
Scalable Hybrid Implementation of Graph Coloring using MPI and OpenMP

Ahmet Erdem Sarıyüce∗†, Erik Saule∗, and Ümit V. Çatalyürek∗‡
∗ Department of Biomedical Informatics

† Department of Computer Science and Engineering
‡Department of Electrical and Computer Engineering

The Ohio State University
Email: {aerdem,esaule,umit}@bmi.osu.edu

Abstract—Graph coloring algorithms are commonly used
in large scientific parallel computing either for identifying
parallelism or as a tool to reduce computation, such as
compressing Hessian matrices. Large scientific computations
are nowadays either run on commodity clusters or on large
computing platforms. In both cases, the current target platform
is hierarchical with distributed memory at the node level and
shared memory at the processor level. In this paper, we present
a novel hybrid graph coloring algorithm and discuss how to
obtain the best performance on such systems from algorithmic,
system and engineering perspectives.

Keywords-Graph algorithm; Graph coloring; Distributed
Memory; Shared Memory; Hybrid programming

I. INTRODUCTION

Graph coloring is a combinatorial problem that consists
in assigning a color, a positive integer, to each vertex of the
graph so that every two adjacent vertices have a different
color. The graph coloring problem has been shown to be
a critical ingredient in many scientific computing applica-
tions such as automatic differentiation [1], printed circuit
testing [2], parallel numerical computation problems [3],
register allocation [4], and optimization [5].

Today’s large scientific computing applications are typi-
cally executed on large scale parallel machines for mainly
two reasons: to reduce the execution time by leveraging
parallelism, and to process large volume of datasets that
do not fit to the memory of a single node. While running
such applications, in order to execute graph algorithms that
are part of the application one can use one of the two
following approaches. The graph can be collected on a single
node, provided it is small enough to fit in the memory, and
execute a sequential version of the algorithm. Or execute
a distributed memory version of the graph algorithm. In
many cases, the former is either infeasible due to memory
limitations, or not efficient [6].

The advent of multicore architectures significantly in-
creased the number of processing units within a single
machine. Most supercomputers nowadays provide more than
four processing cores per node, and eight to sixteen cores per
node are fairly common as well1. Intel recently announced
the Many Integrated Core (MIC) architecture which should

1http://www.top500.org/

provide more than fifty cores within a single chip. These
architectural developments shifted the supercomputer from
distributed memory machines to hierarchical memory ma-
chines where the memory is distributed at the node level
but shared at the core level.

To keep the performance best, one can not ignore the
improvement made possible by having multiple processing
units within a single node. Hybrid systems have flourished
in computation-intensive areas such as linear algebra [7],
multiple sequence alignment [8] and parallel matrix-vector
multiplication [9] which report significant performance im-
provements. To the best of our knowledge, graph algorithms
have not been considered for scalable hybrid processing,
which will be the main focus of this work. The reason to un-
dertake such a challenging task is that distributed systems are
not ideal platforms for graph algorithms [10], furthermore,
distributed memory graph coloring techniques (in fact almost
all graph algorithms) suffer severe performance drawbacks
when trying to use all the processing units of multicore
clusters using message passing libraries [11].

In this paper, we present the design and the development
of a hybrid coloring algorithm. We provide a thorough exper-
imental performance analysis of a careful implementation on
a multicore cluster. Our study is performed within the frame-
work of a widely used library, Zoltan [12]. We highlight the
details that appear in a production quality general purpose
library to illustrate the need for the algorithm engineering
necessary to obtain the best possible performance in real
world settings.

We discuss the related work in Section II. Then we
present the internal architecture of the coloring module of
Zoltan in Section III and explain how to adapt it for hybrid
computation. Section IV presents our thorough experimental
performance analysis starting with the different parameters
one should consider when deploying an hybrid graph algo-
rithm and how to get to a hybrid implementation that leads
to 20% to 30% improvement over the distributed memory
implementation. Finally, in Section V, we draw more general
conclusion to hybrid graph algorithms and discuss future
works.

http://www.top500.org/

II. PRELIMINARIES

A. Generalities

A coloring of a graph is an assignment of integers (called
colors) to vertices such that no two adjacent vertices will
have the same integer. The aim is to minimize the number
of different colors assigned to the vertices. The problem has
been known to be NP-Complete [13] and recently, it has
shown that for all ε > 0, it is NP-Hard to approximate the
graph coloring problem within |V |1−ε [14].

Yet simple algorithms are known to provide almost op-
timal coloring for a majority of common graphs [5]. The
sequential greedy coloring presented in Algorithm 1 is the
most popular technique for graph coloring [15], [16]. This
algorithm simply visits the vertices of the graph in some
order and assign to each vertex the smallest permissible
color. The order of traversal of the graph is known to be
of importance for reducing the number of colors used and
many heuristics have been developed on that premise [17],
[1].

Algorithm 1: Sequential greedy coloring.
Data: G = (V,E)
for each v ∈ V do

for each w ∈ adj (v) do
forbiddenColors[color[w]] ← v

color[v]← min{i > 0 : forbiddenColors[i] 6= v}

B. Parallel Graph Coloring Algorithms

We can classify the parallel graph coloring algorithms in
three categories.

