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Abstract

With the increasing trend of microprocessor manufactur-
ers to rely on parallelism to increase their products’ perfor-
mance, there is an associated increasing need for simple
techniques to leverage this hardware parallelism for good
application performance. Unfortunately, many application
developers do not have the benefit of long experience in
programming parallel and distributed systems. While the
filter-stream programming paradigm helps bridge the gap
between developers of scientific applications and the per-
formance they need, current and future high-performance
multicore processor designs do not have a filter-stream pro-
gramming library available. This work aims to fill that gap
in the software world. This initial DataCutter-Lite imple-
mentation defines a powerful, but simple abstraction for
carrying out complex computations in a filter-stream model.
Additionally, the initial implementation shows that complex
architectures such as the Cell Broadband Engine Architec-
ture can make use of the filter-stream model, and give good
application performance when doing so.

1 Introduction

Designing parallel and distributed programs for efficient
execution on large, complex supercomputers is a challeng-
ing task. Experts in fields such as physics, image and sig-
nal analysis, and biology are ill-equipped to design appli-
cations to take full advantage of the hierarchical, heteroge-
neous, distributed cluster supercomputers which are quickly
becoming the norm for high-performance computing re-
sources. Microprocessor architectures like the Cell Broad-
band Engine Architecture and Graphics Processing Units
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have many unique characteristics constraining their use, not
to mention their own, difficult-to-learn and harder-to-master
application programming interfaces. This paper presents
DataCutter-Lite, a fine-grained filter-stream programming
library and runtime system which enables the simple design
of filter-stream applications for modern multicore proces-
sors. We show that by using DataCutter-Lite, developers
can leverage modern, heterogeneous multicore processors
with good efficiency and productivity.

In order to fully use the computational power of modern
multicore processors, developers must be well-versed in:

e Parallel programming techniques, such as data decom-
position, master-slave and pipelined computations.

e Parallel algorithms, if basic operations such as search
and sort comprise a large part of the computation the
developer wishes to perform.

o A threading library, such as POSIX threads.

e Architecture-specific constraints, such as memory
size, or the myriad of concerns associated with the Cell
Broadband Engine:

— The Memory Flow Controller, used to transfer
data in the system.

— Techniques to deal with the small memories
of the Synergistic Processor Elements, such as
double-buffering.

— Distributed memory programming models.

e The developer’s own domain of expertise.

Conversely, the filter-stream programming paradigm is
simple to learn, since the application implementation’s
components match natural divisions in the application task
structure. Developers gain a large amount of flexibility
and power by explicitly describing these application tasks.
By defining an application programming interface and run-
time engine for filter-stream programming on multicore



Table 1. High Performance Computing (HPC) techniques and DataCutter-Lite’s approach

HPC Technique

DataCutter-Lite’s Method

communication overlap)

General HPC techniques (data blocking,

Non-blocking buffer writes
and appropriate buffer sizing

Parallel programming and distributed
address-space programming

Application-specific task
decomposition and componentization

Specific architectural idiosyncrasies
(messaging libraries, etc.)

Efficient lower-level libraries enabling
consistent higher-level interface

processors, we can bridge the gap between the develop-
ers who have need of their high computational power and
the breadth of knowledge and experience required to write
efficient applications for them. Table 1 presents the high-
performance computing techniques necessary for efficient
use of multicore processors and our approach to incorporat-
ing them into the DataCutter-Lite runtime system and soft-
ware library. Filter-stream programming meets the needs of
performance-seeking, non-computer-scientist programmers
for a number of reasons:

e A filter-stream programming paradigm is appropriate
for many diverse types of applications, and at many
data granularities. The use of this paradigm elimi-
nates the need to use multiple complex parallel and dis-
tributed programming techniques. Further, since filter-
stream programming inherently allows applications to
run on parallel and distributed systems, it is appropri-
ate for the large-scale, complex requirements of many
data-intensive applications.

e Filter-stream programming is inherently component-
based, and as such, the development of standard algo-
rithms is a natural method to achieve high productivity.

e No knowledge of threading or message-passing li-
braries is required for filter-stream programming; all of
the lower-level threading and message-passing func-
tions are handled by the runtime system.

e All architecture-specific constraints are abstracted
away, leaving the application developer with a clean
interface and programming semantic. = However,
should some later developer with good knowledge of
the internal workings of the architecture wish to make
some modifications, the system is compatible with all
of the standard optimizations that High Performance
Computing gurus make.

