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Abstract

There is a rapidly growing set of applications, referred
to as data driven applications, in which analysis of large
amounts of data drives the next steps taken by the scien-
tist, e.g., running new simulations, doing additional mea-
surements, extending the analysis to larger data collections.
Critical steps in data analysis are to extract the data of in-
terest from large and potentially distributed datasets and
to move it from storage clusters to compute clusters for
processing. We have developed a middleware framework,
called GridDB-Lite, that is designed to efficiently support
these two steps. In this paper, we describe the application
of GridDB-Lite in large scale oil reservoir simulation stud-
ies and experimentally evaluate several optimizations that
can be employed in the GridDB-Lite runtime system.

1. Introduction

Cheaper disk space and faster networks allow large scale
scientific applications to create dispersed repositories of
large datasets. While computational requirements of many
applications are still a challenge, applications that make use
of large, distributed datasets have also emerged as major
consumers of resources [3, 11]. In these applications, anal-
ysis of data drives the next steps taken by the scientist, e.g.,
running new simulations, doing additional measurements,
extending the analysis to larger data collections. Optimiz-
ing reservoir management through simulation-based studies
is an example of such data driven applications [15]. Despite
technological advances in methods of determining reser-
voir properties, only a partial knowledge of critical param-
eters such as rock permeability, which govern production
rates, are known from field measurements. Hence, a ma-
jor challenge is to incorporate such geological uncertainty
in large, detailed flow models. One approach to this prob-
lem is to simulate alternative production strategies (number,
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type, timing and location of wells) applied to multiple real-
izations of multiple geostatistical models. In a typical study,
a scientist runs an ensemble of simulations to study the ef-
fects of varying oil reservoir properties (e.g., permeability,
oil/water ratio, etc.) over a long period of time. Such an ap-
proach is highly data driven. Choosing the next set of sim-
ulations to be performed requires analysis of data from ear-
lier simulations.

A critical step in analysis of data is to extract the data of
interest from large and potentially distributed datasets and
move it from storage clusters to compute clusters for pro-
cessing. In [13], we presented the architectural design of
a middleware framework, GridDB-Lite, that provides basic
database support for data subsetting and data transfer oper-
ations in a Grid environment. This paper differs from our
previous work in that we describe and evaluate the applica-
tion of GridDB-Lite in the analysis of data from large scale
oil reservoir simulation studies. We present a number of op-
timizations that can be applied in the GridDB-Lite infras-
tructure and experimentally evaluate them using large oil
reservoir simulation datasets on a distributed collection of
clusters.

2. Related Work

Parallel database systems have been a major research
area in the database community [6, 12]. The database man-
agement community has also developed federated database
technologies to provide unified access to diverse and dis-
tributed data. Most of the earlier efforts, however, have fo-
cused on relational models and closely integrated systems.
Our framework can leverage techniques developed for those
systems. It differs from previous work in that we target sci-
entific datasets, where data is stored in files in application
specific formats. In order to use a database management
system, a scientific dataset should be loaded into the sys-
tem since many database systems reorganize the data into
their internal format. Our approach is to employ virtual ta-
bles through the use of data extraction objects. Moreover,
the framework is designed as a set of loosely coupled ser-
vices, which is more suitable for execution in distributed,
heterogeneous environments. There are a few middleware
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SELECT < Attributes >
FROM Datasety, Datasets, ..., Dataset,,
WHERE < Expression >
AND Filter(< Attributes >)
GROUP-BY-PROCESSOR
ComputeAttribute(< Attributes >)

Figure 1. Formulation of data retrieval steps
as an object-relational database query.

systems designed for remote access to scientific data. Dis-
tributed Oceanographic Data System (DODS) [7] is one
example. DODS is similar to our framework in that it al-
lows access to user-defined subsets of data. However, the
GridDB-Lite framework differs from DODS in that it builds
on a more loosely coupled set of services that are designed
to allow distributed execution of various phases of query
evaluation (e.g., subsetting and user-defined filtering).

Several run-time support libraries and parallel file sys-
tems have been developed to support efficient I/O in a par-
allel environment [17, 4]. These systems mainly focus on
supporting strided access to uniformly distributed datasets,
such as images, maps, and dense multi-dimensional arrays.
Our work, on the other hand, focuses on efficiently support-
ing subsetting and data movement operations over subsets
of large datasets in a Grid environment.

