
Investigating the Use of GPU-Accelerated Nodes for SAR Image Formation∗

Timothy D. R. Hartley1,2, Ahmed R. Fasih2, Charles A. Berdanier3,
Füsun Özgüner2, Umit V. Catalyurek1,2

1 Department of Biomedical Informatics,
2 Department of Electrical and Computer Engineering,

The Ohio State University, Columbus, OH, USA.
3 Air Force Research Laboratory,

Wright-Patterson Air Force Base, OH 45433
{hartleyt,umit}@bmi.osu.edu,

{fasiha,ozguner}@ece.osu.edu, charles.berdanier@wpafb.af.mil

Abstract

The computation of an electromagnetic reflectivity image
from a set of radar returns is a computationally intensive
process. Therefore, the use of high performance comput-
ing is required to form images from radar signals in a short
time frame. This paper explores the use of distributed mem-
ory cluster computers and accelerator technologies such
as GPUs for radar signal analysis applications, particu-
larly backprojection image formation. We obtain good re-
sults with the use of GPUs and compare their performance
in terms of execution time with distributed memory clus-
ter computers. When using a configuration with 4 GPU-
accelerated nodes, we achieve speedups up to 3.45x for dif-
ferent input and output data size combinations.

1 Introduction

Due to the rapid growth of the computational capacity
of Graphics Processing Units (GPUs) over the past decade,
researchers are increasingly using these emerging architec-
tures to accelerate high performance applications. In fields
such as data mining [7], image segmentation and cluster-
ing [8], numerical methods for finite element computations
used in 3D interactive simulations [16], nuclear, gas disper-
sion and heat shimmering simulations [17], and biomedical
imaging [9], GPUs have been used to speed up operations

∗This work was supported in part by the U.S. Department of En-
ergy SciDAC Grant DE-FC02-06ER2775; by the U.S. National Science
Foundation under Grants CNS-0643969, and CNS-0403342; by Ohio Su-
percomputing Center Grant PAS0052; by AFRL/DAGSI Ohio Student-
Faculty Research Fellowship RY6-OSU-08-3.

which are time-consuming on standard processors, dramat-
ically affecting the overall execution times of the final ap-
plications.

Synthetic Aperture Radar (SAR) is a computationally
intensive technique which can be used for, among other
things, creating 2-D and 3-D images from radar signals
gathered by a moving platform such as an aircraft. By com-
bining signals gathered from multiple points in space (mul-
tiple angles of azimuth and elevation), higher resolution im-
ages can be constructed without needing a larger physical
antenna or radar array. The computational burden increases
with the image size and the amount of input, and so tech-
niques for accelerating the processing of the input radar sig-
nals and generating the output images are necessary to be
able to process the large amount of data in real time. Even
if real time processing is not the goal, the sheer volume of
data which SAR platforms can gather necessitates fast pro-
cessing to enable fast decision making.

This paper investigates the use of a cluster of GPU-
equipped processing nodes to perform SAR image forma-
tion by backprojection. We discuss the particulars of the
backprojection algorithm and briefly present an overview
of computed tomography in Section 2. We present the soft-
ware technologies used to implement the algorithm on the
target system in Section 3, and the algorithm design space
and parallelization decisions in Section 4. We finish by pre-
senting our experimental results in Section 5 and give some
conclusions and future work afterwards.

2 Overview of Computed Tomography

In this section, we provide an introduction to tomo-
graphic imaging, the principle behind x-ray computer-

Figure 1. Schematic demonstrating operation
of the tomographic principle. The scene con-
sists of the three targets of different ampli-
tudes (circles), and produces the range pro-
files shown in Figure 2. Note that the flight-
path may be circular or straight.

aided tomography (CAT), magnetic resonance imaging
(MRI), and synthetic aperture radar (SAR) imaging. A
tomographic system involves a sensor capable of taking
one-dimensional line projections through a two- or three-
dimensional scene, and then reconstructing this underlying
scene from a collection of line projections taken from dif-
ferent aspect angles.

