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Abstract

This paper presents a middleware framework for storing,
accessing and analyzing massive-scale semantic graphs.
The framework, MSSG, targets scale-free semantic graphs
with O(10'2) (trillion) vertices and edges. Here, we
present the overall architectural design of the framework,
as well as a prototype implementation for cluster archi-
tectures. The sheer size of these massive-scale semantic
graphs prohibits storing the entire graph in memory even
on medium- to large-scale parallel architectures. We there-
fore propose a new graph database, grDB, for the efficient
storage and retrieval of large scale-free semantic graphs on
secondary storage. This new database supports the efficient
and scalable execution of parallel out-of-core graph algo-
rithms which are essential for analyzing semantic graphs of
massive size. We have also developed a parallel out-of-core
breadth-first search algorithm for performance study. To the
best of our knowledge, it is the first of such algorithms re-
ported in the literature. Experimental evaluations on large
real-world semantic graphs show that the MSSG framework
scales well, and grDB outperforms widely used open-source
out-of-core databases, such as BerkeleyDB and MySQL, in
the storage and retrieval of scale-free graphs.

1 Introduction

Graphs have been used to model many interaction net-
works, ranging from the biological to the computational sci-
ences. Some examples are metabolic and signaling path-
ways, gene regulatory networks, protein interaction net-
works, taxonomies of proteins and chemical compounds,
and social networks [22, 23, 28, 30, 34, 35]. These types
of real-world graphs are known as semantic graphs [18].
In a semantic graph, vertices represent certain concepts
or objects and edges represent the relationships between
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them. Further, the vertices and edges in the semantic graph
are associated with some meaningful types. These vertex
and edge types form an ontology graph, which summarizes
the semantic information the corresponding semantic graph
carries.

While real-world semantic graphs are typically large,
new graphs in some emerging fields are expected to have
truly massive numbers of vertices and edges. For example,
Kolda et al. [22] predict semantic graphs representing social
networks of interest to the Department of Homeland Secu-
rity will have 10'° entities. Analyzing such large graphs
and answering user queries within a reasonable amount of
time is therefore an important and very challenging prob-
lem.

First, a set of novel graph algorithms are needed in
order to analyze these huge data sets. In order to pro-
cess given user queries in a timely manner, these graph
algorithms must explore large semantic graphs in paral-
lel. More importantly, they must be out-of-core (OOC)
algorithms that read and process input graphs that are
stored in persistent storage, as the memory requirements
of any massive semantic graph are prohibitively large. Al-
though in the literature there are various parallel graph al-
gorithms [8, 12, 13, 17, 20, 21, 35], and OOC (also called
external memory) algorithms [2,3, 14,16,24,26], to the best
of our knowledge, there is no work that combines both.

Second, traditional relational database systems have
been used as data managers to store the input graph data.
Although they provide enough performance for business
applications such as transaction processing, traditional re-
lational databases are not ideal platforms for storing and
processing massive semantic graphs. The same flexibility
which makes relational databases appropriate for a wide
variety of divergent applications causes them to perform
poorly when faced with such strict data and speed require-
ments as are imposed when dealing with large seman-
tic graphs. Therefore, a new data management system is
needed. This data manager must be able to store streaming
semantic graphs of massive size and provide an underly-



ing infrastructure to allow the parallel graph algorithms to
access and process the stored graph in a scalable and cost-
effective way.

In this paper, we present a middleware framework for
storing, accessing and analyzing massive-scale semantic
graphs. The framework, Massive-Scale Semantic Graphs
(MSSG), targets scale-free semantic graphs with O(10'2)
(trillion) vertices and edges. In a scale-free graph, most of
the vertices are only connected to a small number of other
vertices (i.e., they have low degree), while a few vertices,
known as hubs, are connected to a large number of other
vertices. Most of the real-world semantic graphs exhibit
this topological property.