The first category of algorithms relies on finding a maxi-
mal independent set of vertices in the graph. An independent
set of vertices does not contain any two vertices having an
edge between them; such a set is said to be maximal if
no other vertices can be added to that set while keeping
it independent. Luby’s algorithm [18] starts by assigning a
random number to each vertex; then it finds a vertex such
that its random number is larger than all of the neighbors,
removes it and removes its neighbors. Instead of removing
that vertex, one can give it the smallest color, and the algo-
rithm becomes a parallel graph coloring algorithm. Many of
distributed memory parallel graph coloring algorithms [3],
[19], [20] relies on this technique.

The second category of coloring algorithms relies on
speculative coloring technique [21], [22], [6], [23]. In the
simplest form [21], each processor tentatively colors parts
of the graph independently of the other ones using the
sequential greedy algorithm. Once the graph has been fully
colored, all the vertices of the graph are considered once
again to make sure all adjacent vertices are colored with
different colors. In case a conflict is detected, a global

ordering on the vertices (usually determined by random
numbers) is used to mark one of the vertex to be recolored.
And lastly, marked vertices are recolored sequentially. The
method was refined in [22] by using smart block based
partitioning and by executing both coloring and conflict de-
tection phase using parallel OpenMP construct. [23] presents
more improvement to that shared-memory algorithms by
introducing the computation of efficient ordering in parallel
and applying the algorithm to distance-2 coloring.

Bozdağ et al. [6] made multiple improvements to the
speculative coloring idea to make it suitable for distributed
memory architectures. One of the extensions was replacing
the sequential recoloring phase with a parallel iterative
procedure. Many of the other extensions were driven by
performance needs in a distributed-memory setting, like dur-
ing the coloring, exchange of coloring information is done
in a bulk-synchronous way to reduce the communication
overhead. The implementation in Zoltan [12], and hence
our work is based on the coloring framework developed by
Bozdağ et al. [6] and is explained in details in Section III.

The third category, which includes most recent develop-
ment in coloring algorithms, is dataflow coloring algorithms
which has been originally designed for Cray XMT [24]. The
main difference of dataflow coloring algorithm is how the
coloring of a vertex is initiated or triggered (and in some
versions, how these coloring tasks are assigned to a process-
ing element). By establishing a total ordering on vertices
(such as using vertex IDs) one can color the vertex with
highest priority (say vertex with lowest ID) first. In other
words, a vertex can only be colored when its neighbors with
higher priority have been colored. Algorithmically, coloring
a vertex triggers the coloring of the adjacent vertices with
lower priorities (that is vertices with higher IDs). We should
note that vertices with lower priorities can be concurrently
colored with higher priority vertices, as long as they are
not depending on them. In other words, coloring of the
vertices are driven by the flow of the data, i.e., when a
color is assigned to a vertex. Although this algorithm is
more work efficient than speculative algorithms by avoiding
the conflict resolution phase, it relies on low-level hardware
specific intrinsics to be efficient which does not exists on
the architectures targeted in this study.

C. Hybrid Algorithms

Many algorithms have been developed for hybrid sys-
tems [7], [25], [26], [8]. Baker et al. [7] experiments
algebraic multigrid on a hybrid platform and discusses
the challenges faced. They introduce the first comprehen-
sive study of the performance of algebraic multigrid on
three leading HPC platforms. They claim that a general
solution for obtaining best multicore performance is not
possible without taking into account the specific target
architecture including node architecture, interconnect and
operating system capabilities. White et al. [26] discusses

overlapping the computation and communication on hybrid
parallel computers for the advection problem. Overlapping
MPI communication with computation does not give sig-
nificant performance improvements for their test case, but
tuning the number of OpenMP threads per MPI process
is important for performance. Macedo et al. [8] present a
multiple sequence alignment problem in hybrid context and
provide a parallel strategy to run a part of their algorithm
in multicore environments. They also discuss the need for
powerful master node, which is responsible for communi-
cation, and appropriate task allocation policy. Schubert et
al. [9] discuss parallel sparse matrix-vector multiplication
for hybrid MPI/OpenMP programming. They analyze single
socket baseline performance with respect to architectural
properties of multicore chips.

As an hybrid approach for graph algorithm, Kang and
Bader [25] investigate the large scale complex network
analysis methods on three different platforms: a MapReduce
cluster, a highly multithreaded system and a hybrid system
that uses both simultaneously. In that work, Kang and Bader
show different approaches for the different architectures.
They explain that performance and program complexity are
highly related with the conformity of workload’s computa-
tional requirements, the programming model and the archi-
tecture. Their work shows the synergy of the hybrid system
in the context of complex network analysis and superiority
of hybrid system over simply using a MapReduce cluster or
a highly multithreaded system. Their work discusses a graph
problem in hybrid context, but does not give scalability
results in terms of distributed settings.

To the best of our knowledge, there is no work applied on
a graph algorithm investigating the scalability on multicore
hybrid systems. From that perspective, our work is the
first hybrid parallel graph algorithm study investigating the
scalability.