The mathematics of line projections are given by the
Radon transform. The specific way that this transform en-
ters each of these modalities is slightly different, due to dif-
ferences in their respective sensors, but the common ele-
ment is this: the two-dimensional scene is collapsed into
a one-dimensional projection by means of a dense set of
line integrals penetrating the scene (in three dimensions, the
projection is obtained by a set of slice integrals). This line
integral is sampled and stored as a one-dimensional data
vector, and tagged with the location of the sensor when the
projection was taken.

Figure 1 presents a diagram of a SAR antenna, which
is mounted on an aircraft and pointed at a scene of interest
on the ground. The antenna broadcasts a very short radio
pulse (lasting microseconds) at the scene and records any
reflections. It is assumed that there is negligible aircraft mo-
tion during this process; the aircraft moves and the process
is repeated at a pulse repetition frequency of several thou-
sands per second. With a single pulse, the scene cannot be
reconstructed: although the one-dimensional range profile

Figure 2. Line projections obtained by a sen-
sor flying the large aperture of Figure 1. Each
range profile contains the linear contribu-
tions of all three scatterers. Note the merging
and crossing of the two left-most scatterers
at pulse 6 due to them possessing identical
range displacement.

gives good range resolution, cross-range resolution is non-
existent because two reflectors equidistant from the sensor
would be indistinguishable. However, by combining many
one-dimensional pulse returns collected over a large az-
imuth extent, multi-dimensional reconstruction of the scene
becomes feasible. Azimuth functions as the second dimen-
sion, variation along which suffices for a two-dimensional
reconstruction. Height or elevation angle diversity, is re-
quired for three-dimensional reconstruction. Complete de-
tails of SAR reconstruction are provided in [11].

Mathematically, it can be shown that a multi-
dimensional Fourier transform of a continuous function is
equivalent to the one-dimensional Fourier transform of that
function’s Radon transform (along each projection). The
discrete version of this relationship is used by a large class
of tomographic reconstruction algorithms which use a fast
Fourier transform (FFT). Because most FFT implementa-
tions require a rectangular grid, whereas projections are
usually collected along a radial grid, polar-to-rectangular
interpolation is an important pre-processing step. Such
polar-formatting algorithms are attractive because the cen-
tral step of multi-dimensional FFT is O(Nn log N) , where
n is the dimensionality of the scene.

Another class of of popular algorithms is filtered
backprojection (also known as convolved backprojection)
which, put simply, reverses the action of the Radon trans-
form. An image is initialized to zero; then for each pro-
jection (shown in Figure 2), every pixel that may have con-
tributed to an element of the sampled projection vector is
incremented by that element. For any given sample of a pro-

2

jection vector, the pixels that could have contributed to its
value when the line integral was taken correspond to those
pixels that are equidistant from the radar at the given az-
imuth and elevation angles. Because each pixel must query
a single point along each projection, backprojection has
O(Nn+1) complexity, where n again is the dimensionality
of the scene. It is called “filtered” backprojection because
each projection is given a frequency weighting to adjust for
a larger number of pixels clustering around the center of
the image, due to a radial acquisition mode. This clustering
is also visible in Figure 1: whether the aircraft flies past a
scene or circles it, the radially-sampled range profiles ob-
tained sample the center of the scene more finely than the
edges.

In theory, both algorithms produce equivalent outputs,
and frequently, commercial tomographic reconstruction
systems are locked into one or the other. Experts on both
sides have compiled lengthy lists of pros and cons, for vari-
ous modalities, imaging scenarios, and scene sizes over suc-
cessive generations of computer capabilities, because the
image outputs of the two algorithms do differ. We sidestep
the controversy by noting that while both algorithms have
been demonstrated to scale well to distributed systems,
backprojection very easily allows an image to be formed on
a previously-obtained digital elevation map (DEM). For this
major reason, we have chosen to implement backprojection
for a GPU cluster processing environment.

SAR differs from CAT or MRI reconstruction in that the
underlying scene being Radon-transformed is a complex-
valued electromagnetic reflectivity function, encoding at-
tenuation and absorption properties of the materials, rather
than a real-valued x-ray absorption function or hydrogen
energy release map. What this practically means is that
with coherent SAR processing, which backprojection ac-
complishes, a modern system can produce fully legible im-
age with less than 5◦ of azimuth. (MRI and CAT systems
typically need 180◦ to reconstruct a two-dimensional slice.)