The sheer size of these massive-scale semantic graphs
prohibits storing the entire graph in memory even on
medium- to large-scale parallel architectures; hence, these
graphs will need to be persistently stored in a distributed
database. The framework is architected targeting large clus-
ters with compute nodes that have direct access to fast disk
storage. One of the many possible configurations is com-
pute nodes with large local disks. Another configuration is
compute nodes that are connected to fast storage arrays via
Storage Area Network switches. An example of the latter is
Ohio Supercomputing Center’s Mass Storage system [11].

We propose a new graph database, grDB, for storing and
processing large scale-free semantic graphs on secondary
storage. The grDB database stores the vertices and edges of
a semantic graph in such a way that the number of disk I/Os
required to access adjacent vertices is minimized while still
efficiently utilizing the storage space.

We have developed a prototype implementation of
MSSG. This prototype has been built on top of DataCut-
ter [9, 10], which uses MPI as its low-level communication
protocol. Experimental evaluations with both real-world
scale-free graphs and synthetic scale-free graphs show that
our prototype scales well. We have also compared grDB
against other widely used open-source databases, Berke-
leyDB [31] and MySQL [25], as well as in-memory graph
storage implementations (for small graphs). These ex-
periments showed the effectiveness of the proposed graph
database for scale-free graphs.

The main contributions of this research are summarized
as follows.

e We have architected a framework, MSSG, to store, re-
trieve, and process massive-scale semantic graphs.

e We have developed a novel data management system
called grDB. Unlike traditional relational databases,
grDB is optimized specifically for efficiently storing
and accessing semantic graphs of massive size.

e We have developed a parallel OOC breadth-first search
algorithm that runs on distributed parallel machines.
To the best of our knowledge, this is the first of such
algorithms reported in the literature.

e We have evaluated the performance of MSSG using
large real-world semantic graphs. The results show
that the MSSG framework scales well, and that the pro-
posed graph database, grDB, outperforms other open-

source database systems, Berkeley DB and MySQL.
The remainder of the paper is organized as follows. The

architecture of the proposed MSSG framework and its im-
plementation are described in detail in Sections 2 and 3.
Experimental results are presented in Section 4, followed
by concluding remarks in Section 5.

2 System Architecture

The MSSG framework is designed to provide storage,
retrieval and processing of large scale-free graphs. It con-
sists of one or more front-end nodes which provide an entry
point for the user queries as well as graph data ingestion,
and a set of back-end nodes that are responsible for storing
and processing the graph data (Figure 1). MSSG has been
built on top of DataCutter [9, 10] and its functionality is
provided by a set of modular, customizable services imple-
mented as DataCutter components and pluggable interfaces.
The Ingestion Service provides an entry point for data stor-
age and it is responsible for clustering and declustering of
the graph data to the back-end storage nodes. The Query
Service allows for analysis of the stored graph, while the
GraphDB Service provides a unified mechanism for storing
and accessing graph data.

Both the Ingestion and GraphDB services can draw par-
allels from the parallel file-system domain, particularly the
Parallel Disk Model [32,33] (PDM). The PDM provides a
generic model for use in designing OOC algorithms and in
calculating upper and lower bounds for OOC algorithm per-
formance. In a sense, the Ingestion service’s declustering
of the input graph is equivalent to striping the graph data
intelligently across multiple disks in a uniprocessor system.
Within the Ingestion and GraphDB implementations, there
are also PDM optimization techniques which may be appli-
cable.

In the following subsections, we first present a brief
overview of DataCutter and then discuss the details of each
service.

