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Abstract

Given a large evolving network with time information
on its edges, we are interested in how and when its
connected components are formed through time. Such
information is useful while analyzing the characteristics
of the network’s snapshots taken at different time
points. This analysis can be used to answer various
queries such as what is the time point where two people
are first connected in a professional network, how the
scientific communities merged over time in a citation
graph, or how conversations are formed and attracted
new users in a forum discussion. The sensitivity of such
an analysis increases with the number of time points
and the cost of the analysis increase along with. We
propose efficient algorithms and a compact represen-
tation of component structures evolving through time
for both directed and undirected networks. For an
undirected network with m edges, the time complexity
of the algorithm is almost linear with m. For the
directed case, the time complexity is O(m log τ) where
τ is the number of snapshots.
Keywords: Evolving network; connectivity; connected
component; time complexity

1 Introduction

A graph is the most commonly used model of today’s
large networks which arise in nature, life, and science.
In this model, the vertices correspond to the nodes
in the network and the edges show that there is an
interaction between the nodes. Such interactions can
be directed or undirected, i.e., one way or two ways. In
graph theoretical terms, two nodes are connected if it is
possible to reach from either one to the other via a set of
interactions. A maximal set of connected nodes is called
a component of the network. For a better understanding

of a network, various structural properties, such as size,
degree distribution, average distance and connected
components of the corresponding graph is analyzed in
the literature [3, 10]. For example, Broder et al. showed
that the sizes of the connected components of web graph
obey the power law [3]. According to their analysis, 90%
of the web formed a single connected component when it
is modeled as an undirected graph. On the other hand,
when the web is modeled as a directed graph, the largest
connected components contained only 28% of the pages.

Most of today’s networks are dynamic and they
evolve over time. The Web is evolving, social networks
are evolving, new interactions are set among the net-
work elements perpetually. The properties of such net-
works also change over time. Evaluating network prop-
erties at different time points is a common approach to
analyze their dynamics [2, 11, 12]. For a detailed analy-
sis, a sufficient number of snapshots is required since the
sensitivity increases with that number. To analyze the
connectivity properties of each snapshot independently,
one may need to construct the component structure for
each of them. In addition to independent analysis, in-
vestigating the evolution of connected components is a
problem that recently gained interest [11, 12].

There are linear time algorithms for finding the con-
nected components of a graph [5, 15, 16]. To track the
evolution of the components, one can trivially use these
algorithms for each version of the graph at different time
points. Nevertheless, for a sensitive analysis, the cost of
the trivial approach can be a burden since its worst case
time complexity linearly increases with the number of
versions. In this paper, we are interested in networks
with persistent interactions. That is, either the inter-
actions are eternal or when an interaction between two
nodes is deleted, it is assumed to be deleted from all
versions. We propose efficient algorithms to construct



the connected component structure with its evolution.
The proposed algorithms take a network and a set of
time points as inputs, and return a very compact repre-
sentation of the component evolution. To represent this
structure, we use an evolution forest. For the undirected
case, the construction of the evolution forest is an ap-
plication of the well known disjoint set data structure.
We show how the time information can be stored in a
compact way and devise an algorithm with O(mα(n))
time complexity where m and n are the number of inter-
actions and elements in the network, respectively, and
α(n) is the inverse Ackermann function, which is very
small for all practical values of n. For the directed case,
we propose a novel O(m log τ) algorithm for the evolu-
tion forest construction where τ is the desired number
of versions in the analysis.

The proposed connected component structure helps
answering time-based connectivity queries efficiently,
and has various applications such as finding the time
point where two people are connected within a profes-
sional network, how the scientific communities merged
over time using a citation graph, or how conversations
are formed and attracted new users in a forum discus-
sion.

The paper is organized as follows: In Section 2,
the notation for the paper is introduced and related
work from the literature is discussed. Section 3 gives
the algorithms and compact data structures for tracking
the connected component evolution, and Section 4 gives
some examples for the practical usage of proposed
algorithms and data structures. Section 5 shows the
results of the experiments, and Section 6 concludes the
paper.

2 Notation and Background

Let G = (V,E) be an evolving network modeled as a
(directed) graph with n vertices and m ≥ n edges. Each
edge e ∈ E is labeled by time(e), the time it is added
to G. A path is a vertex sequence such that there exists
an edge between consecutive vertices. A cycle is a path
in which the first and the last vertices are the same. If
G contains no cycles we say that G is acyclic. A vertex
u ∈ V is connected to v ∈ V if there is a path from u to
v. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E ∩ (V ′ × V ′).