As a case study, we have implemented DataCutter-Lite
on the Cell Broadband Engine. The Cell Broadband En-
gine is an excellent example of modern multicore proces-
sors, with its heterogeneous nature, its high performance

communication bus, and high throughput processing capa-
bilities. Other examples of modern multicore processors are
the current top-end products from AMD and Intel with deep
cache hierarchies and the forthcoming Larrabee processor
from Intel. Larrabee will have 16 - 32 vector processors
and will initially be marketed strictly as a graphics proces-
sor. These types of microprocessors are not considered in
this paper. The Cell Broadband Engine is an excellent mi-
crocosm of the future of multiprocessors, and as such is an
excellent test case for our techniques. As future work, we
will extend these results to more traditional architectures.

Due to the large potential benefit of modern multicore
processors, many research projects have developed tech-
niques to ease the burden associated with writing applica-
tions for them. BlockLib [3], IBM’s Accelerated Library
Framework (ALF) [12], Charm++ [14], CellSs [6], and Se-
quoia [10] are examples of programming frameworks for
the Cell Broadband Engine which use various block-based
methods for handling the memory hierarchy of the Cell in
order to get good application performance. The Cell Mes-
saging Layer [17] and MPI microtasks [15] are examples
of frameworks designed to provide an MPI-like set of se-
mantics for SPE communication. We offer an alternative
here, the CBE Intercore Messaging Library, which pro-
vides the underlying basis for our streaming programming
framework. GLIMPSES [19] provides a method to improve
the efficiency of SPE programs by providing profiling in-
formation for code optimization. Some streaming frame-
works even exist for the Cell Broadband Engine [20], al-
though they offer an interface more appropriate for use with
a stream-language compiler and not for application devel-
opment. Hence, while other programming frameworks exist
for the Cell Broadband Engine, DataCutter-Lite is the only
active research project which aims to develop a comprehen-
sive, hierarchical middleware system for the development
of large-scale, efficient filter-stream programs.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the overall DataCutter-Lite architecture,
while Section 3 discusses the Cell Broadband Engine In-
tercore Messaging Library, which enables DataCutter-Lite
to abstract some of the specific architecture’s details. Sec-



tion 4 presents some of the optimizations involved with the
design of a filter-stream runtime-engine for the CBE, and
Section 5 presents the results of some of the test-case ap-
plications. Section 6 concludes the paper and presents our
future research directions.

2 Filter-Stream Programming for Heteroge-
neous, Hierarchical Clusters

2.1 DataCutter and the
Programming Model

Filter-Stream

DataCutter [7, 8] is a component-based middleware
framework [1, 2, 4, 9, 13, 16, 18] designed to support
coarse-grain dataflow [5] execution on heterogeneous com-
putational resources.

In DataCutter, the application processing structure is im-
plemented as a set of components, referred to as filters,
that exchange data through logical streams. A stream de-
notes a uni-directional data flow from one filter (i.e., the
producer) to another (i.e., the consumer). Data flows along
these streams in buffers so as to minimize various system
overheads. A layout is a filter ontology which describes the
set of application tasks, streams, and the connections re-
quired for the computation. A placement is one instance of
a layout with actual filter copy to physical processor map-
pings.

The DataCutter runtime system supports data- and task-
parallelism. Processing, network, and data copying over-
heads are minimized by the ability to place filters on differ-
ent platforms. The runtime engine performs all steps neces-
sary to instantiate filters on the desired machines and cores,
to connect all logical endpoints, and to call the filter’s inter-
face functions for processing work.

2.2 DataCutter-Lite Architecture and
Programming Model

While DataCutter is capable of handling all levels of
granularity for an application, from multiple, distributed-
address space clusters to SMP nodes, the introduction of
heterogeneous and massively parallel microprocessor archi-
tectures necessitated a new runtime engine. DataCutter-Lite
(DCL) operates only within a single node, but is optimized
for modern multicore processors. By using DCL, applica-
tion developers will able to efficiently make use of modern
multicore processors without being expert computer scien-
tists fluent in the newest cutting-edge parallel programming
techniques. Additionally, since DCL is a component-based
framework, developers can realize a higher degree of pro-
ductivity over programming the application directly for the
architecture in question.