III. ALGORITHMS

A. Distributed-Memory Coloring

Bozdağ et al. [6] present a distributed-memory parallel
graph coloring framework which was the first to show a
parallel speedup. Our work is based on the implementation
of that algorithm in Zoltan [12], an MPI-based C library
for parallel partitioning, load balancing, coloring and data
management services for distributed memory systems. We
implemented the hybrid graph coloring algorithm inside
the distributed coloring framework of Zoltan. Here we will
explain the distributed algorithm first and then we will give
details about the implementation of the shared memory
algorithms which are important for a proper execution on
a hybrid system.

The graph is first built by Zoltan using programmer
defined callbacks inside each MPI process. That is to say,
the graph is distributed onto the MPI processes according
to the distribution of the user’s data. In other words, Zoltan

does not choose the distribution unless it is requested by
the application. In the coloring framework, each vertex
belongs to a single MPI process. The information of an
edge is available to an MPI process only if one of the
end point vertices of the edge is owned by that process.
In other words, if both vertices of an edge are owned by
same process, then only that process has the information of
that edge. Otherwise, if the edge is connecting two vertices
owned by different processes, then both processes have the
information about that edge. In the course of the algorithm,
each process is responsible for coloring its own vertices. If
all the neighbors of a given vertex are owned by the same
process, then this vertex is an internal vertex. Otherwise,
if any of the neighbor vertex belongs to a different MPI
process, then this vertex is a boundary vertex.

The vertices can be colored in five different vertex visit
orders [6], [11]. In this work, we focus on the ordering called
Internal First which is the fastest one. It consists in coloring
first the internal vertices in each process. Since they are
internal, their coloring can be done concurrently by each
process without risking to make an invalid decision.

The coloring of the boundary vertices is done in multiple
rounds. In each round, each process greedily colors all of
its uncolored vertices. Then, possible conflicts at boundary
vertices are detected by each process. If a conflict is detected
at an edge, one of the vertices of that edge is selected
to be recolored in the next round. This selection is based
on random keys that are associated with each vertex. This
association of the random key is done before the coloring;
each vertex is guaranteed to have a unique random key so
that it provides a total ordering on the vertices in all the
processes.

To reduce the number of conflicts at the end of each
round, communication must be frequent between the MPI
processes, but it should not be too frequent, otherwise the
communication latency of the distributed system will be
the bottleneck. Therefore, the coloring of the vertices are
organized in supersteps. In each superstep, each MPI process
colors a given number, called superstep size, of its own
vertices, then exchange with other MPI processes the current
color of the boundary vertices. The procedure is said to
be synchronous, if all the processes are coloring the same
superstep at each time. In other words, one process does not
start one superstep before its neighbors finished the previous
superstep. In our work, coloring is done in synchronous
supersteps2. The superstep size has an important impact on
the quality and the runtime of the entire coloring procedure
since a too small value leads to too many synchronizations,
while a too high value increases the number of conflicts and
therefore the amount of redundant work.

It is important to understand that each MPI process

2Zoltan also supports asynchronous supersteps, but we do not investigate
this possibility in this work. The interested reader is referred to [6].

communicates with its neighbor processes using dedicated
messages. Different communication settings were investi-
gated in [6] and found that a customized communication
scheme leads to the best performance on medium to large
scale systems.

An important implementation detail concerns the order
of the vertices in memory. Since the graph comes directly
from the user, there is no guarantee on the relative order of
internal and boundary vertices. Having the internal vertices
numbered one after the other, and similarly having boundary
vertices numbered consecutively helps in utilizing caches
and also could help reducing the amount of work, by only
traversing the vertices that are needed to be processed.
Therefore, before doing anything else, the coloring frame-
work in Zoltan starts by reordering the graph in memory, that
is to say it puts the boundary vertices first and the internal
vertices last. In the process, the list of neighbors of a single
node is also rearranged in that order. That way, it is easy to
access only the internal neighbors of a vertex, or only to its
local boundary neighbors, or its external boundary neighbors
(neighbors that are not owned by the current process). This
phase is relatively expensive but it is important to achieve
the highest performance.

Zoltan has a random key construction phase before doing
coloring to obtain a new total ordering among vertices that
is not influenced by the natural ordering. This construction
is done by first hashing the global ids of the vertices and
then calling a random function with that hash as a seed. If
two vertices happen to have the same random key, the tie is
broken based on the global ids. Recall that the random keys
are used to decide how conflicts are resolved. The overall
algorithm is prone to some worst case that depends on how
conflicts are resolved. Using randomized values makes the
worst cases less likely.

B. Hybrid Coloring

There are many sources of shared memory parallelism
within the scope of one MPI process. Exploiting properly
each source of parallelism proved to be key in achieving
the best performance. In our implementation, the parallelism
inside an MPI process is achieved with OpenMP.

First of all, the construction of the random keys is done in
parallel using the OpenMP parallel for construct. Originally,
Zoltan was using a stateful random generator which was not
thread-safe. We improved the random generator and made it
thread-safe.

Reordering the vertices can also be done using multiple
threads. In reordering, there are three main operations:
determining and counting the boundary vertices, clustering
the visit array so that boundary vertices are placed first and
internal vertices are placed last, and changing the adjacency
lists of each vertex so that boundary vertices appear first.
The first and third operation can be executed concurrently by
multiple threads provided they operate on different vertices.