If G is undirected and v is connected to u for all
u, v ∈ V we say G is connected. We call a subgraph
G′ maximally connected if there exists no connected
subgraph G′′ of G such that G′ is a subgraph of
G′′. A maximally connected subgraph of G is called a
connected component of G. The connectivity definition
is similar for the directed graphs (digraph): we say a
digraph G is strongly connected if for all u, v ∈ V ,

v is connected to u (and vice versa). Similar to the
undirected case, a maximally strongly connected G′ is
called a strong component (SC) of G. Note that an
acyclic digraph has n strong components where each
component is trivial, i.e., formed by a single vertex.

Given an evolving network G = (V,E), let Π =
{V1, V2, . . . , Vk} be a k-partition of V where each vertex
set Vi is nonempty, Vi ∩ Vj = ∅ for i 6= j, and
∪k

i=1Vi = V . Let GΠ = (V Π, EΠ) be the quotient graph

of G with respect to Π. In the quotient graph, each
vertex set Vi ∈ Π of G is clustered into a supervertex

νi ∈ V Π. In addition, for all uv ∈ E such that
u ∈ Vi, v ∈ Vj , and i 6= j, there exists νiνj ∈ EΠ

where time(νiνj) = time(uv). If G is directed, the
direction of νiνj should be consistent with the direction
of uv. Even though G is a simple graph, GΠ can be
a multigraph, i.e., there can be multiple edges between
two supervertices. The definitions of connectivity and
strong connectivity in multigraphs are the same as those
in graphs.

Let P = {t1, t2, . . . , tτ} be a set of τ time points
such that ti < tj for all 1 ≤ i < j ≤ τ . For each
t ∈ P , let Et = {e ∈ E : time(e) ≤ t} be a subset of E.
Hence, Et1 ⊆ Et2 ⊆ · · · ⊆ Etτ

. We call the subgraph
Gt = (V,Et) the version of G at time t. We define
the connected component tracking problem as follows:
given a network G and a set of time points P , we want
to know which (strongly) connected components exist
in Gt for all t ∈ P . This information then can be used
to answer various queries such as the earliest time point
t ∈ P when u and v became connected.

2.1 Related Work: Tracking the connected compo-
nents of a dynamic graph has been investigated be-
fore for both undirected [4, 9] and directed [6, 7, 13]
graphs. Henzinger and King studied the fully dynamic
case and provided an O(p log3 n) algorithm to track the
connected components of an undirected graph where p is
the number of edge insertions/deletions [9]. Ediger et al.
investigated the tracking problem for streaming social
networks in a fully dynamic setting and proposed effi-
cient parallel algorithms for sparse networks [4]. As far
as we know, this is one of the best algorithms for the
undirected graphs.

For directed graphs, the problem of incremental
maintenance of the strong components in case of edge
additions has been investigated by several researchers.
In a recent study, Haeupler et al. proposed algorithms
with complexity O(m3/2) and O(n5/2) [6, 7]. These
algorithms are online: they update their data structures
after every edge addition/deletion in an efficient way
and wait for the next version. Usually, such algorithms
can only answer the connectivity queries related with



the last version. Hence, without any modification, they
are not able to answer queries related with previous
updates. However, some online algorithms have this
property. For example, Roddity and Zwick investigated
the dynamic strong component maintentance problem
and proposed an algorithm which can also answer
queries related with strong connectivity information in
all versions of the graph [13]. Similar to our setting,
they assume that when an edge is deleted from a version
of the graph, it is deleted from all previous versions.
Hence, our assumption about persistency is valid in
their model where the time of the updates in the online
setting correspond to the time points in the offline
setting. The time complexity of their algorithm is
O(mτ) for τ batch updates.