For mapping or surveillance applications, SAR is valu-
able because it has range-independent resolution, operates
day and night, and is to a large degree impervious to weather
conditions. Many deployments successfully deploy it with
camera or LIDAR sensors to accomplish many varied tasks,
but perhaps the most common is forming an image.

Having described the computational complexity of the
backprojection algorithm, we next describe our choice of
software engineering frameworks to write parallel imple-
mentations.

3 Software Support

This section describes the software tools and libraries
used during the development of our radar signal analysis
application. To parallelize the computation across multiple

nodes, we have chosen DataCutter, a component-based pro-
gramming framework and runtime engine. With DataCut-
ter, we are able to easily make use of multicore processors
and accelerators, decompose the input and output domains,
and efficiently execute the overall application in and end-to-
end fashion. To program the GPU, we have chosen to use
Nvidia’s CUDA programming environment and hardware
solution. With CUDA, we are able to efficiently make use
of the GPU’s vast computational throughput as well as inte-
grate seamlessly with DataCutter for parallelization across
a full GPU cluster. Below we present a brief discussion of
each of these software solutions.

3.1 DataCutter

DataCutter [3] is a component-based middleware frame-
work [1, 4, 10, 13, 14] designed to support coarse-grain
dataflow execution on heterogeneous computational re-
sources. In DataCutter, the application processing structure
is implemented as a set of components, referred to as fil-
ters, that exchange data through logical streams. A stream
denotes a uni-directional data flow from one filter (i.e., the
producer) to another (i.e., the consumer). Data flows along
these streams in buffers so as to minimize various system
overheads. A layout is a filter ontology which describes the
set of application tasks, streams, and the connections re-
quired for the computation. A placement is one instance of
a layout with actual filter copy to physical processor map-
pings.

As a dataflow system, naturally, DataCutter sup-
ports pipeline-parallelism (also called as task-parallelism)
through concurrent execution of dependent components (fil-
ters) on different data items. The DataCutter runtime sys-
tem also supports data-parallelism at multiple levels. At the
application level, multiple copies of the application layout
can be instantiated and executed. At the filter level, mul-
tiple copies of filters can be either transparently or explic-
itly created and executed, while providing the illusion of a
single filter to all upstream and downstream filters. Process-
ing, network, and data copying overheads can be minimized
by intelligent placement scheduling of filters. The runtime
engine performs all steps necessary to instantiate filters on
the desired machines and cores, to connect all logical end-
points, and to call the filter’s interface functions for process-
ing work.

3.2 CUDA

The Compute Unified Device Architecture (CUDA) [5]
is a programming interface and set of supported hardware
to enable general purpose computation on Nvidia GPUs.
The programming interface is ANSI C extended by sev-
eral keywords and constructs which translate into a set of

3

C language library functions; a special compiler generates
the executable code for the GPU.

In CUDA compatible hardware, the GPU cores are orga-
nized into multiple multi-processors (16 in G80), each hav-
ing a large set of registers (8,192 in G80), a small shared
memory (16 KB) very close to registers in speed (both 32
bits wide), and constants and texture caches of a few kilo-
bytes. The GPU also has a large DRAM which is divided
into three types: constant memory, texture memory and
global memory.

The CUDA programming model simply consists of a
collection of threads running in parallel. Programs are de-
composed into blocks of threads, arranged logically in a reg-
ular grid pattern. Each block is mapped to a single multi-
processor, and multi-processors can run (potentially) more
than one block of threads concurrently. The local resources
(registers and shared memory) are divided among blocks,
hence threads. A warp is the largest set of threads the GPU
as a whole can execute concurrently; at 32 threads on the
G80, a warp size is less than the number of 128 cores due
to memory access limitations. In any given cycle, each
core in a multi-processor executes the same instruction of
a warp on different data for each thread (based on a unique
threadId). Communication between multi-processors is
performed through global memory on the GPU. No inter-
block communication or specific schedule-ordering mecha-
nism for blocks or threads is provided, which allows each
thread block to run on any multi-processor at any time.

Since CUDA is specifically designed for generic com-
puting, it does not suffer from excessive constraints when
accessing memory, although the memory access times do
vary for different memory types. All of the threads can ac-
cess all of the GPU memory, but, as expected, there is a
performance boost when each thread reads data resident in
a special shared memory area (up to two orders of magni-
tude).

