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ABSTRACT
The need to analyze high-dimension biological data is driv-
ing the development of new data mining methods. Biclus-
tering algorithms have been successfully applied to gene ex-
pression data to discover local patterns, in which a subset of
genes exhibit similar expression levels over a subset of con-
ditions. However, it is not clear which algorithms are best
suited for this task. Many algorithms have been published
in the past decade, most of which have been compared only
to a small number of algorithms. Surveys and comparisons
exist in the literature, but because of the large number and
variety of biclustering algorithms, they are quickly outdated.

In this paper we partially address this problem of evalu-
ating the strengths and weaknesses of existing biclustering
methods. We used the BiBench package to compare twelve
algorithms, many of which were recently published or have
not been extensively studied. The algorithms were tested
on a suite of synthetic datasets to measure their perfor-
mance on data with varying conditions, such as different
bicluster models, varying noise, varying numbers of biclus-
ters, and overlapping biclusters. The algorithms were also
tested on eight large gene expression datasets obtained from
the Gene Expression Omnibus (GEO). Gene Ontology en-
richment analysis was performed on the resulting biclusters,
and the best enrichment terms are reported. Our analyses
show that the biclustering method and its parameters should
be selected based on the desired model, whether that model
allows overlapping biclusters, and its robustness to noise. In
addition, we observe that the biclustering algorithms capa-
ble of finding more than one model are more successful at
capturing biologically relevant clusters.
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INTRODUCTION
Microarray technology enables the collection of vast

amounts of gene expression data from biological systems.
A single microarray chip can collect expression levels from
thousands of genes, and this data is often collected from

multiple tissues, in multiple patients, with different medical
conditions, at different times, and in multiple trials. For in-
stance, the Gene Expression Omnibus, a public database of
gene expression data, currently contains 659,203 samples on
9,528 different microarray platforms [1]. These large quan-
tities of high-dimensional datasets are driving the search for
better algorithms and more sophisticated analysis methods.

Clustering has been one successful approach to exploring
this data. Clustering algorithms seek to partition objects
into clusters to maximize within-cluster similarity, or
minimize between-cluster similarity, based on a similarity
measure. Given a two-dimensional gene expression matrix
M with m rows and n columns, in which the n columns
contain samples, and each sample consists of gene expres-
sion levels for m probes, a cluster analysis could either
cluster rows or columns. It is also possible to seperately
cluster rows and columns, but a more fine-grained approach,
biclustering, allows simultaneous clustering of both rows
and columns in the data matrix. This method is useful
to capture the genes that are correlated only in a subset
of samples. Such clusters are biologically interesting since
they not only allow us to capture the correlated genes, but
also enable the identification of genes that do not behave
similar in all conditions. Hence biclustering is more likely
to yield the discovery of biological clusters that a clustering
algorithm might fail to recover.

The concept of biclustering was first introduced in [2], and
applied to gene expression data by Cheng and Church [3].
Many other such algorithms have been published since [4,
5, 6, 7]. Moreover, there have been some other algorithms
proposed to address different biclustering problems [8], such
as time series gene expression data. Biclustering became a
popular tool for discovering local patterns on gene expression
data since many biological activities are common to a subset
of genes and they are co-regulated under certain conditions.

Most biclustering problems are exponential in the rows
and columns of the dataset (m and n), so algorithms must
depend on heuristics, making their performance subopti-
mal. Since the ground truth of real biological datasets is
unknown, it is difficult to verify a biclustering’s biological
relevance. Therefore, there exists no consensus of which bi-



clustering approaches are most promising.
In this paper we further attempt at comparing biclustering

algorithms by making the following improvements. First, we
compare twelve biclustering algorithms, many of which have
only recently been published and not extensively studied.
Second, rather than using default parameters, each algo-
rithm’s parameters were tuned specifically for each dataset.
Third, although each method is proposed to optimize a dif-
ferent model, earlier comparative analysis papers generated
synthetic datasets from only one model, resulting an unfair
comparison. We use six different bicluster models to find the
best for each algorithm. In addition, previous papers used
only one or two real datasets, often obtained from S. cere-
visiae or E. coli. Most did not perform multiple test correc-
tion when performing Gene Ontology enrichment analysis.
We used eight datasets from the Gene Expression Omnibus,
all but one of which have over 12,000 genes, and biclusters
were considered enriched only after multiple test correction.

RELATED WORK
Several systematic comparisons of biclustering methods

have been published. Similar papers have also been pub-
lished in statistics journals, comparing co-clustering meth-
ods [9, 10, 11, 12].

Turner et al. adapted the F-measure to biclustering and
introduced a benchmark for evaluating biclustering algo-
rithms [13]. Prelić et al. compared several algorithms on
both synthetic data with constant and constant-column bi-
clusters and on real data [14]. Synthetic data was used
to test the effects of bicluster overlap and experimental
noise. The results were evaluated by defining a new scor-
ing method, called gene match score, to compare biclusters’
rows, whereas columns were not considered. For real data
sets, results were compared using both Gene Ontology (GO)
annotations and metabolic and protein-protein interaction
networks.