3 Offline Algorithms for Tracking Evolution of

Connected Components

When Gtτ
is (strongly) connected, our algorithms con-

struct a tree T called evolution tree which contains the
connectivity information for all snapshots of G in a com-
pact form. The vertices of T correspond to the vertices
in V . For each vertex v in T , we store its parent vertex
parent(v). We also label each vu edge in T with a time
point in P to store when the parent information is set
for the first time. Similarly to graph notation, we de-
note the label by time(vu) for a parent pointer from v to
u in T . Hence, u = parent(v) and t = time(vu) imply
that u and v are first put into the same component at
version Gt. In an evolution tree, each node represents
a component. Hence, u = parent(v) and t = time(vu)
also implies that all the nodes in the components rep-
resented by u and v are in a single component formed
at time t. Figure 1 shows the versions of a toy digraph
with 4 vertices and 6 edges and its evolution tree for
P = {1, 2, 3}.

Throughout the paper, for simplicity, we assume
that the graph in the last version, G = Gtτ

, is (strongly)
connected. Note that if it has multiple components,
one can first find these components using a linear time
algorithm. For undirected graphs, a graph traversal
algorithm, such as breadth-first search, is sufficient to
find the connected components. For directed graphs,
one can use an O(m) algorithm to find the strong
components [5, 15, 16]. After all components of Gtτ

are found, our algorithms can be executed on each
component independently and an evolution forest T =
{T1, T2, . . . , Tc} is obtained.

3.1 Constructing Evolution Trees for Undi-

rected Networks: For undirected networks, con-
structing an evolution tree is an application of the well
known Union-Find algorithm which is an efficient way

1 2

43

1

1

1

(a) G1

1

3

1

1

1

2

2

4

2

(b) G2

1

1

1

1

2

2

4

23

3

(c) G = G3

1

3

2

4

1

3

2

(d) T

Figure 1: Versions of a simple digraph G with 4 vertices
and 6 edges for P = {1, 2, 3}. The strong components
of G1 are {1,2}, {3}, and {4} where G = G3 is strongly
connected. T shows the changes in strong connectivity
from G1 to G3. To find the (strong) components of Gt,
one can remove the edges {vu ∈ T : time(vu) > t}
from T , construct a forest, and find the trees inside
it. Note that each such tree in this reduced form of T
represents a (strongly) connected component in Gt. In
the algorithms proposed below, we will use the root of
each such tree as a representative of a component.

to manipulate disjoint sets [17]. Our evolution tree data
structure supports three main operations which are used
by the Union-Find algorithm:

• MakeSet(u) creates a tree with a single node
u ∈ V and sets parent(u) to u.

• ru ← Find(u) finds the root ru of the tree contain-
ing u and returns it.

• r ← Union(R = {r1, . . . , rℓ}, t) combines the trees
with roots in R. It selects first the tree with the
maximum height. Let r be the root of this tree.
For all r′ ∈ R except r, it sets parent(r′) to r and
time(r′r) to t. When it finishes, it returns the root
r of the unified tree.

The Union-Find algorithm has been previously used
to find the connected components of an undirected
graph without any time information on the edges.
Modifying the Union operation for temporality is a
non-complex task for the undirected case. We give
the description of the evolution tree construction in
Algorithm 1 for completeness. Assume that no edge
exists in the graph at the beginning. That is, Et0 ,
the initial edge set, is empty. Hence, there are n
components, thus n trees each containing a single node.



The MakeSet operation is used to create these trees.
When a new edge uv is added to the network, first the
roots ru and rv of the trees containing u and v are
found by executing two Find operations. If ru = rv,
there is no need for an update since u and v are already
connected. If this is not the case, a Union operation is
executed to combine the components of u and v.

Algorithm 1 ETreeU(G(V,E), P = {t1, . . . , tτ})

1: for each u ∈ V do

2: MakeSet(u)
3: Et0 ← {}
4: for 1 ≤ i ≤ τ do

5: for each uv ∈ Eti
\ Eti−1

do

6: ru ← Find(u)
7: rv ← Find(v)
8: if ru 6= rv then

9: Union({ru, rv}, ti)
10: if the graph is connected then

11: return

In Algorithm 1, the MakeSet operation is used
to construct n disjoint sets (trees), each containing a
single vertex. Hence, the complexity of the first loop is
O(n). For the rest of the algorithm, using the techniques
proposed by Tarjan, the Union and Find operations
can be implemented in such a way that each iteration
is handled in O(α(n)) amortized time where α(n) is the
inverse of f(n) = A(n, n), and A is the rapidly growing
Ackermann function [17]. The value of α(n) is smaller
than 5 for any practical number of vertices n. Hence, the
overall time complexity of the algorithm is O(mα(n)).
For the analysis, we assume that the edges are already
partitioned into sets Eti

\ Eti−1
for 1 ≤ i ≤ τ . If this

is not the case they can be sorted in O(m + τ) time
by using counting sort. Note that since these disjoint
edge sets are processed in increasing time order, this
algorithm is suitable for the online setting.