When developing applications for GPUs with CUDA,
the management of resources (registers, shared memory)
becomes important as a limiting factor for the amount of
parallelism we can exploit. Each multi-processor of the G80
hardware (which we have used for our experiments) con-
tains 8,192 registers which will be split evenly among all
the threads of the blocks assigned to that multi-processor.
Hence, the number of registers needed in the computation
will directly affect the number of threads able to be executed
simultaneously.

4 Implementation Details

Having given a high-level overview of tomographic re-
construction in Section 2 and having presented the software
solutions we will leverage to accelerate image reconstruc-
tion, we delve into the backprojection algorithm in further

detail.
We first present this caveat: before being used for

imaging, each one-dimensional projection vector must
be pre-processed. This involves windowing (to adjust
the mainlobe-sidelobe tradeoff) and filtered for frequency
deweighting. The former step involves element-wise multi-
plication of each projection vector by the window of choice.
As SAR data is typically sampled and stored in the Fourier
domain, filtering involves multiplying each projection by a
filter frequency response and inverse Fourier bringing each
projection to the spatial domain (via an inverse FFT with
O(N log N) complexity). As mentioned above, the filter in
question adjusts for the fact that projections have a coordi-
nate origin, and are thus more densely sampled in some ar-
eas than others, due to the radial nature of acquisition. The
most common filter, the Ram-Lak filter, is simply a ramp
filter with a frequency response equal to |f | , for frequency
f .

In medical imaging, the computational burden of pre-
processing has to be accounted for, and it can frequently
be a critical factor (e.g., in the Cell Broadband Engine im-
plementation of [15]). Traditionally, too much data is sam-
pled by a SAR system to be either processed on board the
aircraft or wirelessly broadcast to a ground station, mak-
ing imaging non-real-time. For this reason, we chose to not
parallelize the one-time pre-processing: we simply perform
windowing and filtering on a central CPU, and off-load the
actual backprojection to the acceleration system. We will
discuss the advantages and trade offs of each acceleration
method both here and in Section 5 where we present our
experimental results.

4.1 Backprojection with DataCutter

In backprojection, each one-dimensional projection has
a contribution for each given pixel. A number of algebraic
operations have to be performed to obtain the index for each
projection; then, that element of the projection vector must
be fetched and incremented to the pixel. Therefore, one may
assign subsets of projections to cluster nodes and partition
the input, or one may assign sub-image tiles of the output
image to cluster nodes, and partition the output.

Figure 3 shows the basic processing pipeline. The major
tasks are Read Input Data, Form Partial Image, and Ag-
gregate Partial Images. For processing pipelines with no
task parallelism, the second stage will consist of only one
processing element, and as such the partial image formed
during this stage will in fact be the final image. However,
in more complex processing pipelines (specific instances
of tasks mapped to CPUs, GPUs or Cell processors) with
task parallelism, the work to be performed is partitioned
amongst all of the Form Partial Image pipeline tasks.

With SAR image formation, the work to be performed is

4

Figure 3. SAR Imaging Pipeline

the calculation of each input vector’s contribution to each
pixel in the output image. As such, both the input and
the output can be partitioned amongst the imaging pipeline
tasks. Figures 4 and 5 show small examples of partition-
ing the input and output of copied imaging pipeline tasks,
respectively. When partitioning the input, the amount of
computation which each imaging task performs is reduced
to C/N where N is the number of imaging tasks and C is
the total amount of computation required to form the total
final image. When the input is partitioned, the output data
size stays constant among all of the imaging tasks.

When partitioning the output in SAR image formation,
the input data set size stays constant (it is broadcasted by the
Read task to all of the downstream imaging tasks). Then,
each imaging task only computes the input data set’s contri-
bution to a subset of the pixels of the output image.

Figure 4. SAR Imaging Input Partitioning

Although more complex hybrid solutions to the decom-
position of the input and output data can be developed [12],
their performance is typically close to that of the output-
partitioned scheme when the output size is large. Also since
the input-partitioned and output-partitioned parallelization
schemes represent the extremes of the SAR image forma-
tion pipeline design space and constitutes a good base cases
for comparisons, in this work we only develop and present
these two parallelization schemes.