Figure 1. DataCutter-Lite Library Application
Interface

// Library Initialization Functions
void setup_app (Placement x)
void init_dcl ()
// Communication Functions
DCLBuffer * create_buffer (stream,
size)

int stream_write (stream ,

DCLBuffer x)
int stream_close (stream)

DCL’s architecture has two separate pieces, the runtime
engine and the application programming interface (API).
The API is comprised of a small number of easy-to-use
functions to support application set up and execution. Fig-
ure 1 gives an overview of the functions in the main APL
While the concepts of layout and placement are distinct,
since our work is still in the development stage, we have
chosen to combine them into a single initialization function.

DataCutter-Lite for CBE Software Architectue

User Application

SPE Runtime Management

Figure 2. Overall DataCutter-Lite System on
the CBE

The first implementation of DCL is designed for the Cell
Broadband Engine (CBE). The overall architecture is com-
prised of three software layers. Figure 2 shows the runtime
system and its connections to the various system compo-
nents. The stepped connections to the various system com-
ponents are meant to express the notion that while appli-
cations can be designed solely to use the DCL API, there
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Figure 3. Sample DataCutter-Lite application
and example mapping onto the Cell.

is nothing stopping expert developers from mixing func-
tion calls from all levels of the software hierarchy if they
so choose. The two portions of the system architecture fig-
ure surrounded in bold lines, the DCL implementation and
the CBE Intercore Messaging Library represent our contri-
butions.

The lowest layer of software is IBM’s SPE Runtime
Management Library Version 2.2 (libspe2), which is part of
IBM’s Software Development Kit (SDK) for Multicore Ac-
celeration. The libspe2 library is the interface the developer
uses to gain access to the Synergistic Processing Elements
(SPE), which represent the majority of the computing power
of the CBE.

The next layer of software is the CBE Intercore Messag-
ing Library (CIML). This library is a two-sided communi-
cations library whose interface and communication model
mimic that of MPI, including blocking and non-blocking
send and receive primitives. CIML is detailed in Section 3.

The last layer of software is the DCL runtime system,
which is initialized by a function call from the user’s main
PowerPC Processor Element (PPE) program, as in Figure 1.
The initialization function creates threads to manage the
SPEs, begins the execution of the SPE programs, and ini-
tializes the CIML, to allow two-sided communication be-
tween the system processors. At this point, each of the PPE
and SPE processors enters a runtime daemon thread which
listens for data buffers. Upon receiving a buffer, the daemon
consults the filter placement and calls the correct filter’s pro-
cessing function. This event-driven model is well-suited to
the CBE, since the SPEs are single-threaded processors and
have no capability to switch thread contexts like more tra-
ditional processors. All of the underlying details involved
with determining where to send the data, the actual transfer

Figure 4. DataCutter-Lite Example PPE Code

// PPE main()

// Set up Matrices A, B, pointers
// a_ptr, b_ptr, constants

int

main (int argc, char xx argv) {
init_dcl ();

for (i = 0; i < NUMROWS; i++) {
DCLBuffer = buffer =
create _buffer (”raw_data”,
BUF_SIZE);

append_array (buffer, a_ptr,
NUM.COLS « sizeof (float));
append_array (buffer, b_ptr,
NUM.COLS x« sizeof(float));

stream_write (buffer);

// increment pointers a_ptr, b_ptr
}

finish_dcl ();

return 0;

}

of the data and the function call is all handled by the runtime
system. Also, the developer need not concern themselves
with the cleanup of data buffers, since the runtime engine
keeps track of all of the buffers that are created, sent, and
received. When a filter returns from the processing func-
tion, the buffer passed as input is freed. Similarly, when a
buffer is written to a stream it is assumed that it is handed
off to runtime system. All of the buffers are created in a
configurable heap area, so as to alleviate the burden of ex-
plicit memory management.

Figure 3 shows a small example application composed
of three pipelined filters, A, B, and C and one possible fil-
ter placement. To help explain some of the details of the
runtime engine, we have decided to create a placement with
one copy each of the A and C filters and two copies of the
B filter. Buffers written to the ‘A_to_B’ stream are handed
off to the DCL daemon on the PPE. The daemon then de-
termines where to send the buffer, either copy B1 or B2 of
the B filter type. This determination is made by a config-
urable stream sink protocol. Common protocols are round-
robin, random, or broadcast. Future versions of DCL will
include a demand-driven protocol where filters which sink
data faster from a stream will receive more buffers. Buffers
written to the ‘B_to_C’ stream are likewise handed off to
the DCL daemon, but since in the placement only one copy



Figure 5. DataCutter-Lite Example PPE Code

Figure 6. DataCutter-Lite Example SPE Code

// PPE setup and filter code

// Called by init_dcl()

void

setup_application (Placement * p) {
Filter % console =
get_console(p);