Santamaŕıa et al. reviewed multiple validation indices,
both internal and external, and adapted them to bicluster-
ing [15]. de Castro et al. evaluated biclustering methods
in the context of collaborative filtering [16]. Wiedenbeck
and Krolak-Schwerdt generalized the ADCLUS model and
compared multiple algorithms in a Monte-Carlo study on
data simulated from their model [17, 18]. Filippone et al.
adapted stability indices to evaluate fuzzy biclustering [19].

Bozdağ et al. compared several algorithms with respect
to their ability to detect biclusters with shifting and scaling
patterns, where rows in such biclusters are shifted and scaled
versions of some base row vector [20]. The effects of biclus-
ter size, noise, and overlap were compared on artificially-
generated datasets. Results were evaluated by defining ex-
ternal and uncovered scores, which compare the area of over-
lap between the planted bicluster and found biclusters. Chia
and Karuturi used a differential co-expression framework to
compare algorithms on real microarray datasets [21].

ALGORITHMS
Twelve algorithms were chosen for comparison in this pa-

per. These algorithms were chosen both for convenience
–implementations are readily available– and to comprise a
variety of algorithms with differing approaches to the bi-
clustering problem. Popular algorithms, such as Cheng and
Church [3], Plaid [22], OPSM [23], ISA [24], Spectral [25],

xMOTIFs [26], and BiMax [14] have appeared many times in
the literature. Newer algorithms, such as Bayesian Biclus-
tering [27], COALESCE [28], CPB [29], QUBIC [30], and
FABIA [31] have not been as extensively studied.

The rest of this section summarizes each biclustering algo-
rithm compared in this paper, briefly describing their data
model and their method of optimizing that model.

Cheng and Church
Cheng and Church is a deterministic greedy algorithm

that seek to find the biclusters with low variance, as defined
by the mean squared residue (MSR) [3]: If I and J are the
sets of rows and sets of columns of the bicluster respectively,
MSR is defined as:

MSR =
1

|I||J |
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2,

where aij is the data element at row i and column j; aiJ ,
aIj and aIJ are the mean of the expression values in of
row i, column j, and the whole bicluster respectively, for
i ∈ I and j ∈ J . Mean squared residue was shown to be
successful at finding constant biclusters, constant row and
column biclusters, and shift biclusters. However this metric
is not suitable for scale and shift-scale biclusters [32, 20].
The algorithm starts with the whole data matrix removing
the rows and the columns that have high residues. Once the
mean squared residue of the bicluster reaches a given thresh-
old parameter δ, the rows and columns with smaller residue
than the bicluster residue are added back to the bicluster. If
multiple biclusters are to be recovered, the found biclusters
are masked with random values, and the process repeats.

Order-preserving submatrix problem
OPSM is a deterministic greedy algorithm that seeks bi-

clusters with ordered rows [23]. The OPSM model defines
a bicluster as an order-preserving submatrix, in which there
exists a linear ordering of the columns in which the expres-
sion values of all rows of that submatrix linearly increase. It
can be shown that constant columns, shifting, scaling, and
shift-scale bicluster models are all order-preserving. OPSM
constructs complete biclusters by iteratively growing partial
biclusters, scoring each by the probability that it will grow
to some fixed target size. Only the best partial biclusters
are kept each iterations.

Conserved gene expression motifs
xMOTIFs is a nondeterministic greedy algorithm that

seeks biclusters with conserved rows in discretized
dataset [26]. For each row, the intervals of the discretized
states are determined according to the statistical significance
of the interval compared to the uniform distribution. For
each randomly selected column, called a seed, and for each
randomly selected set of columns, called discriminating sets,
xMOTIFs tries to find rows that have same states over the
columns of the seed and the discriminating set. Therefore,
xMOTIFs can find biclusters with constant values at rows.

Qualitative biclustering
QUBIC is a deterministic algorithm that reduces the bi-

clustering problem to finding heavy subgraphs in a bipartite
graph representation of the data [30]. It seeks biclusters
with nonzero constant columns in discrete data. The data is
first discretized into down and upregulated ranks, then bi-



clusters are generated by iterative expansion of a seed edge.
The first expansion step requires that all columns be con-
stant; in the second step this requirement is relaxed to allow
the addition of rows that are not totally consistent.

BiMax
BiMax is a divide and conquer algorithm that seeks the

rectangles of 1’s in a binary matrix [14]. BiMax starts with
the whole data matrix, recursively dividing it into a checker
board format. Because the algorithm works only on bi-
nary data, datasets must first be converted, or binarized.
In our experiments, thresholding was used: expression val-
ues higher than the given threshold were set to 1, the others
to 0. The threshold for the binarization method was chosen
as the mean of the data; therefore BiMax is expected to find
only upregulated biclusters. In our experiments, BiMax was
also told the exact size of the expected biclusters, because
otherwise it would halt prematurely, recovering only a small
portion of the expected biclusters.