A simple parallel for construct allows to process them in par-
allel. The boundary vertices are determined and computed
and stored independently by the threads. After the parallel
execution of the loop their number is summed. To be able to
execute the second operation efficiently in parallel, one must
enforce the allocation of iterations to the threads to be static
while counting the boundary vertices. Indeed, the position
where a thread should move a vertex is easily computed if
the number of boundary vertices with an ID smaller than the
ID of the vertex being considered is known. The best way to
obtain that information is to keep a static scheduling policy
and to reuse the information contained in the execution of
the counting of the boundary vertices. Two more important
details appear. The first and third operations are independent
from each other and can therefore be merged into a single
parallel loop in order to reduce scheduling overhead. And
to avoid false sharing the count of the number of boundary
vertices processed by each thread must be allocated on
different cache lines.

Each time vertices are colored, they are colored with
the same thread-parallel procedure we now describe. The
coloring is simply done by partitioning the vertices to
different threads using the parallel for construct. Each thread
needs its own mark array and a variable to keep track of the
highest color it uses. Keeping the memory used by each
thread on different cache lines avoids false sharing.

If there is more than one thread in the process, we need to
verify whether there are some conflicts or not. Each thread
verifies a part of the vertices and if there is a conflict and
its random key is less than the other vertex random key, it
is marked for recoloring. A list of vertices to recolor is kept
by each thread and is aggregated once all the threads are
done detecting conflicts.

IV. DESIGN AND EXPERIMENTS

A. Experimental Settings

All of the algorithms are tested on an in-house cluster
composed of 64 computing nodes. Each node has two Intel
Xeon E5520 (quad-core clocked at 2.27GHz) processors,
48GB of main memory, and 500 GB of local hard disk.
Nodes are interconnected through 20Gbps DDR InfiniBand.
They run CentOS 6.0 the Linux kernel 2.6.32. The code
is compiled with Intel C Compiler 12.0 using the -O2
optimization flag. Two implementations of MPI are tested:
MVAPICH2 version 1.6 and OpenMPI version 1.4.3. How-
ever, mainly MVAPICH2 is used. The experiments are run
on up to 32 nodes except for Figure 2 where 64 nodes are
used for the experiment. For each run, we present how many
processes per node are used as well as how many threads per
process. Each node has 2 sockets, each socket has 4 cores
and each core has 2 hyperthreads. There is an L1 and L2
caches per each core of size 32 KB and 256 KB, respectively,
and there is an 8 MB L3 cache per socket.

Name |V | |E| ∆ #colors seq. time
auto 448K 3.3M 37 13 0.1103s
bmw3 2 227K 5.5M 335 48 0.0836s
hood 220K 4.8M 76 40 0.0752s
ldoor 952K 20.7M 76 42 0.3307s
msdoor 415K 9.3M 76 42 0.1458s
pwtk 217K 5.6M 179 48 0.0820s

Table I
PROPERTIES OF REAL-WORLD GRAPHS

The experiments are run on six real-world graphs which
come from various application areas including linear car
analysis, finite element, structural engineering and auto-
motive industry [22], [27]. They have been obtained from
the University of Florida Sparse Matrix Collection3 and
the Parasol project. The list of the graphs and their main
properties are summarized in Table I. The number of colors
obtained with a sequential run is also listed in the table.
Finally, the time to compute the coloring using a sequential
greedy algorithm is given.

In a real-word application context, the application data
are partitioned according to the user’s need. For our test, we
partition the graphs using two different partitioners built in
Zoltan. The Parallel HyperGraph partitioner (PHG) uses an
hypergraph model to produce well balanced partitions while
keeping the total inter-process communication volume small.
Block partitioning is a simple partitioner based on vertex
IDs. Although it produces well-balanced partitions in terms
of number of vertices, since the actual work depends on
the size of the adjacency lists of vertices, the load can be
imbalanced and also could incur high communication cost.

For all the experiments, we will present either the runtime
of the method or the number of colors it produces. Since all
the graphs we consider show the same trends, their results
are aggregated as follows. Each value is first normalized and
then the normalized values are aggregated using a geometric
mean. Normalization bases may vary from figure to figure,
but it will be mentioned for each figure.

B. Scalability of the Distributed Memory Implementation

In a recent work, we showed that distributed memory
graph coloring techniques suffer severely when trying to
use all processing elements in a multicore cluster using a
message-passing programming model [11]. Figure 1 shows
the normalized time obtained when increasing the number of
MPI processes using different process to processor allocation
policies. Normalization is done with respect to the runtime
obtained using one MPI process. The 1ppn allocation policy
first allocates one process on a different node until 32
processes are used (where they are allocated on 32 different
nodes) and then allocates a second process per node until 64
processes are used, and so on. The 2ppn allocation policy
allocates processes by group of two so that when 4 processes

3http://www.cise.ufl.edu/research/sparse/matrices/

0.1

1

1 10 100 1000

n
o

rm
al

iz
ed

 t
im

e

number of processors

8 ppn
4 ppn
2 ppn
1 ppn

Figure 1. Impact of the distributed memory process allocation policies on
real-world graph

are used only two nodes are used. Once it allocates 64
processes, it used all the nodes and start allocating processes
to the first nodes again. (We will use ppn for ”MPI pro-
cesses per node” from now on). In this experiments, block
partitioning is used and the superstep size is set to 1000.
Figure 1 shows that the runtime of the 1ppn allocation policy
dramatically increases as soon as more than one process
per node is used (that is to say with 64 processes). The
8ppn allocation policy scales gracefully until 16 processes
are used; that is to say, until two nodes are fully used. As
soon as 32 processes are used, that is to say four nodes,
the runtime starts to dramatically increase. For the very
synchronized and small messages that are exchanged by the
distributed memory coloring algorithm, the MPI subsystem
is not capable of transferring the messages fast enough when
multiple processes reside on a single node.

