss ésolution. The upper left part of the image is displayed from
cache is higher than when there is no proxy. cached lower resolution tiles, and the right part of the image is
Typical users of the Virtual Microscope (e.g., pathology cordisplayed by blowing up the thumbnail image. The VM client
sultants, medical students) would also like to access the imaggquests the parts of the image that have not been displayed at
data via the Internet from their home, usually over a slow cothe requested resolution from the server. In Fig. 14(b) the upper
nection. In that case, clients can be at geographically distant left part of the image is being replaced with the results from
cations. Moreover, compared to a collaborative environmentgitieries sent to the VM server. The client continues to fill in the
is unlikely that there will be many overlapping regions of inimage with tiles requested from the server for the right side of
terest amount the clients. As a result, there will be little beneflte image, as displayed in Fig. 14(c).
from the use of a proxy. Nevertheless, a client can still benefitin the current implementation, the VM client sends queries
from data caching, if data can be cached at the client. For thisthe VM server only at the user-specified resolution or at the
purpose, we have designed the VM client to maintain and usext higher resolution. For example, suppose a user selected a
a two-level cache; the client memory is a first-level cache, amélgion at 10& in a slide that was scanned and stored atd00
the local disk on the client machine is a second-level cache. Tirig. 15 displays an illustration of the slide tiling at three resolu-
caching mechanism implemented in the client works as followtsons (100<, 200x, and 400¢). Although the user selection may
Images are viewed as partitioned into tiles at the client, wheréndersect more than one tile at the requested resolution, for the
tile is a fixed sized rectangular portion of the imagdhe tiles sake of simplicity in the presentation, suppose the user selected
are used as the units of caching for portions of the image. Whamegion that intersects only one tile, and let the shaded tile at
the user selects a region to view, the client determines the $80x be thattile. If the tile is already in the cache, the requested
of tiles that intersect with the selected region, and tiles that aesgion can be directly drawn using that tile. However, if it is not
in the cache are displayed directly. A least recently used (LRW)the cache, the VM client searches for tiles at the next higher
policy has been adopted for both levels of the cache. When a tigsolution that can be used to construct the tile at the requested
is needed to display a selected region of the image, the memuoggolution. The four tiles at 200that can be used tro construct
cache is first searched. If the tile is not found in the memothe requested tile at 180are also shaded in Fig. 15. If the client
cache, the disk cache is searched and if the tile is found itdache contains all four of those tiles, the VM client can imme-
both inserted in the memory cache and used for display. Omliately draw the user-requested image via subsampling of the
tiles that are not in either cache are requested from the sern&f0x tiles. If any of those tiles is not in cache, the client recur-
and before display are inserted into both the memory and disikely searches at the next higher resolution (4t construct

cache. the missing 20@ tile. If the tile at 100« still cannot be fully
constructed, the client must request tiles from the data server.
A. Multiresolution Image Caching The tile at 106 will be requested from the server if two or more

jles are missing at 200. However, if only one tile is missing at
0x, the client will request the tile at 200to attempt to reduce

The VM client caches an image at the resolution the ima

was retrieved from the server. Hence, when a user selects & Kload at the dat b 6 wil .
gion of interest, the client cache may contain multiple tiles at dif- € Woc; toa ha K et aba S(etryer, decaéjse q v¥|threquwe th
ferent magnification levels that intersect the region of intere E\;Yerlgoa cﬂun s toberetnevedand proceed at the server than
The VM client will first try to construct the requested imagé’vI a 1obox tle. .

For efficient use of memory and disk space resources on the
. . L . . ._client machine, images tiles are stored in JPEG format. This in-
1The best choice of image tile size in the client takes into account the tile size d ; dd . load wh il
used in the data server. A client can request that information when it initiaI.{/'0 uces compression and decompression overload when a tile

connects to the server. is used. However, with JPEG compression we have been able to
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Fig. 14. Virtual Microscope client query execution steps using the multiresolution image cache.
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compress the slide images by up to a factor of 15 from the orig- OutputSize

inal size without a noticeable loss in image quality. This helg_s , Lo .
. ) ig. 16. Overall average response times of caching client for varying cache
to reduce the I/O time for each tile and more than compensafgSsizes.