Iterative signature algorithm
ISA is a nondeterministic greedy algorithm that seeks bi-

clusters with two symmetric requirements [24]: each col-
umn in the bicluster must have an average value above some
threshold TC ; likewise each row must have an average value
above some threshold TR. The algorithm starts with a seed
bicluster consisting of randomly selected rows. It iteratively
updates the columns and rows of the bicluster until conver-
gence. By re-running the iteration step with different row
seeds, the algorithm finds different biclusters. ISA can find
upregulated or downregulated biclusters.

Combinatorial algorithm for expression and
sequence-based cluster extraction

COALESCE is a nondeterministic greedy algorithm that
seeks biclusters representing regulatory modules in genet-
ics [28]. This algorithm can find upregulated and downreg-
ulated biclusters. It begins with a pair of correlated genes,
then iterates, updating columns and rows until convergence.
It select columns by two-population z-test, motifs by a mod-
ified z-test, and then selects rows by posterior probability.
Although the algorithm was proposed to work on microar-
ray data together with sequence data, sequence data was not
used in the experiments. COALESCE used with the default
parameters in the experiments.

Plaid
Plaid fits parameters to a generative model of the data

known as the plaid model [22]: a data element Xij , with
K biclusters assumed present, is generated as the sum of a
background effect θ, cluster effects µ, row effects α, column
effects β, and random noise e:

Xij = θ +

K∑
k=1

(µk + αik + βjk)ρikκjk + eij ,

where the background refers to any matrix element that is
not a member of any bicluster. The Plaid algorithm fits this
model by iteratively updating each parameter of the model
to minimize the mean squared error between the modeled
data and the true data.

Bayesian biclustering

BBC uses Gibbs sampling to fit a hierarchical Bayesian
version of the plaid model [27]. It restricts overlaps to occur
only in rows or columns, not both, so that two biclusters may
not share the same data elements. The sampled posteriors
for cluster membership of each row and column represent
fuzzy membership; thresholding yields crisp clusters.

Correlated pattern biclusters
CPB is a nondeterministic greedy algorithm that seeks

biclusters with high row-wise correlation according to the
Pearson Correlation Coefficient(PCC) [29]. CPB starts with
a reference row and a randomly selected set of columns. It
iteratively adds the rows that have a high correlation, above
the given PCC threshold parameter, with the average biclus-
ter row, and columns that have smaller root mean squared
error (RMSE) than the RMSE of the row that has smallest
correlation. Various biclusters are found by random seeding
of reference row and columns. This algorithm can find row
shift and scale patterns.

Factor analysis for bicluster acquisition
FABIA models the data matrix X as the sum of p biclus-

ters plus additive noise Υ, where each bicluster is the outer
product of two sparse vectors [31]: a row vector λ and a
column vector z:

X =

p∑
i=1

λiz
T
i + Υ = ΛZ + Υ.

Two factor analysis models are used to fit this model to
the data set; variational expectation maximization is used
to maximize the posterior. Row and column membership in
each bicluster is fuzzy, but thresholds may be used to make
crisp clusters. In all experiments, FABIA was thresholded
to return crisp clusters.

Spectral biclustering
Spectral uses singular value decomposition to find a

checkerboard pattern in the data in which each bicluster
is up- or down-regulated [25]. Only biclusters with variance
lower than a given threshold are returned.

METHODS
Experiments were performed using BiBench1, a Python

package for bicluster analysis developed by our lab. Im-
plementations for all twelve algorithms were obtained from
the authors. BiBench also depends on many Bioconductor
packages [33], which are cited throughout the section.

Parameters
Choosing the correct parameters for each algorithm is cru-

cial to that algorithm’s success, but too often default pa-
rameters are used when comparing algorithms. We chose
parameters specifically for the synthetic and GDS data that
worked better than the defaults.

For synthetic datasets, all algorithms that find a specific
number of biclusters were given the true number of biclus-
ters. Those that generate multiple seeds were given 300
seeds. For GDS datasets, those same algorithms were given
30 biclusters and 500 seeds, respectively, with two excep-
tions. Cheng and Church was given 100 biclusters, based on

1Available at http://bmi.osu.edu/hpc/software/bibench

http://bmi.osu.edu/hpc/software/bibench


its author’s recommendations. BBC, which calculates the
Bayesian Information Criterion (BIC) for a clustering [34],
was run multiple times on each GDS dataset, and the clus-
tering with the best BIC was chosen. The number of clusters
for each run was 30, 35, 40, 45, and 50.

