
Incremental Algorithms for Closeness Centrality

Ahmet Erdem Sarıyüce1,2, Kamer Kaya1, Erik Saule1, Ümit V. Çatalyürek1,3

Depts. 1Biomedical Informatics, 2Computer Science and Engineering, 3Electrical and Computer Engineering
The Ohio State University

Email:sariyuce.1@osu.edu, kamer@bmi.osu.edu, esaule@uncc.edu, umit@bmi.osu.edu

Abstract—Centrality metrics have shown to be highly cor-
related with the importance and loads of the nodes within the
network traffic. In this work, we provide fast incremental al-
gorithms for closeness centrality computation. Our algorithms
efficiently compute the closeness centrality values upon changes
in network topology, i.e., edge insertions and deletions. We
show that the proposed techniques are efficient on many real-
life networks, especially on small-world networks, which have a
small diameter and spike-shaped shortest distance distribution.
We experimentally validate the efficiency of our algorithms
on large-scale networks and show that they can update the
closeness centrality values of 1.2 million authors in the temporal
DBLP-coauthorship network 460 times faster than it would
take to recompute them from scratch.

Keywords-closeness centrality; dynamic networks; small-
world networks

I. INTRODUCTION

Centrality metrics, such as closeness or betweenness,
quantify how central a node is in a network. They have
been successfully used to carry analysis for various purposes
such as structural analysis of knowledge networks [14, 18],
power grid contingency analysis [7], quantifying importance
in social networks [12], analysis of covert networks [9], and
even for finding the best store locations in cities [15]. Several
works on rapid computation of these metrics exist in the lit-
erature. The algorithm with the best time complexity to com-
pute centrality metrics [2] is believed to be asymptotically
optimal [8]. Research have focused on either approximation
algorithms for computing centrality metrics [3, 4, 13] or
on high performance computing techniques [11, 19]. Today,
the networks one needs to analyze can be quite large and
dynamic, and better analysis techniques are always required.

In a dynamic and streaming network, ensuring the correct-
ness of the centralities is a challenging task [5, 10]. Further-
more, for some applications involving a static network such
as the contingency analysis of power grids and robustness
evaluation of networks, to be prepared and take proactive
measures, we need to know how the centrality values change
when the network topology is modified by an adversary or
outer effects such as natural disasters. As Figure 1 shows,
the effect of a local topology modification is usually global.
To quantify these effects and find exact centrality scores,
existing algorithms are not efficient enough to be used
in practice. Novel, incremental algorithms are essential to

quickly evaluate the effects of topology modifications on
centrality values.

0"

0.02"

0.04"

0.06"

0.08"

0.1"

1" 2" 3" 4"

Cl
os
en

es
s'c

en
tr
al
ity

' a" b"

c" d"

e" f"

g" h"

Figure 1. A toy network with eight nodes, three consecutive
edge (ah, fh, and ab, respectively) insertions/deletions, and values
of closeness centrality.

Our main contributions are incremental algorithms which
efficiently update the closeness centralities upon edge inser-
tions and deletions. Compared with the existing algorithms,
our algorithms have a low-memory footprint which makes
them practical and applicable to very large graphs. For ran-
dom edge insertions/deletions to the Wikipedia users’ com-
munication graph, we reduced the centrality (re)computation
time from 2 days to 16 minutes. And for the real-life
temporal DBLP coauthorship network, we reduced the time
from 1.3 days to 4.2 minutes.

The rest of the paper is organized as follows: Section II
introduces the notation and the closeness centrality metric.
Our algorithms are explained in detail in Section III. Related
works are given in Section IV. An experimental analysis is
given in Section V. Section VI concludes the paper.