2.1 DataCutter

DataCutter [9, 10] is a component-based middleware
framework [1,4,5,15,19,27,29] designed to support coarse-
grain dataflow [7] execution on heterogeneous environ-
ments. In DataCutter, the application processing structure
is implemented as a set of components, referred to as fil-
ters, that exchange data through logical streams. A stream
denotes a uni-directional data flow from one filter (i.e., the
producer) to another (i.e., the consumer). A filter is required
to read data from its input streams and write data to its
output streams only. The DataCutter runtime system sup-
ports both data- and task-parallelism. Processing, network,
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Figure 1. MSSG Overall System Architecture

and data copying overheads are minimized by the ability to
place filters on different platforms. The filtering service of
DataCutter performs all steps necessary to instantiate filters
on the desired hosts, to connect all logical endpoints, and
to call the filter’s interface functions for processing work.
Data exchange between two filters on the same host is car-
ried out by memory copy operations, while a message pass-
ing communication layer (e.g. TCP sockets or MP]) is used
for communication between filters on different hosts.

2.2 Ingestion Service

The Ingestion service provides the entry point for graph
data to the MSSG system. Its job is to cluster and decluster
(distribute) the ingested data appropriately to the GraphDB
instances on the back-end nodes. Due to the sheer size
of target graphs, these operations should be very efficient.
The ideal approach is to perform these operations while the
graph data is being ingested by the system via streaming.

The goal of this clustering and declustering is to achieve
fast query processing by reducing the total number of disk
I/Os incurred to access the database and increasing the par-
allelism during the query processing. Parallelism is rela-
tively easier to achieve for queries which require process-
ing a large portion of the dataset compared to queries that

require processing only a localized portion of the data. For
example, if a query were in the form of search between two
vertices, it would be ideal if the vertices of the graph that are
close to source of the search were clustered together in one
GraphDB instance to reduce the I/O overhead. However, we
also would like those vertices to be spread out to the nodes
of the distributed storage system in order to achieve better
parallelism.

A graph can be clustered and stored mainly at two granu-
larity levels: 1) at the vertex level by storing all the edges in-
cident to a vertex together and 2) at the edge level by storing
each edge as an independent entity. MSSG supports both
granularity levels. Similarly, streaming updates can arrive
at those two granularity levels. Adding new vertices and
new edges using vertex- and edge-level granularity respec-
tively, however, necessitates novel clustering techniques. If
vertex granularity is selected at the storage side, it would
largely dictate the clustering and declustering of streaming
updates. That is, if a vertex has been already clustered and
assigned to storage node, all the new edges incident to that
vertex have to be added to the same cluster to which the ver-
tex belongs. Clustering would be simpler in this paradigm,
but updating the data each time a new edge is stored can
be very costly. Smart caching and blocking techniques help
reduce the number of disk I/Os due to updates.

For clustering streaming data, MSSG processes the in-
gested data in blocks (or windows) of a pre-determined size,
each of which fits into memory. Any streaming data can be
converted into this format by accumulating incoming data to
construct a block. Clustering algorithms will work on those
blocks one by one. These algorithms must be very efficient
in order for decisions to be made in real-time. Furthermore,
these algorithms should keep some additional summary in-
formation about the data that has been already clustered and
distributed to the nodes of the storage system. Using the
summary information, the clustering algorithms should be
able to make more intelligent decisions on where to send
blocked data.

MSSG provides a customizable interface for develop-
ing clustering and declustering techniques. By default, the
MSSG framework provides simple declustering techniques
such as vertex- and edge-based round-robin declustering.

2.3 Query Service

The Query service provides the query interface for
the client and orchestrates the execution of data analysis
queries. In the MSSG framework, data analysis techniques
are implemented as DataCutter filter graphs communicating
via DataCutter’s filter-stream interface. All implemented
data analysis techniques are registered with the system and
can be queried by the user. Any data analysis accesses the
stored graph data via the unified graph interface provided by



GraphDB Service. Since each GraphDB instance only pro-
vides direct access to local data stored in each node, data
analysis service instances need to be implemented in such
a way as to take this data distribution into account. For
example, if the graph is stored using vertex-level granular-
ity, the complete adjacency list of any arbitrary vertex will
be stored in only one node. Hence, any operation that re-
quires accessing the adjacency list of a vertex needs to be
either delegated to that node or the adjacency list needs to be
transfered to the node that initiated the access. As an exam-
ple Query Service instance, a relationship analysis method
based on breadth-first search is described in more detailed
in Section 3.2.