BBC provides four normalization procedures, but no nor-
malization worked best for constant biclusters. IQRN nor-
malization worked best for the plaid model, so we chose to
use IQRN on all tests, because BBC was designed to fit the
plaid model.

Choosing the correct δ and α parameters are important for
Cheng and Church’s accuracy and running time. δ controls
the maximum mean-squared residue in the bicluster, and so
affects the homogeneity of the results. On synthetic data
we were able to get good results with δ = 0.1, but on GDS
data it needed to be increased. We used δ = e/2400, where
e was the difference between the maximum and minimum
values in the dataset. α is the coefficient for multiple row or
column deletion in a particular step. It controls the tradeoff
between running time and accuracy; the minimum α = 1
causes Cheng and Church to run as fast as possible. On
synthetic data we were able to use α = 1.5, but for the
much larger GDS data it had to be reduced to 1.2.

The accuracy of BiMax, xMOTIFs, and QUBIC depends
on how the data is discretized. xMOTIFs performed best
on synthetic data discretized to a large number of levels; we
used 50. As the levels decreased, so xMOTIFs’ performance
suffered. For BiMax, which requires binary data, we used
the discretization method used for QUBIC with two levels.
QUBIC also performed best on synthetic datasets with only
two levels. On GDS data, QUBIC got better results with
the default of ten ranks.

The Spectral biclustering algorithm performed poorly on
synthetic data until we reduced the number of eigenvalues
to one, used bistochastization normalization, and increased
the within-bicluster variance to five. On GDS data, it got
better results using log normalization and a much larger
variance. It failed to return any biclusters until the within-
bicluster variance was extremely large, so we set it to twice
the number of rows in the dataset.

Synthetic data generation
Datasets were generated with the following parameters,

except when one parameter was varied in an experiment:
500 rows, 200 columns, one biclusters with 50 rows and 50,
no noise, no overlap. Datasets from six different models of
biclustering were generated:

• Constant biclusters: Biclusters with a constant ex-
pression level close to dataset mean. The constant
expression values of the biclusters were chosen to be
0; background values were independent, identically-
distributed (i.i.d.) draws from the standard normal:
N(0, 1).
• Constant, upregulated biclusters: Similar to the pre-

vious model, but biclusters had a constant expression
level of 5.
• Shift-scale biclusters: Each bicluster row is both

shifted and scaled from some base row. Base row, shift
and scale parameters, and background were all i.i.d.
∼ N(0, 1). Scaling with a positive number makes the
row positively correlated with the base, while scaling
with a negative number results in a negatively corre-
lated row.

• Shift biclusters: Similar to shift-scale, but scaling pa-
rameters always equal 1.
• Scale biclusters: Similar to shift-scale, but shifting pa-

rameters always equal 0.
• Plaid model biclusters: An additive bicluster model

first introduced in [22]. Each element Xij , with K
biclusters assumed present, is modeled as the sum of
a background effect θ, cluster effects µ, row effects α,
column effects β, and random noise e. ρ and κ are
indicator variables for row i and column j membership
in bicluster k:

Xij = θ +

K∑
k=1

(µk + αik + βjk)ρikκjk + eij .

All effects were chosen i.i.d. ∼ N(0, 1).

Evaluating synthetic results
Biclusters on synthetic dataset were scored by comparing

the set of found biclusters against the expected biclusters,
using the following method, adapted from [14]. Let b1 and
b2 be biclusters, and s(b1, b2) be some score function which
compares biclusters. Without loss of generality assume that
s assigns larger scores to similar biclusters and small scores
to dissimilar ones. Then two sets of biclusters, M1 and M2,
are compared by calculating the set score S(M1,M2) [14]:

S(M1,M2) =
1

|M1|
∑

b1∈M1

max
b2∈M2

s(b1, b2).

Because S is not symmetric, it is used to define two scores,
recovery and relevance, depending on the order of the ex-
pected and found biclusters. Let E denote the ground truth
set of expected biclusters, and F denote the set of found bi-
clusters. Recovery is calculated as S(E,F ). It is maximized
if E ⊆ F , i.e., if the algorithm found all of the expected
biclusters. Similarly, relevance is calculated as S(F,E). It
is maximized if F ⊆ E, i.e., all the found biclusters were
expected.

In this paper, s(b1, b2) was chosen to be the Jaccard co-
efficient applied to submatrix elements defined by each bi-
cluster:

s(b1, b2) =
|b1 ∩ b2|
|b1 ∪ b2|

,

where |b1 ∩ b2| is the number of data elements in their in-
tersection, and |b1 ∪ b2| is the number in their union. Iden-
tical biclusters achieve the largest score of s(b,b2) = 1, and
disjoint biclusters the lowest of s(b1, b2) = 0. Any score
x ∈ [0, 1] is easily interpreted as the percentage x of total
elements shared by both biclusters.