II. BACKGROUND

Let G = (V,E) be a network modeled as a simple graph
with n = |V | vertices and m = |E| edges where each node
is represented by a vertex in V , and a node-node interaction
is represented by an edge in E. Let ΓG(v) be the set of
vertices which are connected to v.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E. A path is a sequence of vertices such that
there exists an edge between each consecutive vertex
pair. A path between two vertices s and t is denoted by
s t (or s

P
 t if a specific path P with endpoints s and

t is mentioned). Two vertices u, v ∈ V are connected if

there is a path between u and v. If all vertex pairs in G
are connected we say that G is connected. Otherwise, it is
disconnected and each maximal connected subgraph of G
is a connected component, or a component, of G. We use
dG(u, v) to denote the length of the shortest path between
two vertices u, v in a graph G. If u = v then dG(u, v) = 0.
If u and v are disconnected, then dG(u, v) =∞.

Given a graph G = (V,E), a vertex v ∈ V is called an
articulation vertex if the graph G−v (obtained by removing
v) has more connected components than G. Similarly, an
edge e ∈ E is called a bridge if G−e (obtained by removing
e from E) has more connected components than G. G is
biconnected if it is connected and it does not contain an
articulation vertex. A maximal biconnected subgraph of G
is a biconnected component.

A. Closeness Centrality

Given a graph G, the farness of a vertex u is defined as

far[u] =
∑
v∈V

dG(u,v)6=∞

dG(u, v).

And the closeness centrality of u is defined as

cc[u] =
1

far[u]
. (1)

If u cannot reach any vertex in the graph cc[u] = 0.
For a sparse unweighted graph G = (V,E) the

complexity of cc computation is O(n(m + n)) [2]. For
each vertex s ∈ V , Algorithm 1 executes a Single-Source
Shortest Paths (SSSP), i.e., it initiates a breadth-first
search (BFS) from s, computes the distances to the other
vertices and far[s], the sum of the distances which are
different than ∞. As the last step, it computes cc[s]. Since
a BFS takes O(m + n) time, and n SSSPs are required in
total, the complexity follows.

Algorithm 1: CC: Basic centrality computation
Data: G = (V,E)
Output: cc[.]

1 for each s ∈ V do
.SSSP(G, s) with centrality computation
Q← empty queue
d[v]←∞, ∀v ∈ V \ {s}
Q.push(s), d[s]← 0
far[s]← 0
while Q is not empty do

v ← Q.pop()
for all w ∈ ΓG(v) do

if d[w] =∞ then
Q.push(w)
d[w]← d[v] + 1
far[s]← far[s] + d[w]

cc[s] = 1
far[s]

return cc[.]

III. MAINTAINING CENTRALITY

Many real-life networks are scale free. The diameters of
these networks grow proportional to the logarithm of the
number of nodes. That is, even with hundreds of millions
of vertices, the diameter is small, and when the graph
is modified with minor updates, it tends to stay small.
Combining this with the power-law degree distribution of
scale-free networks, we obtain the spike-shaped shortest-
distance distribution as shown in Figure 2. We use work
filtering with level differences and utilization of special
vertices to exploit these observations and reduce the
centrality computation time. In addition, we apply SSSP
hybridization to speedup each SSSP computation.

0.00	
0.10	
0.20	
0.30	
0.40	
0.50	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Pr
(d
(u
,v
)	 =

	 x
)	

Shortest	 path	 distance	

amazon0601	
soc-‐sign-‐epinions	
web-‐Google	
web-‐NotreDame	

Figure 2. The probability of the distance between two (connected)
vertices is equal to x for four social and web networks.

A. Work Filtering with Level Differences

For efficient maintenance of the closeness centrality val-
ues in case of an edge insertion/deletion, we propose a work
filter which reduces the number of SSSPs in Algorithm 1 and
the cost of each SSSP by utilizing the level differences.

Level-based filtering detects the unnecessary updates and
filter them out. Let G = (V,E) be the current graph and uv
be an edge to be inserted to G. Let G′ = (V,E ∪ uv) be
the updated graph. The centrality definition in (1) implies
that for a vertex s ∈ V , if dG(s, t) = dG′(s, t) for all t ∈ V
then cc[s] = cc′[s]. The following theorem is used to detect
such vertices and filter their SSSPs.

Theorem 1: Let G = (V,E) be a graph and u and v be
two vertices in V s.t. uv /∈ E. Let G′ = (V,E ∪ uv). Then
cc[s] = cc′[s] if and only if |dG(s, u)− dG(s, v)| ≤ 1.