3.2 Constructing Evolution Trees for Directed

Networks: Contrary to the undirected case, the con-
struction of the evolution tree is complicated for di-
rected graphs. Note that when an edge uv is added
to an undirected graph, the only components that can
be combined are the ones containing u and v. On the
other hand, for a directed graph, the number of strong
components which might be combined after an edge ad-
dition can be any number between 0 and n. Besides,
finding such components is harder since checking only
the endpoints of the edges will not suffice. Given G
and P = {t1, . . . , tτ}, one can compute the strong com-
ponents of each snapshot Gti

for 1 ≤ i ≤ τ . Since
finding strong components of a graph takes linear time,

the complexity of this näıve approach is O(mτ). One
can improve this approach in practice by using quotient
graphs. In the online setting, Roddity and Zwick fol-
lowed this idea and proposed an algorithm [13]. Algo-
rithm 2 shows the offline algorithm based on Roddity
and Zwick’s idea for the online setting.

Algorithm 2 ETreeD1(G(V,E), P = {t1, . . . , tτ})

1: for each u ∈ V do

2: MakeSet(u)
3: G′ ← Gt1

4: for 1 ≤ i ≤ τ do

5: Let s be the number of SCs of G′ = (V ′, E′)
6: for each component Cj = (Vj , Ej) of G′ do

7: if Vj contains a single vertex u then

8: rj ← u
9: else

10: rj ← Union(Vj , i)
11: if s = 1 then

12: return

13: if i < τ then

14: if s 6= |V ′| then

15: Let Π = {V1, V2, . . . , Vs}
16: GΠ = ({r1, r2, . . . , rs}, E

Π)
17: G′ ← GΠ

18: for each uv ∈ Eti+1
\ Eti

do

19: r′ ← Find(u)
20: r′′ ← Find(v)
21: if r′ 6= r′′ then

22: E′ ← E′ ∪ {r′r′′}

Algorithm 2 starts with the graph G′ = Gt1 . At ith
iteration, after finding the strong components of G′ at
time ti, the evolution tree is updated respectively. That
is, for each nontrivial component of G′, the algorithm
combines the subtrees corresponding to the vertices in
that component. Then, the graph for the next iteration
is constructed in two steps: first, the quotient graph GΠ

of G′ is computed by using a partition Π corresponding
to the strong component decomposition of G′, and G′ is
set to GΠ. Note that if G′ is acyclic then the quotient
graph will already be equal to G′. So, there is no need
to construct the quotient graph in this case. Second,
each edge uv ∈ Eti+1

\ Eti
is inserted into EΠ between

the supervertices r′ and r′′ if r′ 6= r′′. After computing
the new graph, the algorithm sets it to G′ and continues
with the next iteration.

Although our preliminary experimental results
show that using quotient graphs can reduce the tree
construction time greatly in practice, in theory, it does
not improve the worst case time complexity O(mτ) of
the näıve approach which computes the strong compo-
nents of Gti

at each iteration. This can be understood



from the fact that Gtτ−1
and hence all Gti

for i < τ can
be acyclic. In this case, there is no difference between
the näıve approach and Algorithm 2.

Since Algorithm 2 is originally proposed for the on-
line setting, it always uses the edges in Eti

while com-
puting the strong components of G′ at ith iteration.
However, in our case, all the edge information is avail-
able beforehand. That is, it should be possible to obtain
a novel algorithm better than the näıve approach in the-
ory and faster than Algorithm 2 in practice. Such an
algorithm is given in Algorithm 3.

Algorithm 3 ETreeD2(G(V,E), P = {t1, . . . , tτ})

1: for each u ∈ V do

2: MakeSet(u)
3: SetParents(G,P, 0, τ)

Algorithm 4 r = SetParents(G = (V,E), P =
{t1, . . . , tτ}, i, j)

Require: 0 ≤ i < j ≤ τ such that ti, tj ∈ P ,
Gti

= (V,Eti
) is acyclic, and G = Gtj

is strongly
connected.

Output: The root r of the corresponding evolution
tree (an index from 1 to n corresponding to a vertex
of the initial call) is returned, and T is constructed.