Filter * fadded =
place_ppu_filter (p, “added_data”);
Filter x fadder =
place_filter (p, 0, “add_values”);

Stream * sraw = add_stream(p,
“raw_data”);

add_source (p, sraw, console);
add_sink (p, sraw, fadder);

Stream * sadded = add_stream (p,
“added _matrix”);

add_source (p, sadded, fadder);
add_sink (p, sadded, fadded);

}

// When receving a buffer from SPE

void

added_data (DCLBuffer % buffer) {
// Deal with added matrix data

}

of the C Filter type exists, there is only one destination for
these buffers. While buffers written by B1 have to travel
through DCL, CIML and libspe2 libraries and through the
Memory Flow Controller (MFC) and Element Interconnect
Bus (EIB) CBE processor elements, buffers written by B2
will be directly handed off to filter C by DCL by simply
passing the pointer of it.

Figures 4, 5 and 6 show some example code for an ap-
plication which uses one SPE to add together two matri-
ces. The setup_application () function in Figure 5
is defined by the developer to tell the runtime engine where
to place filters and how to connect the data streams. Af-
ter the init_dcl () initialization function in Figure 4 re-
turns, the main () function can do work to begin the com-
putation. Note how simple the SPE code is (see Figure 6);
it has none of the complicated operations normally associ-
ated with programming the CBE. However, the code is fully
multi-buffered, as CIML (see Section 3) allows for the over-
lap of computation with communication.

// SPE code: Set up constants

void

add_values (DCLBuffer * buffer) {
DCLBuffer *« out_buffer =
create_buffer (”added_matrix”,
BUF_SIZE);

float x a = (float x)
get_extract_pointer (buffer);
float = b = (float x)
get_extract_pointer (buffer);
float x ¢ = (float x)
get_data_pointer (out_buffer);

for (i = 0; i < NUMCOLS; i++)
c[i] = a[i] + b[i];

stream_write (out_buffer);

}

2.3 DataCutter for Distributed Multicore
Programming

DataCutter and DCL are parts of a burgeoning
component-based middleware framework designed to pro-
vide efficient dataflow execution on modern hierarchi-
cal, heterogeneous cluster supercomputers. Our ultimate
goal is to develop a comprehensive, flexible API such
that DataCutter will handle coarse-grain dataflow over
the LAN/WAN network and DCL will handle fine-grain
dataflow within a single node. While we draw a distinc-
tion between these two projects since DCL is presented in
this paper, the end goal is for that distinction between Data-
Cutter implementations to disappear. DCL instances within
a node will act like filters to DataCutter to achieve seamless
coarse-to-fine grain integration and interoperability.

Figure 7 shows what a mixed DataCutter and DCL ap-
plication might look like. At the largest application granu-
larity, whole sets of data are considered. Raw datasets from
large-scale simulations, whole patient files, or whole exper-
iments to be run might be examples of this coarse-grained
data. This data will be partitioned using DataCutter to run
on whole clusters. At the smallest granularity, DCL can be
used to leverage multicore processors to analyze the fine-
grained data, such as individual simulation timesteps, single
data point analysis, or single pixel operations. In Section 5
we discuss a real-world biomedical image analysis appli-
cation implementation with a mixed DataCutter and DCL
paradigm.



Streaming Application Tasks

s|ana1 Auenuels

L h
' [
' Y
D .
, Ky
, y
y

............................................................

Granularity Types

Application

Computer

Maps with...

Simulation/
Patient/
Experiment

Cluster

Molecule/
Visit/
Image

Node

Timestep/
Data point/
Pixel

Core

Figure 7. Software and Hardware Granularities

3 CBE Intercore Messaging Library

We have designed and implemented a two-sided com-
munication library for the CBE processor: The CBE Inter-
core Messaging Library (CIML). CIML makes use of the
libspe2 interface, and begins to abstract away some of the
architecture-specific details of the communication channel.
That is, a developer using function calls in CIML will not
need any knowledge of the MFC, which is the functional
unit associated with a Synergistic Processor Unit (SPU) en-
abling it to access main memory through Direct Memory
Access (DMA) commands. Each SPU has an associated
MEC, and each MFC can queue 16 DMA commands before
blocking the SPU’s execution of instructions. It is through
this method the SPEs can overlap communication with use-
ful computation.