Proof: If s is disconnected from u and v, uv’s insertion
will not change cc[s]. Hence, cc[s] = cc′[s]. If s is only
connected to one of u and v in G the difference |dG(s, u)−
dG(s, v)| is ∞, and cc[s] needs to be updated by using the
new, larger connected component containing s. When s is
connected to both u and v in G, we investigate the edge
insertion in three cases as shown in Figure 3:

Case 1: dG(s, u) = dG(s, v): Assume that the path s
P

u–v P ′

 t is a shortest s t path in G′ containing uv. Since
dG(s, u) = dG(s, v), there exists a shorter path s

P ′′

 v
P ′

 t
with one less edge. Hence, ∀t ∈ V , dG(s, t) = dG′(s, t).

Case 2: |dG(s, u) − dG(s, v)| = 1: Let

dG(s, u) < dG(s, v). Assume that s P
 u–v P ′

 t is a shortest
path in G′ containing uv. Since dG(s, v) = dG(s, u) + 1,

there exists another path s
P ′′

 v
P ′

 t with the same length.
Hence, ∀t ∈ V , dG(s, t) = dG′(s, t).

Case 3: |dG(s, u) − dG(s, v)| > 1: Let dG(s, u) <
dG(s, v). The path s u–v in G′ is shorter than the shortest
s v path in G since dG(s, v) > dG(s, u) + 1. Hence,
∀t ∈ V \{v}, dG′(s, t) ≤ dG(s, t) and dG′(s, v) < dG(s, v),
i.e., an update on cc[s] is necessary.

Figure 3. Three cases of edge insertion: when an edge uv is
inserted to the graph G, for each vertex s, one of them is true:
(1) dG(s, u) = dG(s, v), (2) |dG(s, u) − dG(s, v)| = 1, and (3)
|dG(s, u)− dG(s, v)| > 1.

Although Theorem 1 yields to a filter only in case of
edge insertions, the following corollary which is used for
edge deletion easily follows.

Corollary 2: Let G = (V,E) be a graph and u and v be
two vertices in V s.t. uv ∈ E. Let G′ = (V,E\{uv}). Then
cc[s] = cc′[s] if and only if |dG′(s, u)− dG′(s, v)| ≤ 1.

With this corollary, the work filter can be implemented
for both edge insertions and deletions. The pseudocode of
the update algorithm in case of an edge insertion is given
in Algorithm 2. When an edge uv is inserted/deleted, to
employ the filter, we first compute the distances from u and
v to all other vertices. And, we filter the vertices satisfying
the statement of Theorem 1.

Algorithm 2: Simple work filtering
Data: G = (V,E), cc[.], uv
Output: cc′[.]
G′ ← (V,E ∪ {uv})
du[.]← SSSP(G, u) . distances from u in G
dv[.]← SSSP(G, v) . distances from v in G
for each s ∈ V do

if |du[s]− dv[s]| ≤ 1 then
cc′[s] = cc[s]

else
. use the computation in Algorithm 1
with G′

return cc′[.]

B. Utilization of Special Vertices

We exploit some special vertices to speedup the incre-
mental closeness centrality computation further. We leverage
the articulation vertices and identical vertices in networks.
Although it has been previously shown that articulation
vertices in real social networks are limited and yield an
unbalanced shattering [17], we present the related techniques
here to give a complete view.

1) Filtering with biconnected components: Our filter can
be assisted by maintaining a biconnected component decom-
position (BCD) of G = (V,E). A BCD is a partitioning Π
of E where Π(e) is the component of each edge e ∈ E.
When uv is inserted to G and G′ = (V,E′ = E ∪ {uv}) is
obtained, we check if

{Π(uw) : w ∈ ΓG(u)} ∩ {Π(vw) : w ∈ ΓG(v)}

is empty or not: if the intersection is not empty, there will be
only one element in it, cid, which is the id of the biconnected
component of G′ containing uv (otherwise Π is not a valid
BCD). In this case, Π′(e) is set to Π(e) for all e ∈ E and
Π′(uv) is set to cid. If there is no biconnected component
containing both u and v , i.e., if the intersection above is
empty, we construct Π′ from scratch and set cid = Π′(uv).
Π can be computed in linear, O(m+n) time [6]. Hence, the
cost of BCD maintenance is negligible compared to the cost
of updating closeness centrality. Details can be found in [16].