1: if i = j − 1 then

2: return Union(V, tj)
3: else

4: k = ⌈(i + j)/2⌉
5: Let s be the number of Gtk

’s strong components
6: Let Cℓ = (Vℓ, Eℓ) denote the ℓth SC of Gtk

7: for ℓ = 1 to s do

8: if Cℓ is nontrivial then

9: rℓ ← SetParents(Cℓ, P, i, k)
10: else

11: rℓ ← the vertex in Cℓ

12: if s > 1 then

13: Let Π = {V1, . . . , Vs} be a partition of V
14: Let GΠ be the quotient graph induced by Π

where each Vℓ is represented by a supervertex
rℓ for 1 ≤ ℓ ≤ s

15: return SetParents(GΠ, P, k, j)
16: else

17: return r1

Algorithm 3 first calls MakeSet to create n trees
each containing a singleton vertex. Then it calls
SetParents given in Algorithm 4 to construct the
evolution tree. SetParents takes four arguments: a
digraph G, a set of τ time points P , and two integers i

and j such that 0 ≤ i < j ≤ τ , Gti
is acyclic, G = Gtj

is strongly connected.1 Algorithm 4 uses a recursive
approach to find the time points k, i < k ≤ j, in
which new components are formed and the connectivity
information changes. It starts by checking if i = j − 1.
If this is the case we know that all the vertices of the
acyclic Gti

will be combined in the next version Gtj
.

In this case, the algorithm calls the Union operation
to combine the corresponding trees and to set the new
edge labels to tj . It then returns the root r of the
this new tree and terminates gracefully. If i 6= j − 1,
the algorithm examines the strong components of the
version at time tk for k = ⌈(i + j)/2⌉. For each
nontrivial strong component Cℓ of Gtk

, a recursive call
SetParents(Cℓ, P, i, k) is made. Note that Cℓ ⊂ Gtk

is strongly connected, and its snapshot at time ti is
known to be acyclic. Hence, the last two parameters
are set to i and k, respectively. After all the recursive
calls at line 9 terminate, we obtain a forest where each
tree in the forest corresponds to a strongly connected
component of Gtk

. Since G = Gtj
is strongly connected,

the trees in the forest should be connected to each
other and form the evolution tree sometime between
(tk, tj ]. To set these connections, another recursive call
SetParents(GΠ, P, k, j) is made at line 15. Here, GΠ

is a quotient of G where the parts in the partition Π
correspond to the strong components of Gtk

. Since
the strong components are maximal by definition, the
snapshot of GΠ at time tk is acyclic. Furthermore,
GΠ itself is strongly connected since G is strongly
connected. Hence, the last two parameters k and j are
correct.

Algorithm 4 does not use any Find operation be-
cause of its structure. While other algorithms construct
the tree via the addition of the network edges at each it-
eration, SetParents uses those edges only for the first
call. For the recursive calls, it uses G’s edges which is
a quotient graph of some strongly connected subgraph
of the network. Besides, since the supervertex repre-
senting a strong component of Gtk

is already obtained
from a previous recursive call, we do not need the Find

operation. Note that the Find operation can be still
useful after the evolution tree construction for some op-
erations such as checking if two nodes are in the same
component.

Theorem 3.1. Algorithm 4 has time complexity

O(m log τ).

Proof. First observe that the Union operations takes
O(n) time since a Union operation costs O(1) amor-

1Note that the algorithm is recursive and the letter G in the
pseudo-code and the related text does not denote the original
network graph except for the initial call.



tized time and there are n nodes in the network. Exclud-
ing this part and the recursive calls, the time complexity
of the algorithm’s body, i.e., finding strong components
of Gtk

and quotient graph construction, is linear with
respect to |V | and |E|.

Now consider the call tree for SetParents where
each node corresponds to an execution of the algorithm.
The root node is the initial call, and a node’s children
are the recursive calls it makes. We claim that each
edge of the graph is traversed exactly once in each level
of the call tree. Indeed, when performing recursive calls,
the edges of the graph are partitioned into p + 1 parts:
one part for each strong component and one part for
the quotient graph. Therefore, each edge exists at most
once in each level of the call tree. So each level of the
call tree contains at most m edges. Following this, we
can conclude that there are also at most m vertices at
each level since the input graphs of the recursive calls
are strongly connected. That is, the number of the edges
they have cannot be less than the number of vertices.
These observations lead us to a complexity of O(m) per
level of the call tree.