Evaluating GDS results
A different method must be used for evaluating the re-

sults of biclustering gene expression data, because the true
biclusters are not known. Two classes of methods are avail-
able: internal and external. Internal measures of validity are
based on intrinsic properties of the data and biclusters them-
selves, whereas external measures compare the biclusters to
some other source of information. Because we compared a
large number of algorithms, each fitting a different model,
we chose to use external validation by calculating Gene On-
tology enrichment for the rows of each bicluster.
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Figure 1: Bicluster model experiment. Each data point
represents the average recovery vs. relevance scores of

twenty datasets. A score of (1,1) is best.

The enrichment analysis was carried out using the
GOstats package [35]. Terms were chosen from the Biologi-
cal Process Ontology. The genes associated with each probe
in the bicluster were used as the test set; the genes associ-
ated with all the probes of each GDS dataset were chosen as
the gene universe. Multiple test correction was performed
using the Benjamini and Hochberg method [36]. Biclusters
were considered enriched if the adjusted p-value for any gene
ontology term was smaller than p = 0.05.

Most GDS datasets used in this work had missing values.
These missing values were replaced using PCA imputation,
provided by the pcaMethods package [37].

RESULTS

Model experiment
In previous comparative analysis studies, algorithms were

compared on artificial data generated from a single model.
However, each algorithm fits a different bicluster model. To
compare algorithms on a single model often gives incomplete
or misleading results. Instead, we evaluated each bicluster
on synthetic datasets generated from six different models:
constant, constant-upregulated, shift, scale, shift-scale, and
plaid.

Twenty datasets for each of the six models were generated,
and each biclustering method was scored on each dataset.
Plots of the mean recovery and relevance scores for all twenty
datasets of each model are given in Figure 1.
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Figure 2: Results of bicluster model experiment after
filtering. Each data point represents the average recovery
vs. relevance scores of twenty datasets. A score of (1,1) is

best.

BiMax and OPSM do not filter their results, so they each
return many spurious biclusters that hurt their relevance
scores. However, our framework BiBench provides a biclus-
ter filtering function that removes biclusters based on size
and overlap with other biclusters. After filtering out the
smaller one when the overlap between a pair of biclusters is
at least 25%, their relevance scores were greatly improved
(see Figure 2).

All algorithms were not expected to perform well on all
datasets. Most algorithms were able to recover biclusters
that fit their model, but there were a few exceptions.

BBC’s results are sensitive to which normalization pro-
cedure it uses. Depending on the procedure chosen, it is
capable of achieving perfect scores on constant, constant-
upregulated, shift, and plaid biclusters. We chose to use
IQRN normalization, which maximized its performance on
plaid-model biclusters.

Cheng and Church was expected to find any biclusters
with constant expression value, but it could not find upreg-
ulated constant biclusters. We hypothesize that rows and
columns with large expression values were pruned early be-
cause they increased the mean-square residue of the candi-
date bicluster.

Since all the biclusters except constant and constant-
upregulated were instances of order-preserving submatrices,
OPSM was expected to succeed on these datasets. How-
ever, it did not perform well on scale or shift-scale biclusters.
These failures are due to OPSM’s method of scoring partial
biclusters: it awards high scores for large gaps between ex-
pression levels, so biclusters with small or nonexistent gaps
get pruned early in the search process. In these datasets,
scale and shift-scale biclusters had small gaps because the
scaling factors for each row were drawn from a standard nor-
mal distribution, contracting most rows towards zero and
thus shrinking the gap statistic.

CPB was expected to do well on both constant and up-
regulated bicluster models. However, as the bicluster up-
regulation increased, CPB’s recovery decreased. This be-
havior makes sense because CPB finds biclusters with high
row-wise correlation. Increasing the bicluster upregulation
also increases the correlation between any two rows of the
data matrix that contain upregulated portions. Generating
more bicluster seeds allowed CPB to recover the constant-
upregulated biclusters.

FABIA only performed well on constant-upregulated bi-
clusters, but it is important to note that it is capable of
finding other bicluster models not represented in this exper-



iment. The parameters for these datasets were generated
from Gaussian distributions, whereas FABIA is optimized
to perform well on data generated from distributions with
heavy tails.

Some algorithms also performed unexpectedly well on cer-
tain data models. COALESCE, ISA, and QUBIC were able
to partially recover plaid-model biclusters by recovering the
upregulated portions. BBC was able to partially recover
shift-scale patterns.

In subsequent experiments, each algorithm was tested on
datasets generated from the biclustering model on which
it performed best in this experiment. Most did best on
constant-upregulated biclusters. CPB and OPSM did best
on shift biclusters, BBC on plaid-model biclusters, and
Cheng and Church on constant biclusters.