2) Filtering with identical vertices: Our preliminary
analyses show that real-life networks can contain a
significant amount of identical vertices with the same/a
similar neighborhood structure. We investigate two types of
identical vertices.

Definition 3: In a graph G, two vertices u and v are type-
I-identical if and only if ΓG(u) = ΓG(v).

Definition 4: In a graph G, two vertices u and v are type-
II-identical if and only if {u} ∪ ΓG(u) = {v} ∪ ΓG(v).

Both types form an equivalance class relation since they
are reflexive, symmetric, and transitive. Hence, all the
classes they form are disjoint.

Let u, v ∈ V be two identical vertices. One can see that
for any vertex w ∈ V \ {u, v}, dG(u,w) = dG(v, w). Then
the following is true.

Corollary 5: Let I ⊆ V be a vertex-class containing
type-I or type-II identical vertices. Then the closeness cen-
trality values of all the vertices in I are equal.

C. SSSP Hybridization

The spike-shaped distribution given in Figure 2 can also
be exploited for SSSP hybridization. Consider the execution
of Algorithm 1: while executing an SSSP with source s, for
each vertex pair {u, v}, u is processed before v if and only
if dG(s, u) < dG(s, v). That is, Algorithm 1 consecutively
uses the vertices with distance k to find the vertices with
distance k + 1. Hence, it visits the vertices in a top-down
manner. SSSP can also be performed in a a bottom-up
manner. That is to say, after all distance (level) k vertices
are found, the vertices whose levels are unknown can be
processed to see if they have a neighbor at level k. The top-
down variant is expected to be much cheaper for small k val-
ues. However, it can be more expensive for the upper levels
where there are much less unprocessed vertices remaining.

Following the idea of Beamer et al. [1], we hybridize the
SSSPs. While processing the nodes at an SSSP level, we

simply compare the number of edges need to be processed
for each variant and choose the cheaper one.

IV. RELATED WORK

To the best of our knowledge, there are only two works
on maintaining centrality in dynamic networks. Yet, both
are interested in betweenness centrality. Lee et al. proposed
the QUBE framework which uses a BCD and updates the
betweenness centrality values in case of edge insertions and
deletions in the network [10]. Unfortunately, the perfor-
mance of QUBE is only reported on small graphs (less than
100K edges) with very low edge density. In other words, it
only performs significantly well on small graphs with a tree-
like structure having many small biconnected components.

Green et al. proposed a technique to update the be-
tweenness centrality scores rather than recomputing them
from scratch upon edge insertions (can be extended to edge
deletions) [5]. The idea is to store the whole data structure
used by the previous computation. However, as the authors
stated, it takes O(n2 + nm) space to store all the required
values. Compared to their work, our algorithms are much
more practical since the memory footprint of linear.

V. EXPERIMENTAL RESULTS

We implemented the algorithms in C and compiled
with gcc v4.6.2 with the optimization flags -O2
-DNDEBUG. The graphs are kept in the compressed row
storage (CRS) format. The experiments are run in sequential
on a computer with two Intel Xeon E5520 CPU clocked at
2.27GHz and equipped with 48GB of main memory.

For the experiments, we used 10 networks from the UFL
Sparse Matrix Collection1 and also extracted the coauthor
network from the current set of DBLP papers. Properties
of the graphs are summarized in Table I. They are from
different application areas, such as social (hep-th, PGPgiant-
compo, astro-ph, cond-mat-2005, soc-sign-epinions, loc-
gowalla, amazon0601, wiki-Talk, DBLP-coauthor), and web
networks (web-NotreDame, web-Google). The graphs are
listed by increasing number of edges and a distinction is
made between small graphs (with less than 500K edges)
and the large graphs (with more than 500K) edges.