Figure 5. SAR Imaging Output Partitioning

4.2 Backprojection with GPU

Our CUDA backprojection implementation partitions
the output image subset assigned to the kernel; this could be
the whole range of output pixels or just a subset, depending
on the output partitioning conducted across the image for-
mation tasks. During the remainder of this section, we will
assume the simple case where the pipeline includes only
one imaging task. CUDA blocks correspond to rectangu-
lar sub-images, and CUDA threads correspond to individual
pixels. This partitioning is appealing because we can take
advantage of texture caching if we store the projections as a
texture. Another advantage of using texture memory is the
hardware for linear interpolation of textures [15]. This is
beneficial because interpolation is required to choose an in-
termediate value between two samples of a given projection
during the image formation, and the GPU hardware pro-
vides this for free.

As the cached-texture memory is read-only, it cannot be
used for storing portions of the output image. Therefore, in-
dividual CUDA blocks allocate small image tiles in shared
memory, and each member thread increments its assigned
tile pixel by independently computing the index of each pro-
jection. After all the projections have been queried and the
sub-image completed, it is copied back to global memory in
a fully-coalesced write operation.

4.3 Combining DataCutter and CUDA

Since DataCutter is a component-based programming
framework, it is ideally suited to leveraging other program-
ming frameworks to ease implementation within compo-
nents. Further, DataCutter allows encapsulation all of the
low-level details of making use of accelerator architectures
such as GPUs. Provided the interfaces exposed to the other
components stay consistent, the implementations of each of
the components are quite flexible.

Our combined DataCutter/CUDA backprojection algo-
rithm used DataCutter’s ability to return pointers to spe-
cific portions of data buffers which are the quantum of data
the runtime engine handles. These pointers are then sim-
ply passed to a function which transfers data to the GPU

5

and executes the CUDA kernel. By preallocating outgoing
data buffers, we are able to transfer the results of the GPU
computation directly to the outgoing data buffer, rather than
requiring an extra copy operation.

5 Application Experiments

This section details the experiments we conducted to in-
vestigate the performance of using GPU clusters for SAR
image formation. Following the description of the computer
hardware, we discuss the dataset we used for our experi-
ments. Then, a presentation of our results and a discussion
of the interesting points follows.

All of the CPU and GPU experiments were conducted on
the Ohio Supercomputer Center’s (OSC) BALE Visualiza-
tion GPU cluster [2]. The BALE GPU nodes consist of two
dual-core 2.6 GHz AMD Opteron processors, 8 GB of main
memory, Nvidia Quadro 5600 graphics cards with 1.5 GB
of memory, and Infiniband network cards.

For our experiments, we used four nodes, which pro-
vides 16 cores and four GPUs. The CPUs have a
peak performance of 17.6 GFLOPS in single-precision
arithmetic, while the GPUs have a peak performance of
330 GFLOPS. We restrict our discussion of hardware spec-
ifications to single-precision floating-point arithmetic, be-
cause our application’s implementations only make use of
single-precision data types.

The Air Force Research Lab’s Sensor Data Management
System (SDMS) web site has released certain data sets to
the public, one of which is the GOTCHA1 data set. The
GOTCHA data set consists of SAR phase history data col-
lected with a 640 MHz bandwidth. We use a single eleva-
tion angle and up to 11◦ of azimuth coverage. The imaged
area is that of a parking lot, and is populated with various
cars and a few construction vehicles.

In our first set of experiments, we tested the scalability
of our basic DataCutter-based parallelization scheme, and
compared it with an existing, simple C/MPI parallel im-
plementation of the backprojection algorithm [6]. Figure 6
shows the CPU-only results, where we show the scalabil-
ity of these two implementations while varying the number
of processes. As the figures show, our DataCutter imple-
mentation is as efficient at using the parallel machines as
the straight MPI version, and as such, will introduce no un-
wanted overheads when transitioning to the parallel GPU
implementation. Indeed, due to the streaming nature of
DataCutter, and the staggered start times of the processing
nodes receiving messages from the initial Read filter, the
aggregation filter does not act as a bottleneck in the appli-
cation, leading to better scalability as the number of nodes
increases.