For each call SetParents(G,P, i, j), there are j−i
time points the algorithm needs to check. For further
recursive calls, this number is either k − i and j − k
where k = ⌈ i+j

2
⌉. That is, the number of time

points that the algorithm examines in the worst case is
decreasing geometrically. Since there are τ of them at
the beginning, and the algorithm stops when j = i + 1,
the height of the call tree is O(log τ). Combining all
these observations concludes the proof.

Corollary 3.1. Algorithm 3 has time complexity

O(m log τ).

4 Using an evolution forest

As mentioned above, the evolution forest T is a com-
pact representation for the evolution of connected com-
ponents. After its construction, it can be used as is or
processed for further efficiency while answering several
queries on the time-based connectivity information of
the network. Here, we consider two examples.

Let P = {t1, . . . , tτ} be the set of time points used
for constructing the evolution forest and let the query
be about the number of components at each ti ∈ P .
By using the evolution forest T , Algorithm 5 answers
this query in O(n + τ) time as follows. Let nc[i] be
the number of components at time ti. We know that
nc[0] = n since there are n trivial components at the
beginning. Since

nc[i]− nc[i− 1] = |{uv : time(uv) = ti}|,

it follows that

nc[i]− nc[0] = |{uv : time(uv) ≤ ti}|

for all 1 ≤ i ≤ τ . Hence, a prefix sum is sufficient
to compute n − nc[i] for each ti. In the last step,
subtracting this number from n gives us the number
of strong components.

Algorithm 5 NumComponents(T = (V,E), P =
{t1, . . . , tτ})

1: for 1 ≤ i ≤ τ do

2: comb[i]← 0
3: for each edge uv ∈ E do

4: t← time(uv)
5: comb[t]← comb[t] + 1
6: for 2 ≤ i ≤ τ do

7: comb[i]← comb[i] + comb[i− 1]
8: for 1 ≤ i ≤ τ do

9: nc[i]← n− comb[i]

Another useful information is the earliest time of
connectivity for a given pair of nodes u and v in the
network. This operation can be answered by searching
the lowest common ancestor (LCA) of u and v in T .
If no common ancestor of u and v exists they are not
connected to each other. Otherwise, they are in the
same tree T in the forest. In this case, the LCA of u
and v is the ancestor in the lowest level of T . Let r be
the LCA. If r = u the connection time is the label of the
edge v′u on the path from v to u in T . Similarly, if r = v
the label of the edge u′v on the path from u to v is the
answer. On the other hand, when r is not equal to u and
v, let u′ and v′ be its two children on the paths from u
to r and v to r, respectively. In this case, the connection
time can be found by max(time(u′r), time(v′r)). These
edges can be found by traversing the paths from u and
v to the root of T simultaneously. Hence, its complexity
is proportional to the height of T which is O(log n) due
to the implementation of Union operation.

The previous query can be answered in a more
efficient way by using a less compact data structure,
components forest [13], which can be obtained from T
in O(n) time. In this structure, each vertex in G is
represented by a leaf node, and instead of the edges,
the non-leaf nodes have time labels. When a set of
vertices are combined at time t, a new parent node
is added with label t having the connected vertices as
its children. Figure 2 shows an evolution tree T and
the corresponding tree T ′ in components forest. Given
two nodes, their LCA’s label in a components forest
is equal to their earliest time of connectivity. Hence,
we only need to find the LCA. There exist several



O(1) algorithms in the literature to find the LCA of
two vertices [1, 8, 14]. Hence, one can preprocess the
evolution tree T and use one of these algorithms to
answer such queries in constant time. For different
types of queries, T can be processed in different ways to
minimize the response time.
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Figure 2: An evolution tree T and the corresponding
components tree T ′. The gray colored leafs of T ′ are
the vertices in the graph. The white nodes correspond
to the combinations of components through time.

5 Experimental Results

We conduct a set of experiments to evaluate the per-
formance of the algorithms in the directed case. Algo-
rithms 2 and Algorithm 3 are sequentially implemented
in the C programming language and their performances
are compared on a computer with 2.27GHz dual quad-
core Intel Xeon CPUs and 48GB of main memory. The
compiler is gcc version 4.5.2, and -O3 optimization flag
is used.