Although the filtering techniques can reduce the update
cost significantly in theory, their practical effectiveness de-
pends on the underlying structure of G. Since the diameter
of the social networks are small, the range of the shortest
distances is small. Furthermore, the distribution of these dis-
tances is unimodal. When the distance with the peak (mode)
is combined with the ones on its right and left, they cover
a significant amount of the pairs (56% for web-NotreDame,
65% for web-Google, 79% for amazon0601, and 91% for
soc-sign-epinions). We expect the filtering procedure to have
a significant impact on social networks because of their

1http://www.cise.ufl.edu/research/sparse/matrices/

Graph Time (in sec.)
name |V | |E| Org. Best Speedup
hep-th 8.3K 15.7K 1.41 0.05 29.4
PGPgiantcompo 10.6K 24.3K 4.96 0.04 111.2
astro-ph 16.7K 121.2K 14.56 0.36 40.5
cond-mat-2005 40.4K 175.6K 77.90 2.87 27.2

geometric mean 43.5
soc-sign-epinions 131K 711K 778 6.25 124.5
loc-gowalla 196K 950K 2,267 53.18 42.6
web-NotreDame 325K 1,090K 2,845 53.06 53.6
amazon0601 403K 2,443K 14,903 298 50.0
web-Google 875K 4,322K 65,306 824 79.2
wiki-Talk 2,394K 4,659K 175,450 922 190.1
DBLP-coauthor 1,236K 9,081K 115,919 251 460.8

geometric mean 99.8
Table I

THE GRAPHS USED IN THE EXPERIMENTS. COLUMN Org.
SHOWS THE INITIAL CLOSENESS COMPUTATION TIME OF CC
AND Best IS THE BEST UPDATE TIME WE OBTAIN IN CASE OF

STREAMING DATA.

structure. Besides, that specific structure is also important
for the SSSP hybridization.

A. Handling topology modifications

To assess the effectiveness of our algorithms, we need
to know when each edge is inserted to/deleted from the
graph. Our datasets from the UFL collection do not have this
information. To conduct our experiments on these datasets,
we delete 1,000 edges from a graph chosen randomly in
the following way: A vertex u ∈ V is selected ran-
domly (uniformly), and a vertex v ∈ ΓG(u) is selected
randomly (uniformly). Since we do not want to change the
connectivity in the graph (having disconnected components
can make our algorithms much faster and it will not be fair to
CC), we discard uv if it is a bridge. If this is not the case we
delete it from G and continue. We construct the initial graph
by deleting these 1,000 edges. Each edge is then re-inserted
one by one, and our algorithms are used to recompute the
closeness centrality scores after each insertion.

In addition to the random insertion experiments, we also
evaluated our algorithms on a real temporal dataset of the
DBLP coauthor graph2. In this graph, there is an edge
between two authors if they published a paper together. We
used the publication dates as timestamps and constructed
the initial graph with the papers published before January 1,
2013. We used the coauthorship edges of the later papers
for edge insertions. Although we used insertions in our
experiments, a deletion is a very similar process which
should give comparable results.

In addition to CC, we configure our algorithms in
four different ways: CC-B only uses BCD, CC-BL uses
BCD and filtering with levels, CC-BLI uses all three
work filtering techniques including identical vertices. And
CC-BLIH uses all the techniques described in this paper
including the SSSP hybridization.

Table II presents the results of the experiments. The
second column, CC, shows the time to run the full base

2http://www.informatik.uni-trier.de/∼ley/db/

algorithm for computing the closeness centrality values on
the original version of the graph. Columns 3–6 of the
table present absolute runtimes (in seconds) of the centrality
computation algorithms. The next four columns, 7–10, give
the speedups achieved by each configuration. For instance,
on the average, updating the closeness values by using CC-
B on PGPgiantcompo is 11.5 times faster than running CC.
Finally the last column gives the overhead of our algorithms
per edge insertion, i.e., the time necessary to filter the source
vertices and to maintain BCD and identical-vertex classes.
Geometric means of these times and speedups are also given
to provide a comparison across all the instances.