1https://www.sdms.afrl.af.mil/datasets/gotcha/index.php

Figure 6. Execution times of C/MPI and Data-
Cutter backprojection implementations with
1◦ of input data and varying image sizes.

Our next set of experiments present the performance
gains that can be achieved by GPU parallelization of back-
projection code. Figure 7 shows the execution times of
a single GPU running the backprojection algorithm on 1◦

of azimuth data with two different implementations. The
figure shows that DataCutter introduces a slight overhead
to single GPU executions, which is to be expected for a
pipelined parallel code written under the assumption either
input or output data will be partitioned. Necessary addi-
tional steps (the aggregation of output sub-images for the
output partitioning case, for instance) need to be executed
even when only one GPU will perform the image forma-
tion. Also note the exponential growth in execution times
when the output image size is increased from 2048x2048 to
4096x4096. This calls for a multi-node/multi-GPU paral-
lelism, especially for larger image sizes.

The comparison between parallel CPU and GPU imple-
mentations is striking in Figure 8; as expected, the GPU im-
plementations are significantly faster than CPU implemen-
tations. For example, running the same 1◦ of azimuth data
using C/MPI code takes about 4.7 seconds for 512x512 im-
age size, whereas it only takes 0.15 seconds using the GPU,
hence resulting in just over 31x speedup. The performance
gap increases with increasing image size; for 2048x2024
image size, the GPU’s speedup over CPU is about 55x,
while for 4096x4096 images, the speedup climbs to about
58x.

Figure 9 shows the largest-scale multi-GPU results.
Here, we use 11◦ of data in order to highlight the issues
we can solve within the multi-GPU domain. The results
show that the use of additional GPUs can help to further
reduce the execution time. Using 4 GPUs, we achieved up

6

Figure 7. Execution times of single GPU im-
plementations with 1◦ of input data.

Figure 8. Execution times of CPU and GPU
implementations with 1◦ of input data. The
data series suffices ‘PI’ and ‘PO’ denote
those implementations where the input or
output is partitioned amongst the GPUs, re-
spectively.

3.45 speedup with this particular combination of input and
output sizes. Also note that especially on the larger im-
age size, the output-partitioned parallelization scheme has
slightly better performance. For example, on 4096x4096
image size we achieve 3.05 speedup using input partition-
ing and 3.45 speedup using output partitioning. This is un-
doubtedly due to the fact that when the output image is par-
titioned, the GPU need only calculate a subset of the out-

Figure 9. Execution times of DataCutter/GPU
implementation running on up to 4 GPUs
with 11◦ of input data. The data series suf-
fices ‘PI’ and ‘PO’ denote those implementa-
tions where the input or output is partitioned
amongst the GPUs, respectively.

put image, and must only copy that subset from the GPU
back to the host’s memory. Whereas, when the input is par-
titioned, the whole image needs to be transfered between
host and GPU. This is known to be a slow operation, due to
the relatively anemic bandwidth of the PCI Express bus, to
which GPUs are connected.

Our last set of experiments, depicted in Figure 10, shows
the effect of varying the number of degrees of input az-
imuth data while using 4 GPUs. Since the number of pro-
jections in each azimuth degree is roughly the same, there
is a linear increase in processing time for each degree of
input data added to the image formation. As expected, the
slopes of the lines are different for each output image size,
because for each input projection, the amount of compu-
tation is highly dependent on the number of pixels in the
output image.

6 Conclusions

In this paper we have presented a method for per-
forming 2-D image formation from SAR on a cluster of
GPUs. By using DataCutter for the internode paralleliza-
tion and CUDA for the GPU programming, we have shown
that our solution is efficient at making use of the com-
putational resources. Further, by making use of 4 GPU-
equipped processing nodes to perform the 2-D backprojec-

7

Figure 10. Execution times of DataCut-
ter/GPU implementation running on 4 GPUs
while varying the input data set size.

tion computation, we can get (versus a single CPU core ex-
ecuting a relatively simple backprojection implementation)
29.9x speedup on a 512x512 image, 92.1x speedup on a
2048x2048 image, and 109.9x speedup on a 4096x4096 im-
age.