One can wonder whether it is a defect of a particular
MPI implementation or whether the cause is deeper. We
compared OpenMPI 1.4.3 and MVAPICH2 1.6 using the
1ppn and 8ppn process allocation policy; results are shown
in Figure 2. Note that, in this experiment normalization is
done with respect to the sequential greedy coloring time
and experiment is conducted up to 64 nodes. The two
implementations of MPI show some performance difference
but the trend we are interested in is still present. Both show
significant performance degradation when more than two
nodes are used with more than one process per node.

The conclusion of those two experiments is that in the
current state, the distributed memory-only implementation
of the coloring algorithm can not efficiently use clusters of
multicore. Hence, the importance of providing an efficient
hybrid implementation that will allow to properly exploit the
full potential of such systems.

http://www.cise.ufl.edu/research/sparse/matrices/

0.1

1

10

1 10 100 1000

n
o

rm
al

iz
ed

 t
im

e

number of processors

1 proc per node

2 procs per node

4 procs per node

8 procs per node

Figure 2. Comparison of different MPI implementations on 1 ppn and 8
ppn configurations

C. Single Node Experiments

Figure 3 presents the results of the hybrid implementation
in a single node compared to our shared-memory code and
distributed-memory algorithm. The hybrid implementation is
run with 1ppn, 2ppn and 4ppn configurations. The x-axis is
named number of schedulable units (SU) which means either
a thread in shared-memory and hybrid cases or a process
in the case of distributed memory code. For instance, for
the hybrid implementation with 2 ppn, if each process uses
4 threads, then 8 threads are used in total and the result
is reported as 8 SUs. Therefore, some data point are not
reachable, e.g., 1 SU for the hybrid 2ppn configuration.
We did not run the distributed memory cases on more than
8 SUs since there are only 8 physical cores per node in
our test cluster where 2 hyperthreads reside per core. In
this experiment, block partitioning is used for distributed
memory and hybrid implementations and the superstep size
is set to 1000. Thread affinity and the OpenMP scheduling
policy are left to their default values (which are no affinity
is set and static scheduling policy). Normalization is done
with respect to the execution of one MPI process on the
distributed memory implementation.

Figure 3 shows that hybrid implementation with 1ppn
allocation policy gives very close results with shared mem-
ory implementation and they are clearly best. Then comes
the distributed memory-only implementation, and finally
hybrid implementations with the 2ppn and 4ppn. We should
note that, the reordering process, which is explained in
Section III-B, is disabled in when a single process is used.
Hence the performance of hybrid implementation will be
slightly worse when more processes are used.

Next, we investigate the use of thread affinity in a single
node to decide whether migration and hyperthreading is
beneficial for different configurations. Remember that, in

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n
o

rm
al

iz
ed

 t
im

e

number of schedulable units

shared memory
distributed memory
hybrid 1ppn
hybrid 2ppn
hybrid 4ppn

Figure 3. Comparison of shared memory, distributed memory and hybrid
implementations with different ppns in a single node with block partitioning

our cluster machines each node has 2 sockets, each socket
has 4 cores and each core has 2 hyperthreads. There is
one L3 cache per socket and L1 and L2 caches per core.
Figure 4(a) shows the results for the migration experiment.
The ”no affinity” lets the operating system place the thread
as it sees fit. The ”2 sockets, no migration” policy leaves
no choice to the system scheduler by assigning each thread
of a process to a different socket while fixing the (logical)
threads to a given physical hyperthread. On the contrary,
the ”2 sockets, 2-way migration” policy forces the threads
of a process to all be scheduled on the different cores of
the sockets while allowing the (logical) thread to migrate
from one hyperthread to the other one. In the experiment,
these configurations are compared under different number
of threads.

The results show that prevention of migration by pinning
logical threads to hyperthreads gives the best performance;
indeed allowing migration inside a core never improves
performance. The improvement carried by setting the thread
mapping over letting the system choose the thread mapping
can be as high as 35%. The results for the hyperthreading
experiment are shown in Figure 4(b). Using a single socket,
the runtime decreases when using all the hyperthreads(1ppn
8 threads) compared to using a single hyperthread per
core(1ppn 4 threads). Using 2 sockets, using hyperthreading
(1ppn 16 threads) improves the runtime compared to not
using it (1ppn 8 threads). However, partially using hyper-
threading (1ppn 12 threads) degrades performance. This
latter effect might be due to the static scheduling policy
which induces load imbalance at the core level. Overall,
using hyperthreading improves performance.