The times to compute the closeness values using CC on
the small graphs range between 1 to 77 seconds. On large
graphs, the times range from 13 minutes to 49 hours. Clearly,
CC is not suitable for real-time network analysis and man-
agement based on shortest paths and closeness centrality.
When all the techniques are used (CC-BLIH), the time
necessary to update the closeness centrality values of the
small graphs drops below 3 seconds per edge insertion. The
improvements range from a factor of 27.2 (cond-mat-2005)
to 111.2 (PGPgiantcompo), with an average improvement
of 43.5 across small instances and a factor of 42.6 (loc-
gowalla) to 458.8 (DBLP-coauthor), on large graphs, with
an average of 99.7. For all graphs, the time spent for
overheads is below one second which indicates that the
majority of the time is spent for SSSPs. Note that this part
is pleasingly parallel since each SSSP is independent from
each other. Hence, by combining the techniques proposed in
this work with a straightforward parallelism, one can obtain
a framework that can maintain the closeness centrality values
within a dynamic network in real time.

The overall improvement obtained by the proposed al-
gorithms is significant. The speedup obtained by using
BCDs (CC-B) are 3.5 and 3.2 on the average for small
and large graphs, respectively. The graphs PGPgiantcompo,
and wiki-Talk benefits the most from BCDs (with speedups
11.5 and 6.8, respectively). Clearly using the biconnected
component decomposition improves the update performance.
However, filtering by level differences is the most efficient
technique: CC-BL brings major improvements over CC-
B. For all social networks, when CC-BL is compared with
CC-B, the speedups range from 4.8 (web-NotreDame) to
64 (DBLP-coauthor). Overall, CC-BL brings a 7.61 times
improvement on small graphs and a 13.44 times improve-
ment on large graphs over CC.

For each added edge uv, let X be the random variable
equal to |dG(u,w)−dG(v, w)|. By using 1,000 uv edges, we
computed the probabilities of the three cases we investigated
before and give them in Fig. 4. For each graph in the
figure, the sum of the first two columns gives the ratio
of the vertices not updated by CC-BL. For the networks
in the figure, not even 20% of the vertices require an
update (Pr(X > 1)). This explains the speedup achieved

by filtering using level differences. Therefore, level filtering
is more useful for the graphs having characteristics similar
to small-world networks.

0	

0.2	

0.4	

0.6	

Pr(X	 =	 0)	
Pr(X	 =	 1)	
Pr(X	 >	 1)	

Figure 4. The bars show the distribution of random variable X =
|dG(u,w) − dG(v, w)| into three cases we investigated when an
edge uv is added.

Filtering with identical vertices is not as useful as the
other two techniques in the work filter. Overall, there is a
1.15 times improvement with CC-BLI on both small and
large graphs compared to CC-BL. For some graphs, such as
web-NotreDame and web-Google, improvements are much
higher (30% and 31%, respectively).

The algorithm with the hybrid SSSP implementation, CC-
BLIH, is faster than CC-BLI by a factor of 1.42 on small
graphs and by a factor of 1.96 on large graphs. Although it
seems to improve the performance for all graphs, in some
few cases, the performance is not improved significantly.
This can be attributed to incorrect decisions on SSSP variant
to be used. Indeed, we did not benchmark the architecture
to discover the proper parameter. CC-BLIH performs the
best on social network graphs with an improvement ratio of
3.18 (soc-sign-epinions), 2.54 (loc-gowalla), and 2.30 (wiki-
Talk).

All the previous results present the average single edge
update time for 1,000 successively added edges. Hence, they
do not say anything about the variance. Figure 5 shows the
runtimes of CC-B and CC-BLIH per edge insertion for
web-NotreDame in a sorted order. The runtime distribution
of CC-B clearly has multiple modes. Either the runtime is
lower than 100 milliseconds or it is around 700 seconds.
We see here the benefit of BCD. According to the runtime
distribution, about 59% of web-NotreDame’s vertices are
inside small biconnected components. Hence, the time per
edge insertion drops from 2,845 seconds to 700. Indeed, the
largest component only contains 41% of the vertices and
76% of the edges of the original graph. The decrease in the
size of the components accounts for the gain of performance.