2.4 GraphDB Service

The GraphDB Service’s job is to interface with a number
of disparate storage mediums, such as various in-memory
data structures, relational databases, and other disk-based
storage methods.

One of the main innovations of the MSSG API consists
of a Java interface Graph which exposes the smallest com-
plete set of graph operations possible, along with one or
two higher-performance methods which implement higher-
level graph functions. In order to be complete, a graph-
storage service only needs to store edges and retrieve lists
of distance-1 neighbors (adjacent vertices).

Currently, there are several concrete classes which im-
plement the graph interface and store the actual graph data
in different formats and different storage mediums. Two
of the default implementations are based on efficient in-
memory storage for graphs that could fit in memory of the
MSSG installation. We also provide three disk-based imple-
mentations of GraphDB services. Two of them are based on
open-source databases, BerkeleyDB and MySQL. The last
one, grDB, is a novel disk-based graph database designed
for massive scale-free graphs.

2.4.1 grDB: Graph Database

We propose a novel graph database, grDB, which is in-
tended to allow the efficient out-of-core storage and re-
trieval of scale-free graphs. A grDB instance is comprised
of two components; the storage component and the block
cache component. The storage component is responsible for
the storage and retrieval of blocks which store partial adja-
cency lists of one or more vertices. The block cache com-
ponent provides in-memory caching of the storage blocks
for improved performance.

A scale-free graph in grDB is stored in multiple files that
are composed of blocks. Blocks are smallest unit of I/O
for grDB. While the optimum block size is determined by
the performance characteristics of the physical storage sys-
tem, we nevertheless expect the optimum block size will

not be smaller than the filesystem’s block size. Each block
will be further divided into sub-blocks that are uniquely ad-
dressable. A sub-block is used to store a vertex’s partial
adjacency list. A grDB instance contains multiple levels of
storage files. At level £, each sub-block of a storage file can
store up to d, adjacent vertices, where dy > 2 X dy_ for
£ > 1. Since our target graphs exhibit the power-law degree
distribution, we suggest choosing d, values that also follow
an exponential curve, such as dy = 92* .

Each vertex in grDB will have a b-byte unique Global
ID (GID) in the range between 0 to n, where n is the
number of vertices in the graph; hence, each sub-block in
level £ is b x d, bytes. Since each block can store one or
more sub-blocks, block size By at level £ is computed as
By = k¢ xbxdy, for an integer k, > 1. Because of file sys-
tem limitations as well as performance reasons, at each level
¢ graph data is stored in multiple files with a maximum size
of M -bytes, or equivalently N, = M/By, blocks. The
location of a sub-block s in the disk at a level ¢ can be
found using simple modulo arithmetic as follows. Since
each block stores k, sub-blocks, sub-block s is stored in
s/ke-th block, which is stored in s/k¢/Ny-th file at offset
By x ((s/ke) % Ng) + b x dg x (5% ke).

The beginning of the adjacency list of a vertex v in grDB
is stored in v-th sub-block at level 0. If a vertex has dg or
less number of adjacent vertices, they are directly stored
in that level. If v has more adjacent vertices than dj, the
first dy — 1 adjacent vertices are stored in the level O sub-
block, and the last location in the level O sub-block is used
as a pointer into the higher level files. During the ingestion
of the graph data set, if the adjacent vertices are added in
small groups, the adjacency list of a vertex could have en-
tries in multiple levels of the grDB. For example, if vertex
v already has dy adjacent vertices and one more adjacent
vertex is added, a new sub-block is allocated for that vertex
in level 1. A link from the v-th sub-block at level O to the
newly allocated sub-block at level 1 is created. When the
degree of vertex v achieves dy—+d; , a new sub-block is allo-
cated for that vertex at level 2, and either all of the contents
of the sub-block at level 1 are moved to the new sub-block
at level 2 and subsequent new adjacent vertices are added to
that sub-block, or the sub-block at level 1 is left unchanged
and simply links to the newly allocated sub-block at level
2. The former approach necessitates extra copy operations
during the insertion, while the latter creates fragmentation
in the adjacency list. One approach is to leave the adjacency
lists fragmented during the ingestion, and later during “idle”
time, the grDB service can defragment these multi-level ad-
jacency lists in the background. Figure 2 illustrates the file
format of grDB, and a small example is shown in Figure 3.
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3 Prototype Implementation