Noise experiment
Data is often perturbed both by noise inherent in the sys-

tem under measurement and by errors in the measuring pro-
cess. The errors introduced from these sources lead to noisy
data, in which some or all of the signal has been lost. Al-
gorithms robust with respect to noise are preferable for any
data analysis task. Therefore, the biclustering algorithms
were compared on their ability to resist random noise in the
data. Each dataset was perturbed by adding noise gener-
ated from a Gaussian distribution with zero mean and a
varying standard deviation ε: N(0, ε). The results for noise
experiment are given in the top row of Figure 3.

As expected, increasing the random noise in the dataset
negatively affected both the recovery and relevance of clus-
tering returned by most algorithms. COALESCE, FABIA,
and Plaid were unaffected, and QUBIC was unaffected until
the standard deviation of the error reached 1.0. ISA’s recov-
ery was unaffected, but the relevance of its results did suffer
as the noise level increased.

In general the algorithms which seek local patterns (Cheng
and Church, CPB, OPSM, and xMOTIFs) were more sensi-
tive to noise, whereas the algorithms that fit a model of the
entire dataset (ISA, FABIA, COALESCE, Plaid, Spectral)
were much less sensitive. We hypothesize that modeling the
entire dataset makes most algorithms more robust because it
uses all the available information in the data. There were ex-
ceptions to this pattern, however. BiMax and QUBIC both
handled noise much better than did other algorithms that
seek local patterns; we used QUBIC’s method for binarizing
the dataset for BiMax, which may have helped. BBC and
Spectral fit global models, but both were affected by the
addition of noise. Spectral, though affected, did perform
better than most local algorithms. BBC was the only algo-
rithm tested on plaid-model biclusters in this experiment,
which may have contributed to its performance. OPSM is
especially sensitive to noise because even relatively small
perturbations may affect the ordering of rows. We hypoth-
esized that xMOTIFs’s poor performance was due to the
large number of levels used when discretizing the data, but
reducing the number of levels did not improve its score.

Number experiment
Most gene expression datasets are not likely to have only

one bicluster. Large datasets with hundreds of samples and
tens of thousands of probes may have hundreds or thousands
of biclusters. Therefore, in this experiment, the algorithms
were tested on their ability to find increasing numbers of

biclusters. The datasets in this experiment had 250 columns;
the number of biclusters varied from 1 to 5. The results are
given in the middle row of Figure 3.

BBC, COALESCE, CPB, ISA, QUBIC, and xMOTIFs
were unaffected by the number of biclusters. In fact, CPB’s,
ISA’s, and xMOTIFs’s relevance scores actually improved
as the number of biclusters in the dataset increased.

Even when the number of biclusters is known, recover-
ing them accurately can be challenging, as evidenced by the
trouble the other algorithms had as the number increased.
Plaid and OPSM were most affected, whereas the degrada-
tion in other algorithms’ performances was more gradual.

These scores were calculated with the raw results after
filtering as described before, ISA’s recovery and relevance
scores dropped to 0.25 when more than one bicluster was
present. This behaviour was caused by ISA finding a large
bicluster that was a superset of all the planted biclusters.

Overlap experiment
Algorithms were also tested on their ability to recover

overlapping biclusters. The overlap datasets were gener-
ated with 2 embedded biclusters, each with 50 rows and 50
columns. In each dataset, bicluster rows and columns over-
lapped by 0, 10, 20, and 30 elements. Past this point, the
biclusters become increasingly indistinguishable, and so the
recovery and relevance scores approach those for datasets
with one bicluster.

The bicluster expression values in overlapping regions
were not additive, with the exception of the plaid model.
Shift biclusters were generated by choosing the shift and
scale parameters in a way to let two biclusters have the same
expression values at overlapping areas. The results are given
in last row of Figure 3.

A few algorithms were relatively unaffected by overlap.
ISA’s scores did not change, Plaid’s scores actually improve
until the overlap degree reaches thirty. CPB’s relevance
score dropped slightly, but it was otherwise unaffected.

OPSM’s recovery scores increased, but only because its
initial score was low, suggesting that it could only find one
bicluster. As the overlapping area increases, it also boosts
the recovery score.

Most other algorithms’ scores were negatively affected by
overlapping the biclusters. In particular, Spectral’s scores
plummeted; most other algorithms’ scores decreased gradu-
ally. BBC’s drop in score was expected, because it actually
fits a modified plaid model that does not allow overlapping
biclusters.
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Dataset Genes Samples Description
GDS181 12559 84 Human & mouse
GDS589 8799 122 Rat peripheral & brain regions
GDS1027 15866 154 Rat lung SM exposure model
GDS1319 22548 123 C blastomere mutant embryos
GDS1406 12422 87 Mouse brain regions
GDS1490 12422 150 Mouse neural & body tissue
GDS3715 12559 110 Human skeletal muscles
GDS3716 22215 42 Breast epithelia: cancer patients

Table 1: GDS datasets

Runtime experiment
Because the biclustering task is NP-hard, algorithms must

make tradeoffs between quality and computational complex-
ity. The nature of these tradeoffs affects their runtime
efficiency, which is especially relevant for analyzing large
datasets. Therefore in this experiment the algorithms’ run-
ning times were compared.