0.01	

0.1	

1	

10	

100	

1000	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

U
pd

at
e	
(m

e	
	

(s
ec
s,
	 lo
g	
sc
al
e)
	

CC-‐B	
CC-‐BLIH	

Figure 5. Sorted list of the runtimes per edge insertion for the first
100 added edges of web-NotreDame.

Time (secs) Speedups Filter
Graph CC CC-B CC-BL CC-BLI CC-BLIH CC-B CC-BL CC-BLI CC-BLIH time (secs)
hep-th 1.413 0.317 0.057 0.053 0.048 4.5 24.8 26.6 29.4 0.001
PGPgiantcompo 4.960 0.431 0.059 0.055 0.045 11.5 84.1 89.9 111.2 0.001
astro-ph 14.567 9.431 0.809 0.645 0.359 1.5 18.0 22.6 40.5 0.004
cond-mat-2005 77.903 39.049 5.618 4.687 2.865 2.0 13.9 16.6 27.2 0.010
Geometric mean 9.444 2.663 0.352 0.306 0.217 3.5 26.8 30.7 43.5 0.003
soc-sign-epinions 778.870 257.410 20.603 19.935 6.254 3.0 37.8 39.1 124.5 0.041
loc-gowalla 2,267.187 1,270.820 132.955 135.015 53.182 1.8 17.1 16.8 42.6 0.063
web-NotreDame 2,845.367 579.821 118.861 83.817 53.059 4.9 23.9 33.9 53.6 0.050
amazon0601 14,903.080 11,953.680 540.092 551.867 298.095 1.2 27.6 27.0 50.0 0.158
web-Google 65,306.600 22,034.460 2,457.660 1,701.249 824.417 3.0 26.6 38.4 79.2 0.267
wiki-Talk 175,450.720 25,701.710 2,513.041 2,123.096 922.828 6.8 69.8 82.6 190.1 0.491
DBLP-coauthor 115,919.518 18,501.147 288.269 251.557 252.647 6.2 402.1 460.8 458.8 0.530
Geometric mean 13,884.152 4,218.031 315.777 273.036 139.170 3.2 43.9 50.8 99.7 0.146

Table II
EXECUTION TIMES IN SECONDS OF ALL THE ALGORITHMS AND SPEEDUPS WHEN COMPARED WITH THE BASIC CLOSENESS

CENTRALITY ALGORITHM CC. IN THE TABLE CC-B IS THE VARIANT WHICH USES ONLY BCDS, CC-BL USES BCDS AND FILTERING
WITH LEVELS, CC-BLI USES ALL THREE WORK FILTERING TECHNIQUES INCLUDING IDENTICAL VERTICES. AND CC-BLIH USES

ALL THE TECHNIQUES DESCRIBED IN THIS PAPER INCLUDING SSSP HYBRIDIZATION.

The impact of level filtering can also be seen on Figure 5.
60% of the edges in the main biconnected component do
not change the closeness values of many vertices and the
updates that are induced by their addition take less than 1
second. The remaining edges trigger more expensive updates
upon insertion. Within these 30% expensive edge insertions,
using identical vertices and SSSP hybridization provide a
significant improvement (not shown in the figure).

Better Speedups on Real Temporal Data: The best
speedups are obtained on the DBLP coauthor network which
uses real temporal data. Using CC-B, we reach 6.2 speedup
w.r.t. CC, which is bigger than the average speedup on all
networks. Main reason for this behavior is that 10% of the
inserted edges are actually the new vertices joining to the
network, i.e., authors with their first publication, and CC-
B handles these edges quite fast. Applying CC-BL gives a
64.8 speedup over CC-B, which is drastically higher than
all other graphs. Indeed, only 0.7% of the vertices require
to run a SSSP algorithm when an edge is inserted on the
DBLP network. For the synthetic cases, this number is 12%.
Overall, speedups obtained with real temporal data reach
460.8, i.e., 4.6 times greater than the average speedup on
all graphs. Our algorithms appear to perform much better
on real applications than on synthetic ones.