We have implemented a prototype of the MSSG frame-
work in Java. The framework allows analysis services to be
implemented in Java using DataCutter’s filter interface. We
have implemented an analysis service which uses breadth-
first search. Below we present the details of the proto-
type MSSG middleware and the breadth-first search anal-
ysis plug-in.

3.1 Customization of GraphDB Service

We have implemented five different instances which
meet the generic GraphDB interface contract, two in-
memory versions and three out-of-core versions using vari-
ous persistent storage managers. Although the graphs we
are targeting will not fit in memory, the two in-memory
implementations provide a solid base-line comparison for

our out-of-core implementations. In a sense, they repre-
sent the lower-bound we could achieve with the out-of-core
implementations. Here is a brief description of these five
GraphDB instances:

Array: The first in-memory implementation uses the
standard compressed adjacency list format to store the
graph in memory. When using the compressed adjacency
list format, a graph G = (V,€) is stored using two ar-
rays of size |£| and |V| + 1, respectively. The first ar-
ray, adj, contains the adjacency list of all vertices con-
catenated one after the other, while the second array, xadj,
stores a pointer to the beginning of adjacency list for each
vertex. That is, the adjacency list of vertex v is stored at
adj[zadj[v]],...,adj[zadj[v + 1] — 1]. The advantage of
this format is it provides very efficient access to the adja-
cency list of each vertex, by using the highest-performance
in-memory data structure possible. However, this format
has three major issues. First, Java only allows 32-bit inte-
gers as array indices, which restricts the input graph size.
Second, this storage format is not suitable for dynamically-
growing graphs. Third, it is poorly suited for storing graphs
distributed to multiple machines; unless a block distribution
of vertices is used, each node has to store the full zadj ar-
ray. Therefore, the array-based storage format’s memory re-
quirement does not scale with increasing numbers of back-
end nodes. For small graphs that fit into main memory, the
first and third concerns will not cause problems. For the in-
put stage, when the graph is streaming in from the front-end
nodes, we have actually used the Ha shMap implementation
(see below) with integer IDs as temporary storage. After
flushing the graph to disk, the Array GraphDB instance
loads the graph into the compressed adjacency list arrays.
The Array implementation is useful as a lower-bound on
the search execution times.

HashMap: By using a hash data-structure one can im-
prove on the memory requirements of the Array imple-
mentation when dynamic or distributed graph storage is re-
quired. There are two possible implementations, the first of
which is to use a hash data-structure to map global vertex
IDs to local vertex IDs. The compressed adjacency list array
implementation can then be used with the local, renumbered
vertices. This implementation requires global-to-local and
local-to-global vertex ID translations and (like the Array
instance) is not very suitable for dynamically growing its
storage during the ingestion. The other implementation op-
tion entails storing the adjacency lists of each vertex sepa-
rately and using a hash data-structure to store and retrieve
the pointers to those adjacency lists. Although only global
vertex IDs (64-bit longs in Java) are used and there is no
need for global-to-local and local-to-global ID translation,
accessing the adjacency list of a vertex still requires a hash
look-up. We have implemented the latter approach using
Java’s HashMap data structure, which gives this GraphDB



instance its name. As already mentioned, this implemen-
tation’s memory requirement scales well when increasing
the number of back-end nodes, at the expense of additional
hash look-up time in order to access the adjacency list for a
vertex.