Table 2. CBE Intercore Messaging Library Ap-
plication Programming Interface

Receive Functions
recB(src, dest_ptr)
recNB(src, dest_ptr)
rec_completeNB(src,

Send Functions
sendB(dest, src_ptr, size)
sendNB(dest, src_ptr, size)
send_completeNB (dest,

src_ptr) dest_ptr)
send_complete_alINB(dest) | rec_complete_allNB(src)
int probeNB(src)

CIML mimics the spirit and usage patterns of MPI with
both blocking and non-blocking send and receive func-

tion calls. Additionally, CIML allows direct SPE-SPE data
transfers, without passing through the main memory cache
hierarchy or involving the PPE. IBM’s libspe2 allows the
developer to map the SPEs’ local store space into main
memory. DMAs involving addresses in these memory-
mapped locations do not go through main memory, and are
therefore not subject to the 25 GB/s main-memory band-
width limit. This being the case, multiple pairwise SPE-
SPE communications can occur simultaneously, and these
transfers are only subject to SPEs’ end-point throughput of
25 GB/s. (Each SPE has simultaneous send and receive
bandwidths of 25 GB/s.)

Table 2 shows the API for SPE-SPE communication in
CIML. The B and NB suffices on the function names are
intended to convey the fact that the send and receive calls
deal with blocking and non-blocking communications, re-
spectively. As such, the function calls sendB and recB will
block until the communication is complete. The function
calls suffixed with NB will return as quickly as possible to
allow for more computation to continue while the commu-
nication completes. The final PPE-SPE communication API
is similar - but not identical - to the SPE-SPE API. The rea-
soning behind a slightly different API for PPE-SPE com-
munication is discussed in Section 4.

Figure 8 shows the communication bandwidth for CIML,
while Figure 9 shows the latencies involved in ping-pong
communication. (Incidentally, Figures 8 through 12 show
the results of the final, optimized version of CIML; discus-
sions about optimizations and their effects are included in
Section 4.) In this experiment we have a single source SPE
and we have varied the number of destination SPEs. The
results are an average over 100 iterations for each message
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size from 1 byte to 16 KB; also, the results are aggregate and
do not use any hardware-based broadcast mechanism. Since
CIML is a two-sided library, there is some extra overhead
associated with communications. However, at the larger
message sizes, a single SPE-SPE communication channel
gets over 80% of the possible bandwidth with 4 KB mes-
sages, and over 90% with 8 KB messages. By using more
than one SPE, maximum bandwidth can be achieved even
with shorter messages.

Figures 10, 11 and 12 show the bandwidth and latency
measurements for PPE-SPE communication. Again, these
results are an aggregate value, and averaged over 100 itera-
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tions. The most striking thing about these charts is the large
decrease in communication bandwidth versus the SPE-SPE
communication. In order to provide a two-sided communi-
cation interface, some information must be transferred from
the main memory to the local store of the SPE, and the CBE
is constrained in its PPE-SPE communications by a number
of architectural idiosyncrasies. These results are actually
the result of several rounds of optimizations, some of which
are discussed in the next section.
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4 DataCutter-Lite for CBE Optimizations

This section presents some of the optimizations made on
the DCL for CBE runtime engine and on CIML. The first
two optimizations are applied due to constraints or capa-
bilities of the CBE, while the last two are made for more
traditional reasons like allowing communication and com-
putation overlap, or avoiding deadlock.

4.1 High-Bandwidth SPE-SPE Two-Sided
Communication

In any two-sided communication, some information
must be transferred from the sender to the receiver, and vice
versa. Since SPEs in the CBE only have 256 KB of lo-
cal store memory with which to store the executable and
all data, our communication protocol must take this into ac-
count. In order to allow high-bandwidth SPE-SPE commu-
nication, we have chosen to implement a sender-initiated,
pull-based protocol. While the authors of [17] achieve good
results with a receiver-initiated protocol, in the streaming
paradigm no write is ever blocking, meaning that the cost
of having a sender wait for the receiver to transfer destina-
tion data is too high.

Therefore, in our protocol, with a ‘put,” the sender trans-
fers to the receiver a header packet containing the source
address and size of the message. The receiver polls its lo-
cal header queue, waiting for a message header. When the
header is received, the message transfer can be initiated with
a ‘get’, and the data can be used once the transfer is com-
plete. A ‘message-received’ header is also sent back to the
sender. The sender is not involved in the operation, except
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for sending the header to the receiver. Since DMAs are non-
blocking (as long as the DMA command queue is not full),
the sender can then proceed to other computation. Figure 13
shows the effect of using a sender-initiated, pull-based pro-
tocol versus a sender-initiated, push-based protocol. The
results were taken with a single sender and a single receiver.

