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Abstract

The ideal distribution of spatially located heterogeneous
workloads is an important problem to address in parallel
scientific computing. We investigate the problem of parti-
tioning such workloads (represented as a matrix of positive
integers) into rectangles, such that the load of the most
loaded rectangle (processor) is minimized. Since finding
the optimal arbitrary rectangle-based partition is an NP-
hard problem, we investigate particular classes of solutions,
namely, rectilinear partitions, jagged partitions and hierar-
chical partitions. We present a new class of solutions called
m-way jagged partitions, propose new optimal algorithms
for m-way jagged partitions and hierarchical partitions,
propose new heuristic algorithms, and provide worst case
performance analyses for some existing and new heuristics.
Moreover, the algorithms are tested in simulation on a wide
set of instances. Results show that two of the algorithms
we introduce lead to a much better load balance than the
state-of-the-art algorithms.

1. Introduction

The key to obtaining good efficiency in parallel and
distributed computing is to ensure that the data and hence
relevant computations of a parallel application are distributed
in a load balanced fashion while keeping the communi-
cation volume low. In a large class of applications, the
computational tasks are located in a discrete, two or three-
dimensional space and each task only communicates with its
neighboring tasks. That class of applications includes linear
algebra kernels [1], [2], [3], image rendering algorithms [4]
and particle-in-cell simulation [5], [6] (used in fluid dynam-
ics, weather forecast, magnetic field simulation, and so on).

To distribute such applications on a parallel computer, one
must decide on which processor each cell (voxel) of the two
(three) dimensional space will be processed, provided the
computational requirement of each cell. Since many scien-
tific applications exhibit localized computations, preferably,
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each processor should be allocated a connected and compact
region of the computational work space, to reduce the
communication volume. Previous literature has investigated
different shapes such as triangles or ovoids. However, rectan-
gles (and rectangular volumes) are the most preferred shape
since they implicitly minimize the communication while
not restricting the set of possible allocations drastically.
Moreover, their compact representation also allows to easily
find which processor a given cell is allocated to.

This paper addresses the problem of partitioning a load
matrix into a given number of rectangles to minimize the
load of the most loaded rectangle. Computing the optimal
solution of this problem is NP-Hard. Therefore, like many
of the previous research, we focus on designing faster
algorithms by restricting our search to specific classes of
solutions. Most of the previous studies only consider a
limited set of classes, a reduced set of algorithms, and either
only theoretical validation or practical validation on limited
test cases. In this paper, we attempt to re-classify rectangle
partitions, present optimum algorithm and theoretically-
sound heuristics for different classes of partitions, and ex-
perimentally evaluate those algorithms across various kinds
of applications. We would like to emphasize that, in some
classes despite the fact that an optimal partition can be
found in polynomial time, the practical runtime might be
too high (because of the high-order polynomial complexity)
hence making those solutions impractical. Therefore, we also
investigate heuristic algorithms in such cases.

The contributions of this work are as follows. A classical
P ×Q-way jagged heuristic is theoretically analyzed by
bounding the load imbalance it generates in the worst case.
We propose a new class of solutions, namely, m-way jagged
partitions, for which we propose a fast heuristic as well
as an exact polynomial dynamic programming formulation.
This heuristic is also theoretically analyzed and shown to
perform better than the P ×Q-way jagged heuristic. For
an existing class of solutions, namely, hierarchical bipar-
titions, we propose both an optimal polynomial dynamic
programming algorithm as well as a new heuristic. The
presented and proposed algorithms are practically assessed
in simulations performed on synthetic load matrices and
on real load matrices extracted from both a particle-in-cell



simulator and a geometric mesh. Simulations show that both
the proposed heuristics outperform all the tested existing
algorithms.

Similar classes of solutions are used in the problem of
partitioning a equally loaded tasks onto heterogeneous pro-
cessors (see [7] for a survey). This problem often assumes
the task space is continuous (therefore infinitely divisible).
Since the load balance is trivial to optimize in such a context,
most work in this area focus on optimizing communication
patterns.

The rest of the paper is organized as follows. Section 2
presents the model and notations used. The different classes
of partitions and known algorithms to generate them are
described in Section 3. This section also presents new
optimal and heuristic polynomial time algorithms for a large
class of rectangle partitions. The algorithms are evaluated in
Section 4 on synthetic dataset as well as on dataset extracted
from two real simulation codes. Conclusive remarks are
presented in Section 5.

2. Model and Preliminaries

2.1. Problem Definition

Let A be a two dimensional array of n1×n2 positive inte-
gers representing the spatially located load. This load matrix
needs to be distributed on m processors. Each element of
the array must be allocated to exactly one processor. The
load of a processor is the sum of the elements of the array
it has been allocated. The cost of a solution is the load of
the most loaded processor. The problem is to find a solution
that minimizes the cost.

In this paper we are only interested in rectangular al-
locations, and we will use ’rectangle’ and ’processor’ in-
terchangeably. That is to say, a solution is a set S of m
rectangles ri = (x1, x2, y1, y2) which form a partition of
the elements of the array. Two properties have to be ensured
for a solution to be valid:

⋂
r∈R = ∅ and

⋃
r∈R = A.