The results in Figure 4 gives the running times of the algo-
rithms with increasing number of rows. Note that the algo-
rithms used in this test have been implemented in different
languages, with different levels of optimization; therefore,
these results do not reflect their actual computational com-
plexity. However, the efficiency of existing implementations
is of practical interest for evaluating which algorithm to use.

The algorithms are tested on a computer with 2.27GHz
dual quad-core Intel Xeon CPUs, and 48GB main mem-
ory. Almost all of the algorithms had linear running time
curves on the log-log plot, indicating exponential growth.
OPSM was the slowest for smaller datasets, but Cheng and
Church’s running time grew faster and overtook it. For
larger datasets, xMOTIFs, ISA, BBC took the most time
to finish.

GDS data
Algorithms were compared on eight gene expression

datasets from the Gene Expression Omnibus (GEO)
database [1]: GDS181, GDS589, GDS1027, GDS1319,
GDS1406, GDS1490, GDS3715, and GDS3716. The
datasets are summararized in Table 1.

The number of biclusters found and enriched for each al-
gorithm is given in Table 2. Biclusters were considered en-
riched if at least one term from the Biological Process Gene
Ontology was enriched at the p = 0.05 level after Benjamini
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Figure 4: Running time of the algorithms with increasing
number of rows. Note that y-axis is in log2 scale.

Enriched
Algorithm Found Enriched Filtered
BBC 285 96 96
BiMax 654 165 20
Cheng and Church 800 89 89
COALESCE 570 266 60
CPB 1312 463 404
FABIA 229 69 54
ISA 82 42 10
OPSM 126 47 20
Plaid 37 17 17
QUBIC 108 36 36
Spectral 415 201 59
xMOTIFs 144 30 30

Table 2: Aggregated results on all eight GDS datasets.
Biclusters were considered enriched if any GO term was

enriched with p = 0.05 level after multiple test correction.
The set of enriched biclusters was filtered to allow at most

25% overlap by area.

and Hochberg multiple test correction [36]. The last column
in Table 2 shows the number of enriched biclusters after
filtering out biclusters that overlapped by more than 25%.
For instance, none of BBC’s enriched biclusters overlapped,
but only twenty of BiMax’s were sufficiently different. CPB
found the most enriched biclusters, both before and after
filtering. Although some algorithms found more enriched bi-
clusters than others, further work is required to fully explore
those biclusters and ascertain their biological relevance. It
is important to note that COALESCE was designed to use
genetic sequence data in conjunction with gene expression
data, but sequence data was not used in this test. Figure 5
gives the proportions of the filtered enriched biclusters for
each algorithm and different significance levels2.

A full analysis of all the biclusters is outside the scope
of this paper, but we examined the best biclusters found
by each algorithm. All twelve algorithms found enriched
biclusters in GDS589. The terms associated with the bi-
cluster with the lowest p-value for each algorithm are given
in Table 3. The results are suggestive, considering that
GDS589 represents gene expression of brain tissue. Most bi-
clusters were enriched with terms related to protein biosyn-
thesis. CPB’s bicluster contained proteins involved with
the catabolism of L-phenylalanine, an essential amino acid
linked with brain development disorders in patients with
phenylketonuria [38]. OPSM found a bicluster with almost
400 genes enriched with anti-apoptosis and negative reg-
ulation of cell death terms, which are important for neu-
ral development [39]. Similarly, QUBIC’s bicluster was en-
riched with terms involving cell death and gamete gener-
ation. xMOTIFs and ISA both found biclusters enriched
with RNA processing terms. BBC, COALESCE, and Spec-
tral all found biclusters enriched with glycolosis, glucose
metabolism, and hexose catabolism. These are interesting
especially because mammals’ brains typically use glucose as
their main source of energy [40].

KEY POINTS
2The proportions of the filtered biclusters for individual real
datasets can be found at http://bmi.osu.edu/hpc/data/
Eren12BiB_suppl/

http://bmi.osu.edu/hpc/data/Eren12BiB_suppl/
http://bmi.osu.edu/hpc/data/Eren12BiB_suppl/


Algorithm rows, cols terms (p-value)

BBC 94, 117

translational elongation (2.00e-30)
cellular biosynthetic process (1.38e-06)
glycolysis (7.37e-06)
hexose catabolic process (3.64e-05)
macromolecule biosynthetic process (1.20e-04)

BiMax 42, 9 chromatin assembly or disassembly (2.75e-02)

Chng&Chrch 539, 91

epithelial tube morphogenesis (9.94e-04)
branching inv. in ureteric bud morphogenesis (4.26e-02)
morphogenesis of a branching structure (4.26e-02)
organ morphogenesis (4.26e-02)
response to bacterium (4.26e-02)