D. Multiple Node Experiments

When using OpenMP, it is usually important to properly
set the scheduling policy. The next experiment investigates

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1 ppn 4 threads 1 ppn 8 threads 1 ppn 16 threads

n
o

rm
al

iz
ed

 t
im

e

no affinity

2 sockets, no migration

2 sockets, 2-way migration

(a) Impact of Migration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1 socket, no migration 2 sockets, no migration

n
o

rm
al

iz
ed

 t
im

e

1 ppn 4 threads

1 ppn 8 threads

1 ppn 12 threads

1 ppn 16 threads

(b) Impact of Hyperthreading

Figure 4. Impact of affinity policies on some configurations in a single node

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

1 ppn 4 threads 1 ppn 8 threads 1 ppn 16 threads

n
o

rm
al

iz
ed

 t
im

e

200
400
600
800
1000

dynamic static guided static dynamic guided static dynamic guided

(a) 1 node

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

1 ppn 4 threads 1 ppn 8 threads 1 ppn 16 threads

n
o

rm
al

iz
ed

 t
im

e

200
400
600
800
1000

static dynamic guided static dynamic guided static dynamic guided

(b) 8 nodes

Figure 5. Impact of OpenMP scheduling policy on hybrid implementation

the static, dynamic and guided scheduling policies with
chunk sizes of 200, 400, 600, 800 and 1000 on 1 node and
8 nodes for the 1ppn 4 threads, 1ppn 8 threads and 1ppn
16 threads cases. In this experiment, the superstep size is
1000, no affinity is set and normalizations are done with
respect to the execution time of one MPI process using
the distributed memory-only implementation. Results are
presented in Figure 5.

On 1 node, Figure 5 shows that the OpenMP scheduling
policy does not make much of a difference when 4 threads
are used. Using 8 threads, some differences appear and
the runtime based ”Guided, 1000” and ”Dynamic, 400”
give best results. Using 16 threads, ”Static, 1000” leads to
better results. Overall the differences are difficult to predict.
On 8 nodes, the scheduling policy does not bring major
differences unless 16 threads are used where the runs are

quite difficult to predict again.
Figure 6 shows the results of the study of the impact of

the different supersteps sizes up to 8 nodes with 1ppn 16
threads case where affinity is set properly. Normalizations
are done with respect to one MPI process of the distributed
memory-only implementation. As can be seen from the
figure, superstep size 500 is slower. Superstep sizes of
1000, 2000 and 4000 leads to only marginally different
runtimes despite a larger superstep size make the run faster.
We also know that, increasing superstep size brings more
conflicts in our algorithm and tend to degrades the quality
of coloring. For this reason, we believe a superstep size of
1000 balances reasonably the quality of the coloring and
runtime performance.

Until now, we have experimented the variations of several
parameters to see their effects on hybrid coloring. From

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8

n
o

rm
al

iz
ed

 t
im

e

number of nodes

ss=500
ss=1000
ss=2000
ss=4000

Figure 6. Impact of superstep size on hybrid implementation up to 8 nodes

now on, we combine the best results we obtained by tuning
the mentioned parameters. For example, when we present
distributed memory-only result on say 4 nodes, we have
tested distributed memory code from 4 processes (1ppn
policy) to 4× 8 processes (8ppn policy) and simply present
best possible result one could achieve with distributed
memory code on 4 nodes. In other words, configuration
selected for distributed memory-only code from one node
to another could be different. Indeed, for 1, 2, 4, 8, 16 and
32 nodes, best configurations are 8ppn, 8ppn, 4ppn, 2ppn,
2ppn and 1ppn, respectively. We would like to be fair to both
implementations and compare only their best performance.

All previous experiments used block partitioning. The
next experiments present the impact of the graph partitioning
of the runtime of the hybrid coloring algorithm. Figure 7
shows these results up to 32 nodes. This chart simply
compares the best results one can obtain with hybrid 1ppn,
hybrid 2ppn and distributed memory-only implementation
on a given number of nodes. The two partitioners tested
are PHG (Parallel Hypergraph Partitioning) and block parti-
tioning. Normalizations are done with respect to eight MPI
processes in one node case using the distributed memory-
only implementation. The result indicates that PHG parti-
tioning provides a better runtime performance for hybrid
1ppn and distributed memory-only by about 25% and about
20% respectively. Similar values are observed for the hybrid
2ppn configuration.

A typical parallel program, running on a multi-core clus-
ter, is expected to utilize all the processing units available.
So, for our cluster, an MPI program is usually run with
8 processors per node configuration and a hybrid program
is run with x processors per node and y threads per each
process, where x * y is 8. We compared the hybrid and
distributed memory-only implementations of graph coloring
in Figure 7. This figure is the first one showing the perfor-

mance of hybrid algorithm in large scale. When we compare
the typical configurations, hybrid implementations are far
better than distributed memory-only 8ppn implementations,
8x faster for block partitioning and 6x faster for PHG parti-
tioning. Furthermore, hybrid implementations are also better
than distributed memory-only 1ppn implementations. For
block partitioning, hybrid 1ppn outperforms the distributed
memory-only 1ppn implementation by 6% on 8 nodes, and
up to 24% on 32 nodes. The hybrid 2ppn configuration
outperforms the distributed memory-only implementation
in almost all number of nodes, by 47% on 8 nodes and
by 15% on 32 nodes. Notice that because the partitioning
is not taken into account in the runtime, using the PHG
partitioner gives an advantage to the distributed memory-
only implementation. Still, the hybrid 1ppn and hybrid 2ppn
configurations obtain better runtime than the distributed
memory implementation on 32 nodes and 16 nodes, respec-
tively, with PHG partitioning. This result expresses in our
opinion the superiority of hybrid graph algorithms in a large
scale setting.