There are some recent efforts to develop Grid ser-
vices [9] and Web services implementations of database
technologies [5]. Raman et. al. [14] discusses a num-
ber of virtualization services to make data management and
access transparent to Grid applications. These services pro-
vide support for access to distributed datasets, dynamic dis-
covery of data sources, and collaboration. Smith et. al. [16]
address the distributed execution of queries in a Grid envi-
ronment. They describe an object-oriented database proto-
type running on Globus and MPICH-G [10].

3. GridDB-Lite Middleware Framework

In this section, we briefly describe the Grid Database-
Lite (GridDB-Lite) middleware [13] that is designed to sup-
port data select, data partitioning, and data transfer oper-
ations through an object-relational database model. In or-
der to provide common support for a range of applications,
a level of abstraction is necessary to separate application
specific characteristics from the middleware framework. We
develop a data subsetting model based on three abstractions:
virtual tables, select queries, and distributed arrays (or dis-
tributed data descriptors).

Virtual Tables. Datasets generated in scientific appli-
cations are usually stored as a set of flat files. However, a
dataset can be viewed as a table. A tuple consists of a set of

attribute values. The columns and rows of the table corre-
spond to attributes and tuples, respectively.

Select Queries. With an object-relational view of sci-
entific datasets, the data access structure of an application
can be thought of as a SELECT operation as shown in Fig-
ure 1. The < Expression > statement can contain opera-
tions on ranges of values and joins between two or more
datasets. F'ilter allows implementation of user-defined op-
erations that are difficult to express with simple comparison
operations.

Distributed Arrays. The client program that carries out
the data processing can be a data parallel program imple-
mented using programing paradigms such as MPI, High-
performance Fortran, or KeLLP [8]. The distribution of tuples
in these paradigms can be represented as a distributed array,
where each array entry stores a tuple. This abstraction is in-
corporated into our model by the GROUP-BY-PROCESSOR
operation in the query formulation. Compute Attribute is
another user-defined function that generates the attribute
value on which the selected tuples are grouped together
based on the application specific partitioning of tuples.

3.1. System Services

GridDB-Lite is organized as a set of coupled services as
shown in Figure 2.

The query service provides an entry point for clients to
submit queries to the database middleware. It is responsi-
ble for parsing the client query to determine which services
should be instantiated to answer the query. The query ser-
vice also coordinates the execution of services and the flow
of data and control information among the services.

The meta-data service maintains information about
datasets, and indexes and user-defined filters associ-
ated with the datasets. A scientific dataset is com-
posed of a set of data files. The data files may be dis-
tributed across multiple storage units. The meta-data for
a dataset can, for example, consist of a user-defined type
for the dataset (e.g., MRI data, satellite data, oil reser-
voir simulation data), the name of the dataset, the list of
attributes and attribute types (e.g., integer, float, compos-
ite) for a tuple in the dataset, and a list of tuples of the
form (filename,hostname), where filename is the name
of the data file and hostname is the name of the ma-
chine on which the data file is stored.

Datasets in scientific applications are usually stored in
flat files, and file formats vary widely across different ap-
plication domains. This requires that either a dataset be
converted into a common representation and stored in the
database in that format or virtual tables be created when
the dataset and its elements are accessed. With the latter ap-
proach, applications can access their data directly when de-
sired. The data source service provides a view of a dataset
in the form of virtual tables to other services. It provides
support for implementing application specific extraction
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(b) The executor phase.

Figure 2. GridDB-Lite Architecture with a pos-
sible instantiation of its phases.

objects. An extraction object returns an ordered list of at-
tribute values for a tuple in the dataset, thus effectively cre-
ating a virtual table.

Efficient execution of select operations is supported by
two services; indexing service and filtering service. The
indexing service encapsulates indexes for a dataset. With
an index, tuples that satisfy the query can be searched
quickly. A select query may contain user-defined filters and
operations on attributes that are not indexed. To support
such select operations, GridDB-Lite provides a filtering
service that is responsible for execution of user-defined fil-
ters and the < Ezpression > statements in Figure 1.