MySQL: We have implemented an out-of-core graph
database instance using MySQL 4.1.12 [25]. With a stan-
dard {src, dest} table model, the overhead of retrieving the
adjacency list of a vertex will be prohibitively high for a ta-
ble with conceivably hundreds of millions of rows. There-
fore, we have chosen to store the adjacency list of a vertex
in one or more MySQL records indexed by the vertex ID.
In order to provide a level of performance that approaches
the other implementations we also have chosen to serialize
the adjacency list into a BLOB data type in a table which
is indexed by the source vertex. Since BLOBs can be of
arbitrary size, however, we chose to chunk the adjacency
list into standard-sized blocks (8 KB), as suggested by the
MySQL documentation.

BerkeleyDB: We have also implemented an out-of-
core graph database instance using BerkeleyDB version
1.7.1 [31]. The BerkeleyDB is a programming API which
gives the user easy access to persistent, transactional, and
storage without the overhead of using a relational database
server. The chunking technique used in the MySQL imple-
mentation is also used here.

grDB: We have implemented the proposed grDB
discussed in Section 2.4.1 in Java using the standard
RandomAccessFile class. Global vertex IDs and file
sub-block address pointers are 64-bit long integers where
the 3 most significant bits are reserved for the grDB’s in-
ternal use to mark when the value is a pointer to a higher-
degree storage file. With 3 bits acting as the pointer indica-
tor, we still allow 61 bit vertex numbers which will be suffi-
cient for graphs with up to 2 quintillion vertices (2 * 10'%).
In our experiments we have restricted the maximum file size
to be M = 256 M B. We have used a 6-level instance of
grDB with d;, values are equal to 2, 4, 16, 256, 4K and 16K,
and with a block size, By, of 4 K B in the first 4 levels and
32 KB and 256 KB for the last two levels.

3.2 Parallel Out-of-core Breadth-First Search

In the prototype we provide an example instance of
the Query Service which implements a parallel out-of-core
Breadth-First Search (0oocBFS) algorithm. BFS is one of
the basic algorithms for relationship analysis [22, 35].

Algorithm 1 outlines the parallel oocBFS algorithm. The
main algorithm is not much different than a sequential BFS
algorithm. The main differences come from graph data dis-
tribution and storage. If an edge-level granularity is used
to store the graph, it is possible that the adjacency list of a
vertex is distributed to multiple nodes. In such a case, the

Algorithm 1 Parallel Out-of-core Breadth-First Search Al-
gorithm

1: function 0OOCBFS(G = (V, &), s,d)

2: Initial data distribution: G is divided into p sub-
graphs G1 = (V1,En),...,G, = (V,, Ep)
where E, ..., E, is a disjoint partition of the
edgeset £ and V; CV for 1 <i <p.

3: on each processor P;, 1 <i < p.

4 level[v] = oo for v € V

5: F— adei(S)

6: level[s] < levent «— 0

7: while ’found’ message has not been received

do

8: levent «— levent + 1

9: for v € F' do

10: for u € adjg, (v) do

11: if u = d then

12: send found message to all pro-

cessors and return levent

13: else if level[u] = oo then

14: level[u] « levent

15: N — NU{u}

16: if G is stored with vertex-level granularity
and vertex mapping maplu] is known
by every processor then

17: for w € N do

18: Smap[u]  Pmaplu] U {U}

19: send S, to processor P, for 1 < ¢ < p.

20: else

21: broadcast N to all processors

22: Receive R, from P, for 1 < g < p.

23: F—,Ry

24: return in fty

next level’s frontier vertices N need to be broadcasted to all
the processors. A similar situation arises when vertex-level
granularity is used but the vertex mapping is not known
globally by every processor. In this case, frontier vertices
have to be broadcasted to all processors again. In both of
these cases, the frontier set F' will be identical for all pro-
cessors. However, if vertex-level granularity for distribution
is used with a globally-known mapping (such as GID % p,
where p is the number of back-end nodes), on each pro-
cessor P; the frontier set F' will only contain the vertices
assigned to P;. Algorithm 1 handles all of these cases nat-
urally by using a simple graph interface which returns the
empty set when an adjacency list of a vertex that is not as-
signed to that processor is requested (steps 5 and 10).