We use six directed networks from the Stanford
Large Network Dataset Collection.2 For each network,
we are interested in the evolution tree construction
for the largest strong component in the corresponding
graph. The numbers of vertices and edges in the largest
strong component of each network are given in Table 1.

largest SC
Name n m
amazon0601 395,234 3,301,092
soc-LiveJournal1 3,828,682 65,825,429
soc-sign-epinions 32,223 443,506
web-BerkStan 334,857 4,523,232
web-Google 434,818 3,419,124
WikiTalk 111,881 1,477,893

Table 1: Numbers of vertices and edges in the largest
strong component of each network.

Before executing the algorithms on the largest
strong component, we set the time labels of its edges

2http://snap.stanford.edu/data/

randomly as an integer from 1 to τ . To do this, we
first choose a number from a random distribution and
convert it to an integer by first adding 0.5 and then
removing its decimal point. We use four different dis-
tributions: uniform, normal, exponential, and reversed

exponential. To reverse the exponential distribution, we
first choose an integer 1 ≤ t ≤ τ and use τ − t + 1 as
the label of an edge.

As Figure 3 shows, the proposed algorithm
ETreeD2 is much faster than ETreeD1 especially
when τ is large. For τ ≥ 400, the proposed algo-
rithm is better for all networks and random distribu-
tions. Furthermore, when τ < 400, ETreeD1 is only
better in a few instances whose edges are labeled by
using the exponential distribution. When τ = 2000,
for the largest component we have, which is the one in
soc-LiveJournal1, ETreeD2 is approximately 10 times
faster than ETreeD1 for the normal and exponential
distributions. Similar relative performances can also be
observed for other networks.

ETreeD1 is very sensitive to the change of ran-
dom distributions. For example, its performance dif-
fers drastically for the exponential and reversed expo-
nential distributions. This can be explained as follows:
when the exponential distribution is used, most of the
interactions in the network occur in the first few time
points. Hence, the intermediate versions have larger
strong components, and the quotient graphs have less
number of vertices and edges. On the other hand, when
the distribution is reversed as described above, the ex-
act opposite happens, and the numbers of vertices and
edges processed at each iteration increase. Experimen-
tal results show that compared with its performance
for the exponential distribution, ETreeD1 can spend
5 times more with the reversed exponential distribu-
tion. As Figure 3 shows, although the performance of
the proposed algorithm ETreeD2 can decrease when
the labels are generated by using the exponential distri-
bution, the algorithm is not as sensitive as ETreeD1 to
the distribution. Furthermore, it continues to perform
better especially when τ increases. Hence, we can say
that ETreeD2 is better than ETreeD1 in general.

6 Conclusion and Future Work

We investigated the problem of tracking the evolution
of connected components in a network and propose
efficient algorithms. The algorithms are better than
the existing solutions both in theory and in practice,
especially when one needs to analyze the dynamics of a
network in high sensitivity.

In this work, we investigated the networks and
problems where the network connections or their effects
are persistent. If the network is only growing without

http://snap.stanford.edu/data/
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(f) WikiTalk

Figure 3: Execution times of the algorithms with respect to number of time points for six different networks.
The execution times are given in log scale. We used 4 random time labelings where each one is using a different
probability distribution. For each distribution, 20 instances are generated for each network and their evolution
trees are created. The average times for these 20 executions are used to evaluate the performances. In the plots,
ETD1 and ETD2 denote Algorithms 2 and 3. The suffixes Uni., Nor., Exp., and -Exp. denote uniform, normal,
exponential, and reversed exponential probability distributions, respectively.



any edge/node deletions our algorithms can be used as
is. The proposed algorithms are also useful for some
queries in fully dynamic networks with edge deletions
when the effect of a connection is persistent. For
example, consider a social network in which u added v
as a friend at time t and erased her later. If we read this
connection as u knows v since time t this information
will be persistent, and related connectivity queries
can be answered by using the proposed algorithms.
However, if the connection is read as u is a friend of v
at time t the algorithms in this paper are not suitable.
In the future, we are planning extend our algorithms to
handle such cases.

Both Algorithm 2 and Algorithm 3 assume that the
whole graph can be stored in memory. Today, this as-
sumption may be a little bit optimistic for some real-
world graphs. Hence, another future work is modi-
fying the proposed algorithms for the out-of-core or
distributed-memory setting.
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