After the set of tuples that satisfy the query has been de-
termined, the data should be partitioned among the process-
ing units of the compute nodes where the data analysis pro-
gram executes. The distribution of data among processors
can be described by a distributed data descriptor as defined,

for example, by KeLP [8] and HPF. Alternatively, a com-
mon data partitioning algorithm can be employed. The pur-
pose of the partition generation service is to make it possi-
ble for an application developer to export the data distribu-
tion scheme employed in the data analysis program. In some
cases, the distribution of data among the processors can be
expressed in an application-specific compact form. In those
cases, the partition generation service computes parameters
for a partitioning function that is invoked during data trans-
fer to client. The data mover service provides a planner
function that computes an I/O and communication sched-
ule to achieve high I/O bandwidth and minimize commu-
nication overheads. This schedule is passed to data movers
components which are responsible for actually moving the
tuples to destination processors.

3.2. Execution of a Query

In GridDB-Lite, query execution is carried out in two
phases; an inspector phase and an executor phase. The goal
of the inspector phase is to perform the steps needed to com-
pute a schedule for moving the data from storage nodes to
destination processors. The executor phase carries out the
plan generated in the inspector phase to move tuples from
source machines to the destination processors.

Step 1. Upon receiving a query, an index lookup is per-
formed. Index returns information needed to extract tuples
from each data source by extraction objects in the data
source service. We classify attributes into three categories:
1) attributes that are used to determine whether the select
predicate is satisfied (select attributes), 2) attributes that are
used to determine how the query result will be partitioned
among the destination processors (partition attributes), and
3) other attributes that are part of the result returned to the
client program (result attributes).

Step 2. Extraction objects are executed on nodes where
the dataset is stored. A table is generated that associates
each extracted tuple with a unique ID, the values of select
attributes, and the values of partition attributes.

Step 3. The table entries are streamed to the filtering ser-
vice to determine which tuples satisfy the select predicate.
The select filters executed by the filtering service remove
the tuples that do not satisfy the predicate; they also strip
the values of the select attributes. After the filtering opera-
tion, a table, referred to as filtered planning table, is created
that contains only tuple unique IDs and partition attributes.

Step 4. The filtered planning table is streamed from the
filtering service to the partition generation service to deter-
mine the partitioning of result tuples among the processors
of the client program. The partition generation service as-
sociates each unique ID with a processor or computes pa-
rameters for a partition function to be invoked by the data
mover service.

Step 5. Information from the partition generation service
and the filtering service is sent to the data mover service.
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The data mover service uses this information to compute an
I/O and communication schedule and move data. The data
mover service makes use of the extraction objects to extract
the result attributes. The result attributes are then transfered
to the client program.

Steps 1, 2, 3, and 4 correspond to the inspector phase,
while step 5 is performed in the executor phase. Figure 2
shows a possible instantiation of the services and the execu-
tion of a query through the inspector and executor phases.

3.3. Optimizing Query Evaluation

The execution time of queries can be reduced by apply-
ing a number of optimizations. In this section, we look at a
few optimization points in the overall system.

Colocating Services. The filtering service can be co-
located with the data source service on the machines where
the dataset is stored in order to reduce the volume of wide-
area data transfer. If the partition generation service does
not require data aggregation to determine partitioning of tu-
ples, it can be co-located with the filtering and data source
services on the same processor, cluster, or SMP.

Inspection using Data Chunks. The main drawback of
using individual tuples in the inspection phase is the num-
ber of tuples can be very large, resulting in long execu-
tion times. In many scientific applications, datasets can be
partitioned into a set of data chunks, each of which con-
tains a subset of tuples. Each chunk also can be associated
with metadata. An example of metadata would be a spatial
bounding box. The inspection phase can be carried out us-
ing the data chunks. In this approach, the index is searched
to find the data chunks that are selected by the query. The
group-by-processor operation is executed on data chunks.
When using data chunks, upper bounds on how many tu-
ples will be sent to each processor and how much space
will be needed at each processor are determined at the end
of the inspection phase.

Distributed Execution of Filtering Operations. Both
data and task parallelism can be employed to execute filter-
ing operations in a distributed manner. If a select expres-
sion contains multiple user-defined filters, a network of fil-
ters can be formed. Individual filters can be placed on differ-
ent platforms to minimize communication and computation
overheads. In addition, multiple copies of an expensive fil-
ter can be created and executed to achieve data parallelism.

Data Caching. Caching the results from the filtering ser-
vice can speed up the execution of data transfer, as cached
results can be directly used to extract select attributes from
data sources without going through the filtering service
again. The filtered planning and group-by-processor tables
can be cached when sufficient memory and/or disk space is
available so that they can be re-used by the data mover ser-
vice in step 5 of the query execution. Moreover, results gen-

erated by a query can be used by other queries in multi-
query loads [1].