In the current implementation, we rely heavily on the
underlying database’s caching and clustering capabilities to
hide the latency that comes from accessing the adjacency
list on disk. This dramatically simplifies the oocBFS imple-



mentation and our experiments show that both BerkeleyDB
and grDB benefit from using a cache. The performance of
this algorithm can be further optimized by introducing some
pre-fetching of the adjacency lists of the vertices in the fron-
tier. It can be even further optimized by sorting the pre-fetch
disk accesses by file offsets to reduce the seek overhead. As
part of our future work, we will investigate both of these
options.

4 Experimental Results

We carried out the experimental evaluation of the MSSG
framework on a 64-node Linux cluster owned by the De-
partment of Biomedical Informatics at The Ohio State Uni-
versity. Each node of the cluster is equipped with dual 2.4
GHz Opteron 250 processors, 8 GB of RAM and two 250
GB SATA drives providing 500 GB of local storage via soft-
ware RAIDO. The nodes are interconnected with switched
gigabit ethernet and Infiniband.

The tests were performed using vertex declustering dur-
ing ingestion; the vertex ownership knowledge was lever-
aged during the search phase. All the tests were per-
formed with one of three graphs; two real-world seman-
tic graphs, PubMed-S and PubMed-L, were extracted from
the PubMed document database, while the third, 100M
was created to exhibit the scale-free properties which
MSSG targets. PubMed-S contains 3,751,921 vertices and
55,682,678 directed edges, PubMed-L has 26,676,177 ver-
tices and 519,630,678 directed edges, and the 100M graph
has 100,000,000 vertices and 1,999,999,640 directed edges.
While these graphs are smaller than the trillion-vertex
graphs MSSG targets, examining the performance of these
preliminary experiments is a necessary first step in order to
scale to larger graphs.

The first results displayed in Figure 4 represent a base-
line comparison of the search performance of the MSSG
framework using in-memory implementations of GraphDB.
In this experiment 100 random BFS queries were executed
on 16 nodes against the PubMed-S graph, and the query
execution times are averaged based on the path length be-
tween the source and destination vertices. As seen in the
figure, the Array graph storage performs much better than
the HashMap implementation, as expected. The HashMap
GraphDB storage requires a hash lookup to access the adja-
cency list of a vertex; with large graphs, this overhead be-
comes significant. This is especially true as the path length
increases, since the size of the fringe at each search level in-
creases exponentially. However, when increasing the num-
ber of processors, this overhead is spread over multiple pro-
cessors and the difference between Array and HashMap is
lessened.

The second set of experiments shows the importance of
caching effects when dealing with out-of-core data struc-
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tures. Figure 5 displays the average performance on 16
nodes of BerkeleyDB and grDB on 100 random queries
against the PubMed-S graph, with their internal (block)
caches enabled and disabled. As seen in the figure, caching
can reduce the execution time up to 50% on both imple-
mentations, especially for longer path queries. Therefore,
further results will only come from our cache-enabled out-
of-core implementations.

Figure 6(a) displays a comparison of the five different
GraphDB implementations on 16 nodes using the PubMed-
S graph. To investigate the effect of increasing the num-
ber of front-end ingestion nodes, we repeated the inges-
tion of PubMed-S multiple times and varied the number
of ingestion nodes. The result shown in Figure 6(a) shows
that Array, BerkeleyDB, and grDB achieved similar perfor-
mance in both cases (1 ingestion node vs 4 ingestion nodes).
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However, the HashMap and MySQL implementations were
slower when only 1 ingestion node was used. When using 1
ingestion node, the ingestion speed is clearly limited by the
I/O and network performance of that node. Furthermore,
even though the ingestion node reads a block (window) of
edges and then distributes them to back-end nodes, edge or-
dering in the streaming input graph could negatively affect
the load balance on the back-end nodes. By increasing the
number of ingestion nodes, we both remove the bottleneck
from the front-end node and also achieve better load balance
on the back-end nodes. The results show that the ingestion
performance is more or less the same for all approaches,
except for MySQL, which is slower than all other GraphDB
storage implementations.