E. Overall comparisons

Figure 8 presents the runtime comparison between the
typical distributed memory-only configuration (8 ppn), the
best distributed memory-only configuration and the best
hybrid configuration. The normalizations are performed with
respect to the runtime of eight MPI processes on one node
using the distributed memory-only implementation. Here,
the best configuration is picked and might use different
number of processes. For example, using 8 processes per
node shows the best performance for the distributed memory
implementation on 1 node while the hybrid implementation
is better using a single process but 16 threads. The hybrid
implementation is far better than typical distributed memory-
only implementation. It also leads to better runtime than
the best distributed memory-only implementation on all
number of nodes (except on 2 nodes) with 20% to 30%
of improvement.

One can be interested to verify that the hybrid imple-
mentation did not significantly worsen the number of colors
obtained by the algorithm. Actually, the hybrid implemen-
tation provides 4% to 7% less number of colors than the
distributed memory-only implementation at large scale.

V. CONCLUSION

In this paper, we investigated the proper implementation
of a graph coloring algorithm for hybrid systems. We showed
how an existing distributed memory code base was carefully
adapted to provide better performance for hierarchical multi-
core architectures. The parameters affecting the performance
of the hybrid execution have been investigated one by one
in order to obtain the best possible performance. Despite the
shared memory algorithm is not work efficient and the dis-
tributed memory algorithm benefits from a free partitioning,

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20 25 30 35

n
o

rm
al

iz
ed

 t
im

e

number of nodes

distributed memory 1ppn, block partitioning

distributed memory 8ppn, block partitioning

best of hybrid 1ppn, block partitioning

best of hybrid 2ppn, block partitioning

(a) Block Partitioning

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20 25 30 35

n
o

rm
al

iz
ed

 t
im

e

number of nodes

distributed memory 1ppn, phg partitioning

distributed memory 8ppn, phg partitioning

best of hybrid 1ppn, phg partitioning

best of hybrid 2ppn, phg partitioning

(b) PHG partitioning

Figure 7. Impact of partitioning types on hybrid implementation up to 32 nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20 25 30 35

n
o

rm
al

iz
ed

 t
im

e

number of nodes

best of hybrid

best of distributed memory

typical distributed memory

Figure 8. Runtime comparison of best of distributed memory-only and
best of hybrid configurations

a careful implementation of the program for hybrid system
and a proper evaluation of the parameters of the execution
platform allow to obtain better performance over typical
distributed memory-only usage by 6 times to 8 times. Hybrid
coloring is even better than 1ppn distributed memory-only
implementation by 20% to 30% while obtaining better
number of colors. To the best of our knowledge, this paper
is the first work on the hybrid implementation of a graph
algorithm with full scalability tests.

We would like to highlight the importance of properly
setting thread affinity. Letting the operating system schedule
threads typically reduces performance significantly. Schedul-
ing the threads of a single process so that they share a
common cache usually improves performance. Also, it is

important to note that hyperthreading is beneficial for hybrid
parallelization of graph coloring.

Now that it is possible to utilize all the parallelism
contained within a node without suffering from high com-
munication cost, we plan to investigate ways to improve the
quality of the solution in a hybrid setting. Implementation
of ordering techniques such as Largest First and Smallest
Last for hybrid systems will bring some new challenges
such as coloring the graph with a pre-computed ordering.
We are also planning to include the recoloring procedure
presented in [11]. We only investigated the distance-1 col-
oring problem and the proper implementation of distance-2
coloring should be investigated as well. Last but not least,
the implementation for hybrid system that perform coloring
and distributed memory communication simultaneously has
the potential for overlapping both operation and achieving
higher performance.

ACKNOWLEDGMENT

This work was partially supported by the U.S. Department
of Energy SciDAC Grant DE-FC02-06ER2775 and NSF
grants CNS-0643969, OCI-0904809 and OCI-0904802.

REFERENCES

[1] A. H. Gebremedhin, F. Manne, and A. Pothen, “What color
is your jacobian? Graph coloring for computing derivatives,”
SIAM Review, vol. 47, no. 4, pp. 629–705, 2005.

[2] M. Garey, D. Johnson, and H. So, “An application of graph
coloring to printed circuit testing,” Circuits and Systems,
IEEE Transactions on, vol. 23, no. 10, pp. 591–599, Oct.
1976.

[3] J. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer,
and C. Martin, “A comparison of parallel graph coloring al-
gorithms,” Northeast Parallel Architectures Center at Syracuse
University (NPAC), Tech. Rep. SCCS-666, 1994.

[4] G. J. Chaitin, “Register allocation & spilling via graph
coloring,” SIGPLAN Not., vol. 17, pp. 98–101, Jun. 1982.

[5] T. F. Coleman and J. J. More, “Estimation of sparse Jacobian
matrices and graph coloring problems,” SIAM Journal on
Numerical Analysis, vol. 1, no. 20, pp. 187–209, 1983.