Parallel Data Transfer. Data is transferred from mul-
tiple data sources to multiple destination processors by the
data mover service. Data movers can be instantiated on mul-
tiple storage units and destination processors to achieve par-
allelism during data transfer.

4. GridDB-Lite Implementation

We have developed a prototype implementation of
GridDB-Lite using DataCutter [2], which is a component-
based middleware framework designed to support process-
ing of large multi-dimensional datasets in a distributed
environment. We have chosen DataCutter as the underly-
ing runtime system for the prototype for two reasons. First,
it supports a filter-stream programming model for exe-
cuting application-specific processing as a set of compo-
nents, referred to as filters. Filters are connected via logi-
cal streams. A stream denotes a uni-directional data flow
from one filter (i.e., the producer) to another (i.e., the con-
sumer). The overall processing can be realized by a filter
group, which is a set of filters connected through logi-
cal streams. Processing, network and data copying over-
heads are minimized by the ability to place filters on differ-
ent platforms. This capability easily enables execution of
various services and user-defined filters in a distributed en-
vironment. Second, in the DataCutter project, we are
developing interfaces to the Globus, SRB, and NWS toolk-
its. This allows us to readily use the security, remote file
access, resource monitoring and allocation services pro-
vided by these toolkits.

In order to develop a new database for an application,
two base interface functions provided by GridDB-Lite have
to be implemented by the database developer: Index and Ex-
tractor. Given a query, the responsibility of the Index is to
return instances of ChunklInfo object which should contain
necessary information to retrieve the tuples using instance
of an Extractor object. The data source service is imple-
mented using DataCutter filters. Instances of Index and Ex-
tractor objects are instantiated by GridDBIndex and Grid-
DBExtractor filters. These filters extract the tuples and pass
them to GridDBFiltering filter. The default evaluator object
implemented in GridDBFiltering filter is capable of evalu-
ating basic arithmetic operations as well as boolean oper-
ations. Additionally, database developers can register user-
defined functions to be used for filtering of data. A database
developer can also register a DataPartitioner function to per-
form application specific data partitioning. The output of
DataPartitioner function is an instance of user-defined Map-
ping function. GridDBDataMover filters uses the instance
of Mapping to compute the destination processors of the se-
lected tuple. By default, GridDB-Lite provides a data par-
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titioner and mapping function that perform round-robin as-
signment of tuples to processors.

Applications implemented using DataCutter consists of
filters and a console process. The console process is used to
interact with clients and coordinate the execution of appli-
cation filters. In our prototype, when a query is received,
first the indexing service is invoked. After index lookup,
instance of GridDBExtractor are instantiated on the ma-
chines where the datasets are stored, and indexing results
are streamed to those filters. GridDBFiltering filters are con-
nected to the output streams of GridDBExtractor. The out-
put of GridDBFiltering is connected to GridDBDataParti-
tioner. These filters form a filter group that is executed in
the inspector phase. In this implementation, instead of im-
plementing a mechanism that uses unique tuple IDs, we de-
cided to apply filtering during the executor phase, for the
sake of simplicity in the implementation. Therefore, after
the inspector phase is completed, GridDBEXxtractor, Grid-
DBFiltering and GridDBDataMover filters are instantiated.
These filters form the filter group to move the tuples se-
lected by a query to destination machines.

S. Supporting Analysis of OQil Reservoir Sim-
ulation Qutput

The main goal of oil reservoir management is to provide
cost-effective and environmentally safer production of oil
from reservoirs. A good understanding and monitoring of
changing fluid and rock properties in the reservoir is neces-
sary for the effective design and evaluation of management
strategies. Since a partial knowledge of critical parameters
such as rock permeability is available, it is desirable in pro-
duction management to incorporate geologic uncertainty in
complex reservoir models. An approach is to simulate alter-
native production strategies (number, type, timing and lo-
cation of wells) applied to multiple realizations of multiple
geostatistical models. This approach is highly data-driven.
Choosing the next set of simulations to be performed re-
quires analysis of data from earlier simulations [15].