As seen in Figure 6(b), the Array implementation gives
the lowest search time. Not surprisingly, the second best
results are achieved with the other in-memory implementa-
tion, HashMap. MySQL performs significantly worse than
all other implementations. The fastest of the three out-of-
core GraphDB implementations, grDB, performs an aver-

age of 33% faster than the next fastest out-of-core imple-
mentation, BerkeleyDB. When comparing grDB with the
in-memory implementations, grDB is only 1.7 times slower
than HashMap and about 2.9 times slower than Array, on
average. Finally, the search times for short paths (and hence
small fringe sizes) is negligible for all GraphDB implemen-
tations. As such, future results will only show longer path
lengths.
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Figure 7. Performance comparison of three
GraphDB implementations on PubMed-L
graph

Since the grDB instance is the fastest of the out-of-core
GraphDB implementations, the experiments on PubMed-L
were only carried out with grDB and the two in-memory
GraphDB implementations. The results of the ingestion ex-
periments in Figure 7(a) still show that the system is lim-
ited by the I/O bandwidth of the ingestion front-end nodes



when a small number of ingestion nodes are used. As such,
only the results with four or more ingestion nodes show
any significant difference between the three GraphDB im-
plementations. The Array instance (with its integer-based
HashMap storage used during ingestion) performs the best,
followed by HashMap and grDB. The slight increase in in-
gestion time for grDB with 16 ingestion nodes is due to the
thrashing of the working set in grDB’s in-memory block
cache.

Figure 7(b) shows the results of the search experiments,
which were run on 16 nodes. As before, the Array GraphDB
implementation is the fastest of the three instances. How-
ever, the HashMap implementation loses some of its speed
advantage as the graph size grows, compared to the grDB
storage engine. The grDB result, therefore, is only 2.95
times slower than the Array instance, and a mere 1.09 times
slower than the HashMap implementation!

Figure 8 shows the preliminary results of MSSG’s per-
formance when working with the 100M graph. Figure 8(b),
in particular, shows the search time against the total sum of
unseen vertices placed into the fringe when searching for
the goal vertex. The outcome of these two graphs is posi-
tive. There is a clear linear relationship between the number
of unique vertices seen and the search time. However, more
work needs to be done before the system could be called
interactive when working with such large graphs.

5 Conclusions and Future Work

In this paper we presented a middleware framework,
MSSG, for storing, accessing, and analyzing massive-scale
semantic graphs. We proposed and developed a novel disk-
based graph database, grDB, for massive scale-free graphs.
We have also developed a parallel out-of-core breadth-first
search algorithm. To the best of our knowledge, this is
the first of such algorithms presented in the literature. Ex-
perimental evaluations on large real-world semantic graphs
show that the MSSG framework scales well. Also, grDB
outperforms widely used open-source databases, such as
BerkeleyDB and MySQL, in storage and retrieval of scale-
free graphs.

As part of our future work in this area, we will investigate
the applicability of other external memory libraries, such
as the Transparent Parallel I/O Environment (TPIE) [6] in
our grDB implementation. TPIE is designed for providing
efficient access to multiple disks attached to a single system
(hence the word ’parallel’ in the name). Its Random-acess
Block Transfer Engine seems like a viable replacement for
the low-level random access file APL

Additionally, we will continue to investigate different
optimization techniques for the Ingestion, GraphDB, and
Query services. We will explore various intelligent data-
striping and caching techniques.
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