for compression/decompression overhead. Compression also al-
lows for caching many more tiles for a given cache size, furthgg cache lookups and inserting tiles into the cache. To insert
improving overall system performance. a tile into the cache, server tiles received from the VM data
server are decompressed and stitched together as required (no
stitching is necessary if the client tiles are chosen to be the
For the experimental evaluation of caching client perfosame as the server tiles), then the constructed tile is compressed
mance, we employ an ADR version of the VM data serveand inserted into the client cache.
with the client generated workload the same as the describedrig. 16 displays the average response times of the caching
in Section IlI-C. The data server runs on the five processor Rient using different cache tile sizes, for queries that request
cluster described in Section III-C. Average response times 812 x 512 or 1024x 1024 outputimages. Each bar in the figure
the VM clients are displayed in Figs. 16—18. For the cachirghows the average response times for 500 queries using four
client, the response time also include caching overheads, sddferent cache tile sizes. As is seen in the figure, for queries

B. Experimental Results
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Fig. 18. The average response times of the noncaching and caching clients. The VM data server is run on five processors.

that request a 512 512 image, tile sizes of either 256256 or sponse time of the VM client decreases drastically with in-
512x 512 result in the best performance, with an average rereasing cache hit ratio. For example, for queries producing a
sponse time of about 0.4 seconds. For queries with an outG24x 1024 image at 58, if none of the required tiles are in
image size of 1024 1024, a tile size of 512 512 produces the cache the average response time can be as high as 19 sec-
the best performance, with about a 0.7-s average response tiamgls. However, if all tiles are in the cache, the average response
Using a cache tile size that is too small causes many small tieae is only 0.3 seconds.
guests to be sent to the VM server, which decreases server peA comparison of the response times of the noncaching and
formance. Using a cache tile size that is too large causes the datehing clients is displayed in Fig. 18. For the caching client,
server to process too much extra image data, and also increaa@sresponse times are displayed for each experiment. The
client caching overhead because of JPEG compression andfitet one shows the response time of the caching client when
compression of the tiles. the client starts with an empty cache, labetedld cache The

Fig. 17 displays the average response times of the cachsegond one shows the response time of the caching client when
client with respect to cache-hit ratio (i.e., the number of tilethe client has been run a second time, that is when it starts
obtained from cache divided by the total number of tiles ravith a nonempty cache, labeledarm cache For a single
guested), for output image sizes of 54512 and 1024 1024. client, using the caching client starting with a cold cache
As we described in the previous section, the caching client firsiduces response time about 20% on average. The use of the
determines which tiles intersect with the user query and thos&ching client also improves overall VM system performance
tiles are searched for in the cache. We plotted the queries bg-reducing the load at the VM data server. For example, with
cording to the percentage of tiles that intersect with the quefiye caching clients the average response time seen by each
that are available in cache versus average response time, wlibnt is about 35% less than the average response time seen
the results shown in Fig. 17. Each line plotted in the figure diy five noncaching clients. Starting from a nonempty cache
plays the average response times for queries at varying respeeds up the response time of the caching client by more than
lutions. The thick solid black line shows tleverall average 50%, leading to approximately 75% faster response time than
response times for each hit-ratio. As expected, the averagethe noncaching client, on average.
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VI. CONCLUSION [9]

In this paper we have discussed the design and implementa-
tion of a client/server database system that provides a reaIistEgO]
emulation of a high power light microscope. The system alsgi1]
provides capabilities that can never be achieved with a phys-
ical microscope, such as simultaneous viewing and manipul.’;}i2
tion of the same slide by multiple end users. To solve the main
problem in providing a system that performs adequately, namely
storing and processingerylarge quantities of slide image data, [13]
we have presented the design and implementation of two ver-
sions of the Virtual Microscope server software that target 1%
tightly coupled parallel computers with a disk farm and 2) dis-
tributed computing environments providing access to archival
storage systems. Both servers employ more general softwak]
frameworks, the Active Data Repository and DataCutter, appro-
priately customized to provide the required Virtual Microscope|16]
functionality. The use of such frameworks allows the server sys-
tems to take advantage of all the performance optimizations that
have been engineered into the frameworks for executing a larger)
class of data intensive applications on the targeted computa-
tional platforms. In addition, we have described the optimiza-
tions required in the client software to provide rapid responseisg)
times for users, in particular caching image data in both memory
and local disk on the client machine. The overall performance
results show that the resulting Virtual Microscope system can
provide scalable server performance and good client respon§él
times. Such results show that it is becoming feasible to dep|0}é0
such a system within a clinical setting, for example allowing[21]
a pathologist to access a slide sample at any time from an in-
expensive PC, without requiring physical access to a slide or B2]

microscope.
(23]
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