4.2 Pure Pull-based PPE-SPE Communi-

cation

Unfortunately, while a sender-initiated, pull-based
scheme works well on the SPEs, when the sender of the
message is the PPE, the smaller DMA command queue size
available to the PPE harms the communication bandwidth.
The MFC in the SPE has a DMA command queue of size
16 for DMA commands initiated by the SPU. The PPE only
has a queue of size 8§ for DMA commands dealing with that
SPE. This asymmetry means that a carefully designed pull-
based PPE-SPE communication library is more appropriate
than one in which the sender transfers the message header
to a known location in the receiver’s memory space. That is,
when the SPE is attempting to read from the PPE, it must
first transfer the message header from the PPE; the PPE’s
responsibility is simply to write to its own message header
area. To increase the bandwidth, we transfer the entire set
of message headers. When the PPE is writing multiple mes-
sages to the same SPE without expecting a response, the
SPE can successfully use this local cache of the message
headers to initiate plenty of DMA commands. As such,
CIML implements this type of PPE-SPE communication,
in favor of mimicking the ‘more’ two-sided approach used
in SPE-SPE communication. Figures 14 and 15 show the
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results of changing the PPE-SPE communication method
from that mimicking the SPE-SPE method to a pure pull-
based method. As above, the figures show the results of a
single sender and a single receiver. Therefore, the final val-
ues match the single-threaded results from Section 3. The
PPE-SPE transfer from main memory is still hindered by
architectural characteristics of the CBE, and as such suffers
from a more anemic transfer rate than SPE-PPE data trans-
fers to main memory. Also, even DMAs reach only half of
the maximum main memory bandwidth of 25 GB/s during
the SPE-PPE transfer.

4.3 Buffer Prefetching

A standard high-performance computing technique is to
overlap communication with computation. This is emi-
nently possible with the CBE, since instructions to place
DMA commands into the SPE DMA command queue are
issued quickly, and are non-blocking when the DMA com-
mand queue is not full. Therefore, DCL uses prefetches
buffers when calling filters’ processing functions. In the
simplest case, this allows automatic double-buffering of
data for use in streaming operations.

4.4 Fine-grained Buffer Arrival Blocking

When DMA commands are issued for message transfers
in the CBE, each command can be assigned a 5-bit tag id.
While each SPE’s filters are intended to be independent of
one another, the buffer heap and the DMA command queue
tags are shared among all of the filters running on one SPE.
By keeping track of which buffer matches which DMA tag,
CIML is able to provide fine-grained buffer receipt or send
completion blocking for each filter. The practical effect is
that multiple filters running on the same SPE do not step
on each other’s toes when sending and receiving complex
patterns of messages. When a filter needs to create a buffer
which is too large for the total remaining heap, the runtime
engine can wait for the oldest remaining message transfer to
complete. Once that message transfer is complete, the heap
space can be freed, giving room to the new buffer. If CIML
did not keep track of these DMA tag/buffer associations,
the entire DMA command queue would have to be flushed
in order to create enough heap space for new buffers. This
would cause unwanted latency and bandwidth degradation.

5 Application Experiments

In order to evaluate the performance of the CBE
DataCutter-Lite implementation and to stress the program-
ming paradigm, we have developed three applications with
arange of characteristics. The experiments were performed
on the Ohio Supercomputer Center’s Glenn e1350 Blade
Center.

The first application we developed to stress the DCL im-
plementation and the programming API is a simple ma-
trix addition application. Since the computation involved
with this application is extremely small, this code shows
a large Communication-to-Computation-Ratio (CCR). We
have used IBM’s Accelerated Library Framework (ALF)
matrix addition example [12], in order to obtain a good
baseline comparison for our DCL-based implementation.

The second of our example applications is a simple
color-space transformation to be performed on an image.
The application simply transforms each pixel in an image



from the RGB color space to the LAB color space. These
types of computations, while simple, are fairly time con-
suming. As such, this example application will feature a
small CCR value. As a baseline comparison, we have used
a custom-implemented color-space transformation applica-
tion which uses only IBM’s SDK for the CBE.