[6] D. Bozdağ, A. Gebremedhin, F. Manne, E. Boman, and
Ü. Çatalyürek, “A framework for scalable greedy coloring on
distributed memory parallel computers,” Journal of Parallel
and Distributed Computing, vol. 68, no. 4, pp. 515–535, 2008.

[7] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang,
“Challenges of scaling algebraic multigrid across modern
multicore architectures,” in IPDPS, 2011, pp. 275–286.

[8] E. de Araujo Macedo and A. Boukerche, “Hybrid
MPI/OpenMP strategy for biological multiple sequence align-
ment with DIALIGN-TX in heterogeneous multicore clus-
ters,” in IPDPS Workshops, 2011, pp. 418–425.

[9] G. Schubert, G. Hager, H. Fehske, and G. Wellein, “Parallel
sparse matrix-vector multiplication as a test case for hybrid
MPI+OpenMP programming,” CoRR, vol. abs/1101.0091,
2011.

[10] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W. Berry,
“Challenges in parallel graph processing,” Parallel Processing
Letters, vol. 17, no. 1, pp. 5–20, 2007.

[11] A. E. Sarıyüce, E. Saule, and U. V. Çatalyürek, “Improving
graph coloring on distributed-memory parallel computers,”
in High Performance Computing (HiPC), 2011 18th Inter-
national Conference on, Dec. 2011, pp. 1 –10.

[12] E. Boman, K. Devine, R. Heaphy, B. Hendrickson, V. Le-
ung, L. A. Riesen, C. Vaughan, Ü. Çatalyürek, D. Bozdağ,
W. Mitchell, and J. Teresco, Zoltan 3.0: Parallel Parti-
tioning, Load Balancing, and Data-Management Services;
User’s Guide, Sandia National Laboratories, Albuquerque,
NM, 2007, tech. Report SAND2007-4748W.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability.
Freeman, San Francisco, 1979.

[14] D. Zuckerman, “Linear degree extractors and the inapprox-
imability of max clique and chromatic number,” Theory of
Computing, vol. 3, pp. 103–128, 2007.

[15] D. W. Matula, G. Marble, and J. Isaacson, “Graph coloring
algorithms,” Graph Theory and Computing, pp. 109–122,
1972.

[16] A. V. Kosowski and K. Manuszewski, “Classical coloring of
graphs,” Graph Colorings, pp. 1 – 19, 2004.

[17] J. C. Culberson, “Iterated greedy graph coloring and the
difficulty landscape,” University of Alberta, Tech. Rep. TR
92-07, Jun. 1992.

[18] M. Luby, “A simple parallel algorithm for the maximal inde-
pendent set problem,” SIAM Journal on Computing, vol. 15,
no. 4, pp. 1036–1053, 1986.

[19] M. Jones and P. Plassmann, “A parallel graph coloring heuris-
tic,” SIAM Journal on Scientific Computing, vol. 14, no. 3,
pp. 654–669, 1993.

[20] R. K. Gjertsen Jr., M. T. Jones, and P. Plassmann, “Parallel
heuristics for improved, balanced graph colorings,” Journal
of Parallel and Distributed Computing, vol. 37, pp. 171–186,
1996.

[21] A. H. Gebremedhin and F. Manne, “Parallel graph coloring
algorithms using OpenMP (extended abstract),” in In First
European Workshop on OpenMP, 1999, pp. 10–18.

[22] A. Gebremedhin and F. Manne, “Scalable parallel graph
coloring algorithms,” Concurrency: Practice and Experience,
vol. 12, pp. 1131–1146, 2000.

[23] M. Patwary, A. Gebremedhin, and A. Pothen, “New multi-
threaded ordering and coloring algorithms for multicore archi-
tectures,” in Euro-Par 2011 Parallel Processing, E. Jeannot,
R. Namyst, and J. Roman, Eds. Springer Berlin / Heidelberg,
2011, pp. 250–262.

[24] Ü. V. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halap-
panavar, and A. Pothen, “Graph coloring algorithms for multi-
core and massively multithreaded architectures,” Parallel
Computing, 2012, (to appear).

[25] S. Kang and D. A. Bader, “Large scale complex network
analysis using the hybrid combination of a MapReduce cluster
and a highly multithreaded system,” in IPDPS Workshops,
2010, pp. 1–8.

[26] J. White and J. Dongarra, “Overlapping computation and
communication for advection on hybrid parallel computers,”
in Parallel Distributed Processing Symposium (IPDPS), 2011
IEEE International, may 2011, pp. 59 –67.

[27] M. M. Strout and P. D. Hovland, “Metrics and models for
reordering transformations,” in Proc. of Workshop on Memory
System Performance (MSP), June 8 2004, pp. 23–34.

	Introduction
	Preliminaries
	Generalities
	Parallel Graph Coloring Algorithms
	Hybrid Algorithms

	Algorithms
	Distributed-Memory Coloring
	Hybrid Coloring

	Design and Experiments
	Experimental Settings
	Scalability of the Distributed Memory Implementation
	Single Node Experiments
	Multiple Node Experiments
	Overall comparisons

	Conclusion
	References

