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Abstract

Networks are commonly used to model the traffic pat-

terns, social interactions, or web pages. Closeness central-

ity (CC) is a global metric that quantifies how important

is a given node in the network. When the network is dy-

namic and keeps changing, the relative importance of the

nodes also changes. The best known algorithm to compute

the CC scores makes it impractical to recompute them

from scratch after each modification. In this paper, we

propose Streamer, a distributed memory framework for

incrementally maintaining the closeness centrality scores

of a network upon changes. It leverages pipelined and

replicated parallelism and takes NUMA effects into ac-

count. It speeds up the maintenance of the CC of a real

graph with 916K vertices and 4.3M edges by a factor of

497 using a 64 nodes cluster.

Introduction

Many of today’s networks are dynamic. And for such

networks, maintaining the exact centrality scores is a

challenging problem which has been studied in the litera-

ture [3, 4, 5]. Offline CC computation can be expensive

for large-scale networks. Yet, one could hope that the

incremental graph modifications can be handled in an

inexpensive way. In a previous study, we proposed a se-

quential incremental closeness centrality algorithm which

is orders of magnitude faster than the best offline algo-

rithm [5]. Still, the algorithm was not fast enough to be

used in practice. In this work [6], we present Streamer,

a framework to efficiently parallelize the incremental CC

computation on high-performance clusters.

Streamer (Figure 1) employs DataCutter [1], our in-

house data-flow programming framework for distributed

memory systems. In DataCutter, the computations are

carried by independent computing elements, called filters,

that have different responsibilities and operate on data

Figure 1: Architecture of Streamer taking into account

the hierarchical nature of the nodes.

passing through them.

The best available algorithm for the offline centrality

computation is pleasingly parallel (and scalable if enough

memory is available) since it involves n independent ex-

ecutions of the single-source shortest path (SSSP) algo-

rithm [2]. In a naive distributed framework for the offline

case, one can distribute the SSSPs to the nodes and gather

their results. Here the computation is static, i.e., when the

graph changes, the previous results are ignored and the

same n SSSPs are re-executed. On the other hand, in the

online approach, the updates can arrive at any time even

while the centrality scores for a previous update are still

being computed. Furthermore, the scores which need to be

recomputed (the SSSPs that need to be executed) change

w.r.t. the update. Finding these SSSPs and distributing

them to the nodes is not a straightforward task. To be able

to do that, the incremental algorithms maintain complex

information such as the biconnected component decom-

position of the current graph [5]. Hence, after each edge

insertion/deletion, this information needs to be updated.

There are several (synchronous and asynchronous) blocks

in the online approach. And it is not trivial to obtain an
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(a) amazon0601

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

 0  10  20  30  40  50  60

U
pd

at
es

 p
er

 s
ec

on
d

Working nodes

8 threads, 1 graph/NUMA
8 threads, 1 graph
8 threads, 1 graph/thread
4 threads, 1 graph
1 thread

(b) web-NotreDame
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(c) web-Google

Figure 2: Scalability: the performance is expressed in the number of updates per second. Different worker-node

configurations are shown. The number of threads indicated the number of Executor per node, while the number of

graphs indicates the number of Preparator per node.“1 graph/NUMA” means that one per processor.

efficient parallelization of the incremental algorithm.

Streamer

The structure of Streamer is presented in Figure 1. The

InstanceGenerator generates the graph at the beginning of

the application and send the modifications on the graph

to all the filters. StreamingMaster is responsible for the

deciding which vertices of the graph need their centrality

updated and output a list to the third filter and statistic

information to the fourth one. The Preparator and Ex-

ecutor pair performs the real work and computes the new

CC scores after each graph modification. The Aggregator

reconstructs the exact closeness centrality values for all

vertices at each modification of the graph.

The computation is organized so that multiple Executor

are managed by a single Preparator. The Preparator is

repsonsible for managing the graph data structures which

is passed to Executor using memory references, leverage

the fact that they are running on the same computing

node. That way, the four Executor on the same processor

share the same graph data structure and benefit from

cache reutilization.

Performance results

Figure 2 shows the performance and scalability of the

system in different configurations on a cluster of 64

nodes equipped with two quad-core Intel processors.

The performance is expressed in number of updates per

second. The framework obtains up to 11, 000 updates/sec

on amazon0601 and web-Google, and 49, 000 updates/sec

on web-NotreDame. It appears to scale linearly on the

graphs amazon0601 and web-Google. For the first two

graphs, it reaches a speedup of 456 and 497, respectively,

with 63 nodes and 8 threads/node compared to the

single node-single thread configuration. The last graph,

web-NotreDame, does not exhibit a linear scaling and

obtains a speedup of only 316.

Conclusion

Maintaining the correctness of a graph analysis is im-

portant in today’s dynamic networks. Computing the

closeness centrality scores from scratch after each graph

modification is prohibitive, and even sequential incremen-

tal algorithms are too expensive for networks of practical

relevance. In this paper, we proposed Streamer, a dis-

tributed memory framework which guarantees the correct-

ness of the CC scores, exploits replicated and pipelined

parallelism, and takes the hierarchical architecture of mod-

ern clusters into account. Using Streamer on a 64 nodes,

8 cores/node cluster, we reached a speedup of 497.
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