VI. CONCLUSION

In this paper, we propose the first algorithms to achieve
fast updates of exact closeness centrality values on incre-
mental network modification at such a large scale. Our
techniques exploit the spike-shaped shortest-distance dis-
tributions of these networks, their biconnected component
decomposition, and the existence of nodes with identical
neighborhood. In large networks with more than 500K
edges, the proposed techniques bring 99 times speedup on
average. For the temporal DBLP coauthorship graph, which
has the most edges, we reduced the centrality update time
from 1.3 days to 4.2 minutes.

VII. ACKNOWLEDGMENTS

This work was partially supported by the NHI/NCI
grant R01CA141090; the NSF grant OCI-0904809; and the

NPRP grant 4-1454-1-233 from the Qatar National Research
Fund (a member of Qatar Foundation). The statements made
herein are solely the responsibility of the authors.

REFERENCES
[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing

breadth-first search. In Proc. of Supercomputing, 2012.
[2] U. Brandes. A faster algorithm for betweenness centrality. Journal

of Mathematical Sociology, 25(2):163–177, 2001.
[3] S. Y. Chan, I. X. Y. Leung, and P. Liò. Fast centrality approximation

in modular networks. In Proc. of CIKM-CNIKM, 2009.
[4] D. Eppstein and J. Wang. Fast approximation of centrality. In Proc.

of SODA, 2001.
[5] O. Green, R. McColl, and D. A. Bader. A fast algorithm for streaming

betweenness centrality. In Proc. of SocialCom, 2012.
[6] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for

graph manipulation. Communications of the ACM, 16(6):372–378,
June 1973.

[7] S. Jin, Z. Huang, Y. Chen, D. G. Chavarrı́a-Miranda, J. Feo, and P. C.
Wong. A novel application of parallel betweenness centrality to power
grid contingency analysis. In Proc. of IPDPS, 2010.

[8] S. Kintali. Betweenness centrality : Algorithms and lower bounds.
CoRR, abs/0809.1906, 2008.

[9] V. Krebs. Mapping networks of terrorist cells. Connections, 24, 2002.
[10] M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung. QUBE:

a Quick algorithm for Updating BEtweenness centrality. In Proc. of
WWW, 2012.

[11] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G. Chavarrı́a-
Miranda. A faster parallel algorithm and efficient multithreaded
implementations for evaluating betweenness centrality on massive
datasets. In Proc. of IPDPS, 2009.

[12] E. L. Merrer and G. Trédan. Centralities: Capturing the fuzzy notion
of importance in social graphs. In Proc. of SNS, 2009.

[13] K. Okamoto, W. Chen, and X.-Y. Li. Ranking of closeness centrality
for large-scale social networks. In Proc. of FAW, 2008.

[14] M. C. Pham and R. Klamma. The structure of the computer science
knowledge network. In Proc. of ASONAM, 2010.

[15] S. Porta, V. Latora, F. Wang, E. Strano, A. Cardillo, S. Scellato,
V. Iacoviello, and R. Messora. Street centrality and densities of retail
and services in Bologna, Italy. Environment and Planning B: Planning
and Design, 36(3):450–465, 2009.

[16] A. E. Sarıyüce, K. Kaya, E. Saule, and Ümit V. Çatalyürek. Incre-
mental algorithms for network management and analysis based on
closeness centrality. CoRR, abs/1303.0422, 2013.

[17] A. E. Sarıyüce, E. Saule, K. Kaya, and Ümit V. Çatalyürek. Shattering
and compressing networks for betweenness centrality. In Proc. of
SDM, 2013.

[18] X. Shi, J. Leskovec, and D. A. McFarland. Citing for high impact.
In Proc. of JCDL, 2010.

[19] Z. Shi and B. Zhang. Fast network centrality analysis using GPUs.
BMC Bioinformatics, 12:149, 2011.