In a typical study, a scientist runs a large collection of
simulations, each of which is referred to as a realization,
to study the effects of varying oil reservoir properties (e.g.,
permeability, oil/water ratio, etc.) over a long period of time.
Large scale simulations can generate tens of Gigabytes of
output per realization, resulting in Terabytes of data per
study. Moreover, the datasets can be located at different
sites, where the simulations are executed. This requires ac-
cess to subsets of data in a distributed environment. Vari-
ous data analysis operations can be carried out that query
and manipulate the output datasets to forecast production
amount, assess the economic value of the reservoir, and un-
derstand changing reservoir characteristics through seismic
imaging and visualization. In this section, we describe the
structure of oil reservoir simulation datasets and present the
implementation of bypassed oil using GridDB-Lite.

5.1. Simulation Output

Simulations are carried out on a three-dimensional grid
over several time steps. Each realization corresponds to dif-
ferent geostatistical models and different number of wells
and well placements. The geostatistical models are used to
generate permeability fields that are characterized by statis-
tical parameters such as covariance and correlation length.
At each time step, the value of seventeen separate variables
and cell locations in 3-dimensional space are output for each
cell in the grid. Each of the output variables are written to
separate files. If the simulation is run in parallel, the data for
different parts of the domain can reside on separate nodes.

5.2. Bypassed QOil Analysis

Depending on the distribution of reservoir permeability
and the production strategy employed, it is possible for oil
to remain unextracted from certain regions in the reservoir.
To optimize the production strategy, it is useful to know the
location and size of these regions of bypassed oil. To lo-
cate these regions, we apply the following algorithm [15].
In this algorithm, the user selects a subset of realizations, a
subset of time steps ([Tstart, Lenal), minimum oil saturation
value (SOI L;,;), maximum oil speed (Speed;,;), and min-
imum number of connected grid cells (/V) for a bypassed
oil pocket. The goal is to find all the datasets that have by-
passed oil pockets with at least N grid cells.

1. Find all oil cells in a dataset at time step T’ € [Tstart, Lend],
where SOIL > SOIL;,; and Speed,i; < Speedio;. Mark
these cells as bypassed oil cells.

2. Run a connected components analysis on the selected cells
at T to find pockets of cells that have more than IV cells.

3. Perform an AND operation on all pockets of cells over all
time steps in [Tstart, Tena]- This results in pockets of cells
that remain unchanged over time.

4. Run a connected components analysis on the result of the
AND operation to find final pockets of cells that are bypassed
oil regions.

This scenario accesses the large four-dimensional (three
spatial dimensions and time) datasets which are output for
each realization. Each of the output variables are written to
separate files, so this computation involves the subsetting of
data spread across several files.

5.3. Query Formulation

In this analysis scenario, the client request specifies a
range of time steps and a set of realizations. Step 1 of the al-
gorithm extracts the bypassed oil cells from the datasets and
time steps requested by the client. Step 1 can be viewed as
a select operation. The selected tuples are sent to the client
program which executes steps 2-4 to find the bypassed oil
regions. Figure 3 shows the formulation of step 1 of the al-
gorithm as a query. In this figure, the result of the select op-
eration is a list of tuples, each of which consists of the spa-
tial coordinates of cells, realization id, and time step. These
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SELECT R.Cell,, R.Cell,, R.Cell., R.Id, R.Time
FROM Realization:, Realizations, ..., Realization,,
WHERE Tstart <= R.Time AND R.Time <= Tinq
AND R.SOIL > SOIL;y
AND Speed(R.Vou,z, R.Voil,y, R-Voil,g) < Speed;o;
GROUP-BY-PROCESSOR Partition(R.Id, R.Time)

Figure 3. Formulation of data retrieval steps
in the bypassed oil scenario as a query.

tuples are selected from the list of realizations specified by
the client request (i.e., the FROM statement). A cell is se-
lected if the expression in the WHERE statement is true. The
selected tuples are partitioned among the client nodes us-
ing the user-defined Partition function in the GROUP-
BY-PROCESSOR statement.

5.4. Implementation using GridDB-Lite

Virtual Tables. Each realization outputs seventeen vari-
ables at each grid node (cell) at each time step. These vari-
ables include oil, gas, and water saturation, the pressures of
gas, oil, and water, and the velocities in each dimension of
the grid of oil and water. In our implementation, the whole
dataset has been treated as one big virtual table. The at-
tributes of the virtual table are the seventeen variables, cell
coordinates, time step, and realization id.