The last of these applications is a real biomedical image
analysis application [11]. The input to the overall appli-
cation is a tissue slide image digitized at high resolution.
Each RGB pixel is converted to the LAB color space and
some statistics are calculated on a per-tile basis. (We reused
the color-space transformation code presented earlier.) The
luminance channel is then taken from the LAB image and
a local binary pattern (LBP) feature is calculated. The four
statistics per image channel and the LBP feature comprise a
feature vector which is used in a classification stage in order
to determine the properties of the image tile. To compare
with our DCL-based implementation, we have developed a
custom CBE implementation of the image analysis applica-
tion. This implementation uses one main loop which reads
the RGB image tiles from a socket and performs the func-
tions on each tile. The operations are slightly decoupled,
meaning that the RGB-to-LAB color space transformation
and the LBP feature calculation must be scheduled sepa-
rately on the SPEs. The main loop in the application acts as
this task scheduler.

The first two applications, the matrix addition and the
color-space transformation, are simple kernels that repre-
sent the widest range of CCR values which real applications
might exhibit. Most real applications are built from compo-
nents like these and hence their performance can be easily
predicted by looking at how the individual components be-
have.

The DCL versions of all three applications and their
baseline counterparts are inherently composed of the same
independent tasks. As such, there is no algorithmic method
used to reduce the amount of work for one of the implemen-
tations versus the other. All of the execution times shown
in the charts for the baseline versions of the applications are
the best times obtained by hand-tuning the application per-
formance. Similarly, optimizations were made to the DCL
runtime engine in order to allow the DCL versions of the
three applications to achieve the best performance results.
Further, optimizations were made to the DCL versions of
the applications themselves. On the PPE, the optimizations
were mainly made to relieve the main memory bandwidth
requirements. For the SPE code, the most important opti-
mization to be made is choosing the size of the data buffers;
incorrect choices limit the amount of communication and
computation overlap which is achievable. These optimiza-
tions were made in an ad-hoc manner, and their in-depth
discussion is beyond the scope of this paper. In our future
work, we intend to develop automatic techniques such that
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Figure 16. Execution times for Matrix Addi-
tion

these performance optimizations are made without the de-
veloper’s intervention.

Figure 16 shows the execution times for the two matrix
addition implementations. The input matrices are 1024 x
512 in size. DCL’s execution times are greater than those of
IBM’s ALF implementation, ranging from 8% higher on 6
SPEs to 91% higher execution time on one SPE. The higher
execution times are due to a couple of reasons. First, the
construction of serialized data buffers is an operation which
the ALF implementation does not need. Further, since the
DCL matrix addition program is very simple, the highest
throughput DMA buffer size of 16 KB is not used (DCL ap-
plication simply transfers one row at a time), whereas the
ALF implementation uses this DMA buffer size. Both of
these issues can be solved with some extra effort, but the
simple implementation is meant to serve as a baseline num-
ber, and is the worst the DCL method is likely to give. Fur-
ther, the ALF implementation uses many cryptic function
calls to set up the task graph. The DCL implementation
merely requires the use of a handful of functions.

Figure 17 shows the execution times and parallel
speedups for the color-space transformation performed on
32 image tiles. Since the overheads of reading the images
from the disk are disregarded here, the speed up is nearly
linear, reaching a value of 7.9 for the baseline version and
7.7 for the DCL version. Without intimate knowledge of
how the IBM libspe?2 library schedules the logical SPE con-
texts onto physical SPE resources, it is hard to postulate a
reason why a knee exists in the speedup curves after 4 SPEs.
However, we expect that up to 4 SPEs, a degree of regular-
ity is maintained in the placement on the physical resources
- and of the communication pattern, there being 4 indepen-
dent message channels in the ring bus. From 4-7 SPEs, this
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Figure 17. Execution times and speedups for
color transformation for 32 image tiles

regularity is necessarily disturbed. When 8 SPEs are used,
this regularity returns to a reasonable degree, even though
the communication bus is most highly loaded at this config-
uration.

Figures 18, 19 and 21 show the results of the experiments
on the full biomedical image analysis application with var-
ious overheads included and excluded, respectively. When
end-to-end applications are considered, even the most effi-
cient algorithm implementation is subject to such concerns
as disk latency, and upstream data overheads. In this case,
the upstream data overhead is the decompression of the
TIFF images to be calculated. When excluding these over-
heads, we see a similar pattern of near-linear speedup for
the DCL implementation. Unfortunately, the baseline ver-
sion of the application actually begins to suffer when the
number of SPEs used rises above 5. This is likely due to
the extra scheduling overhead and memory bandwidth used
in the baseline’s implementation, since it decouples the two
major stages of the operation and schedules them separately.
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Figure 18. Execution times and speedups for
biomedical image analysis application for 32
image tiles - overheads included

The DCL implementation simply writes one buffer as out-
put from the first stage to the input of the second stage.
Since this buffer stays in the SPE, it saves main memory
bandwidth, and since the second stage is triggered by the
runtime system resident on the SPE, the PPE is not involved
in the scheduling operation, saving time.