COALESCE 103, 122

translational elongation (6.75e-12)
glycolysis (2.88e-03)
energy derivation by ox. of organic cmpnds (5.57e-03)
hexose catabolic process (5.57e-03)
ATP synthesis coupled electron transport (1.47e-02)

CPB 229, 98

oxoacid metabolic process (2.83e-13)
oxidation-reduction process (2.72e-08)
cellular amino acid metabolic process (4.82e-04)
monocarboxylic acid metabolic process (2.63e-03)
L-phenylalanine catabolic process (1.30e-02)

FABIA 56, 28

translational elongation (3.22e-17)
macromolecule biosynthetic process (2.99e-06)
protein metabolic process (4.12e-05)
translation (4.12e-05)
cellular macromolecule metabolic process (2.12e-04)

ISA 292, 11

translational elongation (1.44e-65)
protein metabolic process (5.35e-12)
RNA processing (2.26e-09)
biosynthetic process (4.19e-09)
rRNA processing (1.47e-08)

OPSM 378, 11

multicellular organism reproduction (2.78e-04)
gamete generation (1.31e-03)
neg. regulation of programmed cell death (2.92e-03)
spermatogenesis (6.90e-03)
anti-apoptosis (4.31e-02)

Plaid 22, 15

translational elongation (6.29e-30)
macromolecule biosynthetic process (1.78e-10)
protein metabolic process (3.13e-09)
cellular biosynthetic process (9.09e-08)
cellular macromolecule metabolic process (1.60e-06)

QUBIC 40, 8

gamete generation (1.95e-02)
death (1.99e-02)
regulation of cell death (3.55e-02)
neg. rgltn. DNA damage response ... p53 ... (4.64e-02)
neg. rgltn of programmed cell death (4.64e-02)

Spectral 192, 73

glycolysis (1.08e-05)
organic acid metabolic process (1.08e-05)
glucose metabolic process (4.51e-05)
hexose catabolic process (4.51e-05)
monosaccharide metabolic process (6.89e-05)

xMOTIFs 50, 7

translational elongation (7.89e-12)
ncRNA metabolic process (2.76e-03)
rRNA processing (3.51e-03)
cellular protein metabolic process (1.23e-02)
anaphase-promoting ... catabolic process (2.63e-02)

Table 3: Five most enriched terms for each algorithm’s
best bicluster on GDS589.
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Figure 5: Proportion of the enriched biclusters for different
algorithms on five different significance level (α). The

results of 8 real dataset are aggregated.

This paper compared twelve biclustering algorithms on
both synthetic data and gene expression data. The following
patterns emerged:

• Choosing the correct parameters for each algorithm
was crucial. Many similar publications used default
parameters, which often yielded poor results in this
study. Some algorithms, like Cheng and Church, may
also exhibit excessive running time if parameters are
not chosen carefully.
• Algorithms that model the entire dataset seem more

resilient to noise than algorithms that seek individual
biclusters.
• The performance of most algorithms tested in this pa-

per degraded as the number of biclusters in the dataset
increased. This is especially a concern for large gene
expression datasets, which may contain hundreds of
biclusters.
• No algorithm was able to fully separate biclusters with

substantial overlap.
• In gene expression data, all algorithms were able to

find biclusters enriched with GO terms. CPB found
the most, followed by BBC. Surprisingly, the oldest of
the biclustering algorithms, Cheng and Church, found
the third most number of enriched biclusters. Al-
though Plaid finds very few biclusters, it finds the high-
est proportion of enriched biclusters.
• Performance on synthetic datasets did not always cor-

relate with performance on gene expression datasets.
For instance, the Spectral algorithm was highly sen-
sitive to noise, number of biclusters, and overlap in
synthetic data, but was able to find many enriched
biclusters in gene expression data.
• As expected, each algorithm performed best on differ-

ent biclustering models. Before concluding that one
algorithm outperforms another, it is important to con-
sider the kind of data on which they were compared.
On plaid biclusters BBC is the best performing al-
gorithm. For constant-upregulated biclusters, COA-
LESCE, FABIA, ISA, Plaid, QUBIC, xMOTIFs, and

BiMax are the alternatives. Among these algorithms,
Plaid and QUBIC have the highest enriched bicluster
ratio in real datasets. For constant, scale, shift and
shift-scale datasets, CPB is the best performing algo-
rithm. Moreover, when negative correlation is sought,
the algorithms that perform well on scale and shift-
scale biclusters can be used. However, most of the
time the desired bicluster model is unknown, therefore
the algorithms that work well in various models (e.g.,
CPB, Plaid, and BBC) can be preferred. These algo-
rithms also obtain good results on real datasets. While
CPB and BBC find the most enriched biclusters, Plaid
was able to obtain the highest proportion of enriched
biclusters.
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