An extraction object was implemented in the data source
service to retrieve the virtual table attributes. Given a list
of data files comprising the output of the realization speci-
fied in the query, the extraction object returns the select at-
tributes (oil saturation, oil velocity, time step), partition at-
tributes (realization id and time step), and result attributes
(cell coordinates, realization id, and time step).

Indexing Service. In data files, the values of the seven-
teen variables are grouped by time steps and stored in con-
secutive locations in the corresponding data file. An extrac-
tion object needs to know the number of variables stored per
time step (i.e., the size of the grid used for that realization)
and the starting offset of the time step in a data file. An in-
dex was implemented that, given a list of realizations and a
range of time steps, returns the ids of the realizations that
satisfy the query, a list of time steps per realization, and the
size and offset of each time step in data files.

Filtering Service. For a bypassed oil cell, the speed of
oil in that cell should be less than a user-specified threshold,
Speedy ;. This is expressed as a user-defined filtering oper-
ation in Figure 3. Function Speed(...) was implemented and
registered with the filtering service. The function takes the
velocity of oil in each dimension of the grid in a cell as in-
put arguments and computes the speed of oil.

Partition Generation Service. A user defined Parti-
tion function was implemented in the partition generation
service. This function returns a processor id, given a time

step and realization id. We should note that computation of
bypassed oil regions in steps 2-4 of the bypassed oil algo-
rithm requires that all the cells at a time step in a realization
be on the same processing node. Thus, the partition gener-
ation service computes a partitioning of the selected tuples
based on the realization id and time step. The tuples with
the same realization id and time step are grouped and as-
signed to a processing node on the client machine. The as-
signment of groups to processing nodes is done in a round
robin fashion.

6. Experimental Results

In this section, we evaluate the performance of the
GridDB-Lite implementation of bypassed oil analy-
sis and examine the performance impact of several run-
time optimizations. The hardware configuration used
for the experiments consists of three Linux PC clus-
ters. The first cluster, OSU, is made up of 24 Linux
PCs. Each node has a PIII 933MHz CPU, 512MB main
memory, and three 100GB IDE disks. The nodes are
inter-connected via Switched Fast Ethernet. The sec-
ond cluster, OSC, consists of 128 Linux PCs, each with
dual 1.4GHz AMD Athlon CPUs, 2GB main mem-
ory and 70GB disks. The nodes are inter-connected via
2Gbps Myrinet 2000 switch. Both OSU and OSC clus-
ters are hosted at the Ohio Supercomputer Center. The
third cluster, UMD, is located at the University of Mary-
land. This cluster is composed of 50 Pentium III 650MHz
processors. Each node has 768MB memory and two 75GB
IDE disks and is connected to other nodes by Switched
Fast Ethernet. The two sites, Maryland and Ohio, are con-
nected to each other over a 100Mbps wide-area network.
In the experiments, we executed queries accessing sub-
sets of a dataset that consists of 1 Terabytes of data stored
on the OSU and UMD clusters. This dataset was gen-
erated from 100 realizations executed on these two
clusters. Each realization consists of simulation out-
puts of a grid with 65,536 = 64 x 64 x 16 cells. At each
time step, the value of seventeen separate variables is out-
put for each node in the grid. A total of 2,000 time steps
are taken and the total output stored for each realiza-
tion is about 10 GB.

In the first set of experiments, we examine the effect
on performance of distributed execution of filtering oper-
ations. The results are shown in Figure 4. The query in this
experiment requested data over 10 time steps in 4 realiza-
tions stored across 16 nodes of the OSU cluster. We var-
ied the number of filters from 1 to 22. As seen in the fig-
ure, increasing the number of filters decreases the execution
time of the query. However, after an optimal point, creat-
ing more copies of filters does not improve the performance,
and overhead of starting additional filters increases the over-
all execution time.
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Figure 5. Colocating the Filtering Service
with the Data Source Service.

The second set of experiments examines the effect of
colocating the filtering service (i.e., user-defined filters in
the query) with the data source service. In these experi-
ments, the query requested four datasets stored on the 8
nodes of the OSU cluster. The number of time steps speci-
fied by the query was varied from 5 to 65. Figure 5 shows
the query execution time, when the user-defined filters are
placed on the OSU and UMD clusters. The total number
of filter copies was fixed at 8 and each filter was executed
on a separate processor. In the figure, osu-x-umd-y denotes
that z filters are placed on the OSU cluster and y filters are
placed on the UMD cluster. As expected, colocating the fil-
ters with the data source service reduces the query execu-
tion time significantly. In this experiment, the client pro-
gram was executed on the UMD cluster. By running the
user-defined filters near data sources, the volume of com-
munication between the two clusters is reduced, resulting
in lower query execution time.