When the TIFF decompression overheads are consid-
ered, the application performance decreases, particularly
when more SPEs are involved in the computation. The best
speedups achieved are 2.2 for the DCL version and 2.7 for
the baseline version. The DCL version does not read the de-
compressed TIFFs from an incoming socket, since this op-
eration would require the use of mutexes in order to share
the socket, and we have avoided this type of programming,
since it is incompatible with our goal of designing a runtime
system devoid of these types of details. As such, each TIFF
is decompressed in the same thread which calls the DCL
routines to analyze the image.
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Figure 19. Execution times and speedups for
biomedical image analysis application for 32
image tiles - overheads excluded
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Figure 20. DataCutter and DataCutter-Lite
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Neuroblastoma performance
1024 image tiles

600

500
w400
= WDC+DCL
S 300 mDcL
_E_'-Ja_ l Baseline
w 200
E
- il

0
1 2 3 4 5 & 7 8
SPUs
Neuroblastoma performance
1024 image tiles

<]

8

7

G
o W DC+DCL
ER & DCL
o 4 - Baseline
a3
0]

2

1

0

SPUs

Figure 21. Execution times and speedups
for biomedical image analysis application for
1024 image tiles

To solve the problem of insufficient TIFF decompres-
sion bandwidth, we have implemented a mixed DataCut-
ter+DCL version of the image analysis application. Fig-
ure 20 shows the layout of the integration of DataCutter for
internode communications and DCL for intranode execu-
tions. As such, Figure 21 shows the results when DataCut-
ter is used to distribute the TIFF tile decompression stage
among several computational nodes, and one CBE proces-
sor is used to analyze the tiles with its 8 SPEs. Unfortu-
nately, OSC’s CBE blades are currently only configured to
run with Gigabit Ethernet, which limits the amount of help
distributed nodes can give.



6 Conclusions

This work presented DataCutter-Lite (DCL), a fine-
grained, component-based, filter-stream programming li-
brary and runtime engine. DCL is meant to allow ap-
plication developers access to the new high-performance,
multicore microprocessors available in the marketplace.
We showed that the runtime engine is able to support
high-bandwidth communications among the processor’s
cores without burdening the developer with low-level,
architecture-specific instruction syntax. We showed that for
applications with high communication to computation ra-
tios, DCL does not incur an additional overhead. For appli-
cations with low CCR values, we showed that DCL scales
as well as custom application implementations.

Clearly there is promise to the idea of filter-stream pro-
gramming on modern multicore processors. This work rep-
resents a solid first step towards the future goals of program-
ming libraries meant to provide robust APIs for program-
ming large supercomputers comprised of duplicated nodes
with multiple multicore processors. Future work in this area
will be in multiple directions. First, the CBE-specific imple-
mentation presented in this paper will be used as a test-bed
for further optimizations. We plan to release the software
as open-source along with the software to help link DCL to
the legacy LAN/WAN-specific DataCutter middleware.

The next set of goals will be implementing DCL for
more traditional multicore microprocessors. This will in-
volve work into minimizing the overheads involved at every
level of the software stack. However, by paying careful at-
tention to these overheads - as well as processor traits such
as cache hierarchy behavior and size - we intend to create a
runtime engine and programming library rivaling other op-
tions.

In parallel with both the CBE-specific DCL work and the
more traditional multicore microprocessor version, work
will continue to integrate DCL into DataCutter proper. This
will allow a seamless application development experience,
from coarse-grained dataflow at the grid or cluster level to
fine-grained dataflow at the node level. Further end-to-end
application optimizations would then be possible, since the
layout of the entire application’s filters will be known a pri-
ori. The filter stages can be appropriately sized and op-
timally placed for maximum application bandwidth at all
granularities of dataflow.

The most long-term goals involve the development of al-
gorithms to automate the creation of transparent filters for
increased bandwidth, along with the placement of the in-
stantiated filters onto physical resources. These decisions,
along with the scheduling of the transmission of data buffers
and the tasks to compute can be automated, alleviating the
stress placed on the developer to optimize these application
characteristics through trial and error.
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