Our future work will include extending our use of accel-
erator architectures to the Cell Broadband Engine. Through
the use of DataCutter for coarse-grain parallelization, the
addition of other accelerators for the computationally de-
manding portions of the application is very straightforward.
Additionally, we intend to investigate the use of DataCutter
to perform the preprocessing steps for SAR image forma-
tion, leading to a full end-to-end runtime system for back-
projection. Further improvements to the GPU backprojec-
tion implementation include the use of some of the newer
CUDA features such as asynchronous memory copying and
zero-copy memory access. This will improve the overlap of
computation and communication, allowing further scalabil-
ity.

References

[1] K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson. Dy-
namic function placement for data-intensive cluster com-
puting. In the USENIX Annual Technical Conference, San
Diego, CA, June 2000.

[2] The BALE cluster at the ohio supercomputer center.
http://www.osc.edu/supercomputing/hardware.

[3] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Suss-
man, and J. Saltz. Distributed processing of very large
datasets with DataCutter. Parallel Computing, 27(11):1457–
1478, Oct. 2001.

[4] Common Component Architecture Forum. http://www.cca-
forum.org.

[5] CUDA. Home page maintained by Nvidia.
http://developer.nvidia.com/object/cuda.html.

[6] L. A. Gorham, U. K. Majumder, P. Buxa, M. J. Backues,
and A. C. Lindgren. Implementation and analysis of a fast
backprojection algorithm. In Society of Photo-Optical In-
strumentation Engineers (SPIE) Conference Series, volume
6237 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, June 2006.

[7] S. Guha, S. Krisnan, and S. Venkatasubramanian. Data vi-
sualization and mining using the gpu. In Data Visualization
and Mining Using the GPU, Tutorial at 11th ACM Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD 2005), 2005.

[8] M. Hadwiger, C. Langer, H. Scharsach, and K. Buhler. State
of the art report on gpu-based segmentation. Technical Re-
port TR-VRVIS-2004-17, VRVis Research Center, Vienna,
Austria, 2004.

[9] T. D. R. Hartley, Ü. V. Çatalyürek, A. Ruiz, F. Igual,
R. Mayo, and M. Ujaldon. Biomedical image analysis on a
cooperative cluster of GPUs and multicores. In Proceedings
of the 22nd Annual International Conference on Supercom-
puting, ICS 2008, pages 15–25, 2008.

[10] C. Isert and K. Schwan. ACDS: Adapting computa-
tional data streams for high performance. In 14th In-
ternational Parallel & Distributed Processing Symposium
(IPDPS 2000), pages 641–646, Cancun, Mexico, May 2000.

[11] C. Jakowatz, D. Wahl, P. Eichel, and D. Ghiglia. Spotlight-
Mode Synthetic Aperture Radar: A Signal Processing Ap-
proach. Springer, New York, 1996.

[12] T. Kurc, F. Lee, G. Agrawal, U. Catalyurek, R. Ferreira, and
J. Saltz. Optimizing reduction computations in a distributed
environment. In ACM/IEEE SC2003, Phoenix, AZ, Novem-
ber 2003.

[13] R. Oldfield and D. Kotz. Armada: A parallel file system
for computational grids. In Proceedings of CCGrid2001:
IEEE International Symposium on Cluster Computing and
the Grid, Brisbane, Australia, May 2001. IEEE Computer
Society Press.

[14] B. Plale and K. Schwan. dQUOB: Managing large data flows
using dynamic embedded queries. In IEEE International
High Performance Distributed Computing (HPDC), August
2000.

[15] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger. Fast
GPU-based CT reconstruction using the Common Unified
Device Architecture (CUDA). Nuclear Science Symposium
Conference Record, 2007. NSS ’07. IEEE, 6:4464–4466, 26
2007-Nov. 3 2007.

[16] W. Wu and P. Heng. A hybrid condensed finite element
model with gpu acceleration for interactive 3d soft tissue
cutting: Research articles. Computer Animation and Virtual
Worlds, 15(3-4):219–227, 2004.

[17] Zhao, Y., Y. Han, Z. Fan, F. Qiu, Y. Kuo, Kaufman, and
K. A., Mueller. Visual simulation of heat shimmering and
mirage. IEEE Trans. on Visualization and Computer Graph-
ics, 13(1):179–189, 2007.

8