Figure 6 shows the execution time of a query when a
dataset is declustered across different number of storage

nodes and when additional CPU resources can be used for
filtering operations. In this set of experiments, the query
requested data from a single dataset stored on the OSU
cluster. The declustering of the dataset among the storage
nodes was varied, and a single data extraction filter, Grid-
DBExtractor, was executed on each storage node with data.
The client processes were placed on the UMD cluster and
the number of GridDBFiltering filters was set to match
the number of the GridDBEXxtractor filters. We looked at
three different placements of the GridDBFiltering and Grid-
DBDataMover filters. In the first configuration, the Grid-
DBFiltering and GridDBDataMover filters were placed on
the UMD cluster. In the second configuration, they were
placed on the OSU cluster. In the third configuration, the
GridDBFiltering filters were placed on the OSC cluster,
but the GridDBDataMover are placed on the OSU cluster,
which has direct connection to outside networks via shared
100Mbps WAN. As is seen in the figure, the second config-
uration performs better than the first one. Clearly, colocat-
ing the filtering service with the data source service reduces
the execution time. Moreover, GridDB-Lite can take advan-
tage of faster CPUs and networks that are closely connected
to data sources. Instantiating the filters on the OSC nodes
further reduces the execution time, even though the filtered
data has to be sent to the OSU nodes so that it can be trans-
fered to the client processes running on the UMD cluster.

In the next set of experiments, we present a preliminary
performance comparison of PostgreSQL and GridDB-Lite.
In this experiment, we loaded one of the realizations, re-
ferred to here as RIDO, to a PostgreSQL database. Post-
greSQL (version 7.3.4) was run on one of the nodes of OSU
cluster. We used default settings of both PostgreSQL and
GridDB-Lite. The loading of the realization took more than
4 hours (14,711 seconds), and creating an index on TIME
also took another 2 hours. The following queries were exe-
cuted using both PostgreSQL and GridDB-Lite on one node
of the cluster.
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Figure 7. Comparison of PostgreSQL and
GridDB-Lite.

Execution Time (seconds)

Query 1 - Full scan of the table: “SELECT * FROM

RIDO”,
e Query 2 - Subsetting using indexed attribute: “SE-

LECT * FROM RIDO WHERE TIME>1000 AND

TIME<11007,
e Query 3 - Subsetting using indexed attribute and filter-

ing: “SELECT * FROM RIDO WHERE TIME>1000

AND TIME< 1100 AND SOIL > 0.77,
e Query 4 - Subsetting using indexed attribute and filter-

ing using a user defined function: “SELECT * FROM
RIDO WHERE TIME>1000 AND TIME<1100 AND

Speed() < 307,
e Query 5 - Accessing the data from a remote client:

“SELECT * FROM RID0 WHERE TIME>1000 AND
TIME<1050”,

Figure 7 displays the execution time of queries 2, 3,4 and 5.
Query 1 took 8,958 seconds using GridDB-Lite, and 18,685
seconds using PostgreSQL — since Query 1 took order of
magnitude longer than the other queries, we do not include
the execution time of the query in the figure. Our prelim-
inary results show GridDB-Lite were able to execute the
queries 23% to 74% faster than PostgreSQL. Since both
systems provide multiple ways of optimizing query perfor-
mance, we will further investigate the effect on performance
of the optimizations for both systems.

We also compared the performance of the GridDB-Lite
based implementation to the original implementation using
DataCutter [15]. The experimental results show that the ex-
ecution time of the GridDB-Lite version is only slightly
(3.7%) slower than the hand optimized version of the by-
passed oil analysis implementation using DataCutter.

7. Conclusions

We presented the application of a middleware infrastruc-
ture, GridDB-Lite, in analysis of datasets from large scale
oil reservoir simulations. As shown by the experimental re-
sults, the loosely coupled services based design of GridDB-
Lite makes it possible to easily incorporate a number of op-

timizations that reduce query execution time. We plan to
extend this work to evaluate the application of GridDB-Lite
for supporting applications on systems with multiple stor-
age hierarchies.
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