The first one can be checked by verifying that no rectangle
collides with another one, it can be done using line to line
tests and inclusion test. The second one can be checked by
verifying that all the rectangles are inside A and that the
sum of their area is equal to the area of A. This testing
method runs in O(m2). The load of a processor is L(ri) =∑

x1≤x≤x2

∑
y1≤y≤y2

A[x][y]. The load of the most loaded
processor in solution S is Lmax = maxri L(ri). We will
denote by L∗max the minimal maximum load achievable. No-
tice that L∗max ≥

∑
x,y A[x][y]

m and L∗max ≥ maxx,y A[x][y]
are lower bounds of the optimal maximum load. In term
of distributed computing, it is important to remark that this
model is only concerned by computation times and not by
communication times.

Algorithms that tackle this problem rarely consider the
load of a single element of the matrix. Instead, they usually

consider the load of a rectangle. Therefore, we assume that
matrix A is given as a 2D prefix sum array Γ so that
Γ[x][y] =

∑
x′≤x,y′≤y A[x′][y′]. That way, the load of a

rectangle r = (x1, x2, y1, y2) can be computed in O(1)
(instead of O((x2 − x1)(y2 − y1))), as L(r) = Γ[x2][y2]−
Γ[x1 − 1][y2]− Γ[x2][y1 − 1] + Γ[x1 − 1][y1 − 1].

An algorithm H is said to be a ρ-approximation algorithm,
if for all instances of the problem, it returns a solution which
whose maximum load is no more than ρ times the optimal
maximum load, i.e., Lmax(H) ≤ ρL∗max. In simulations, the
metric used for qualifying the solution is the load imbalance
which is computed as Lmax

Lavg
− 1 where Lavg =

∑
x,y A[x][y]

m .
A solution which is perfectly balanced achieves a load
imbalance of 0. Notice that the optimal solution for the
maximum load might not be perfectly balanced and usually
has a strictly positive load imbalance. The ratio of most
approximation algorithm are proved using Lavg as the only
lower bound on the optimal maximum load. Therefore, it
usually means that a ρ-approximation algorithm leads to a
solution whose load imbalance is less than ρ− 1.

2.2. The One Dimensional Variant

Solving the 2D partitioning problem is obviously harder
than solving the 1D partitioning problem. Most of the algo-
rithms for the 2D partitioning problems are inspired by 1D
partitioning algorithms. A theoretical and experimental com-
parison of those algorithms has been given in [8]. In [8], the
fastest optimal 1D partitioning algorithm is NicolPlus; it
is an algorithmically engineered modification of [9], which
uses a subroutine proposed in [10]. A slower optimal al-
gorithm using dynamic programming was proposed in [11].
Different heuristics have also been developed [12], [8]. Fred-
erickson [13] proposed an O(n) optimal algorithm which
is only arguably better than O((m log n

m )2) obtained by
NicolPlus. Moreover, Frederickson’s algorithm requires
complicated data structures which are difficult to implement
and are likely to run slowly in practice. Therefore, in the
remainder of the paper NicolPlus is the algorithm used
for solving one dimensional partitioning problems.

In the one dimensional case, the problem is to partition
the array A composed of n positive integers into m intervals.
DirectCut (DC) (called ”Heuristic 1” in [12]) is the

fastest reasonable heuristic. It greedily allocates to each
processor the smallest interval I = {0, . . . , i} which load is
more than

∑
i A[i]

m . This can be done in O(m log n
m ) using bi-

nary search on the prefix sum array and the slicing technique
of [10]. By construction, DC is a 2-approximation algorithm
but more precisely, Lmax(DC) ≤

∑
i A[i]

m + maxiA[i]. This
result is particularly important since it provides an upper
bound on the optimal maximum load: L∗max ≤

∑
i A[i]

m +
maxiA[i].

A widely known heuristic is Recursive Bisection
(RB) which recursively splits the array into two parts of



similar load and allocates half the processors to each part.
This algorithm leads to a solution such that Lmax(RB) ≤∑

i A[i]

m + maxiA[i] and therefore is a 2-approximation
algorithm [8]. It has a runtime complexity of O(m log n).

The optimal solution can be computed using dynamic
programming [11]. The formulation comes from the property
of the problem that one interval must finish at index n. Then,
the maximum load is either given by this interval or by the
maximum load of the previous intervals. In other words,
L∗max(n,m) = min0≤k<n maxL∗max(k,m − 1), L({k +
1, . . . , n}). A detailed analysis shows that this formulation
leads to an algorithm of complexity O(m(n−m)).

The optimal algorithm in [9] relies on the parametric
search algorithm proposed in [10]. A function called Probe is
given a targeted maximum load and either returns a partition
that reaches this maximum load or declares it unreachable.
The algorithm greedily allocates to each processor the tasks
and stops when the load of the processor will exceed the
targeted value. The last task allocated to a processor can be
found in O(log n) using a binary search on the prefix sum
array, leading to an algorithm of complexity O(m log n).
[10] remarked that there are m binary searches which look
for increasing values in the array. Therefore, by slicing the
array in m parts, one binary search can be performed in
O(log n

m ). It remains to decide in which part to search
for. Since there are m parts and the searched values are
increasing, it can be done in an amortized O(1). This leads
to a Probe function of complexity O(m log n

m ).
The algorithm proposed by [9] exploits the property

that if the maximum load is given by the first interval
then its load is given by the smallest interval so that
Probe(L({0, . . . , i})) is true. Otherwise, the largest interval
so that Probe(L({0, . . . , i})) is false can safely be allocated
to the first interval. Such an interval can be efficiently found
using binary search, and the array slicing technique of [10]
can be used to reach a complexity of O((m log n

m )2). Recent
work [8] showed that clever bounding techniques can be
applied to reduce the range of the various binary searches
inside Probe and inside the main function leading to a
runtime improvement of several orders of magnitude.

3. Algorithms

This section describes algorithms that can be used to
solve the 2D partitioning problem. These algorithms focus
on generating a partition with a given structure. The consid-
ered structures are presented in Figure 1. Notice that each
structure is a generalization of the previous one.

3.1. Rectilinear Partitions

Rectilinear partitions (also called General Block Distribu-
tion in [14], [15]) organize the space according to a P×Q
grid as shown in Figure 1(a). This type of partitions is often

(a) A (5 × 4) rectilin-
ear partition

(b) A P×Q-way (5×
3) jagged partition

(c) A m-way (15)
jagged partition

(d) A hierarchical par-
tition

(e) A spiral partition (f) Another partition

Figure 1. Different structures of partitions.

used to optimize communication and indexing and has been
integrated in the High Performance Fortran standard [16].
It is the kind of partition constructed by the MPI function
MPI_Cart. This function is often implemented using the
RECT-UNIFORM algorithm which divides the first dimen-
sion and the second dimension into P and Q intervals with
size n1

P andn2

Q respectively. Notice that RECT-UNIFORM
returns a naive partition that balances the area and not the
load.

Computing the optimal rectilinear partition is shown to
be an NP-Hard problem [17]. [14] points out that the NP-
completeness proof in [17] implies that there is no (2− ε)-
approximation algorithm unless P=NP. We can also remark
that the proof is valid for a given P ×Q grid, but the
complexity of the problem is unclear if the only constraint is
that PQ ≤ m. Notice that, the load matrix is often assumed
to be a square.

[9] (and [15] independently) proposed an iterative refine-
ment heuristic algorithm that we call RECT-NICOL in the
remaining of this paper. Provided the partition in one dimen-
sion, called the fixed dimension, RECT-NICOL computes
the optimal partition in the other dimension using an optimal
one dimension partitioning algorithm. The one dimension
partitioning problem is built by setting the load of an interval
of the problem as the maximum of the load of the interval
inside each stripe of the fixed dimension. At each iteration,
the partition of one dimension is refined. Each iteration
runs in O(Q(P log n1

P )2) or O(P (Q log n2

Q )2) depending on
the refined dimension. According to the analysis in [9] the
number of iterations is O(n1n2) in the worst case; however,
in practice the convergence is faster (about 3-10 iterations
for a 514*514 matrix up to 10,000 processors). [14] shows
it is a θ(

√
m)-approximation when P = Q =

√
m.

The first constant approximation algorithm for rectilinear
partitions have been proposed by [18] but neither the con-
stant nor the actual complexity is given. [14] claims it is a
120-approximation that runs in O(n1n2).

[14] presents two different modifications of



RECT-NICOL which are both a θ(
√
p)-approximation

algorithm for the rectilinear partitioning problem of a
n1 × n1 matrix in p × p blocks which therefore is a
θ(m1/4)-approximation algorithm. They run in a constant
number of iterations (2 and 3) and have a complexity of
O(m1.5(log n)2) and O(n(

√
m log n)2). [14] claims that

despite the approximation ratio is not constant, it is better
in practice than the algorithm proposed in [18].

[19] provides a 2-approximation algorithm for the
rectangle stabbing problems which translates into a 4-
approximation algorithm for the rectilinear partition-
ing problem. This method is of high complexity
O(log(

∑
i,j A[i][j])n10

1 n
10
2 ) and heavily relies on linear

programming to derive the result.
[20] considers resource augmentation and proposes a 2-

approximation algorithm with slightly more processors than
allowed. It can be tuned to obtain a (4 + ε)-approximation
algorithm which runs in O((n1 + n2 + PQ)P log(n1n2)).

3.2. Jagged Partitions

Jagged partitions (also called Semi Generalized Block
Distribution in [15]) distinguish between the main dimension
and the auxiliary dimension. The main dimension will be
split in P intervals. Each rectangle of the solution must
have its main dimension matching one of these intervals. The
auxiliary dimension of each rectangle is arbitrary. Examples
of jagged partitions are depicted in Figures 1(b) and 1(c).
The layout of jagged partitions also allows to easily know
which rectangle contains a given element [3].

Without loss of generality, all the formulas in this section
assume that the main dimension is the first dimension.

3.2.1. P×Q-way Jagged Partitions. Traditionally, jagged
partition algorithms are used to generate what we call
P ×Q-way jagged partitions in which each interval of the
main dimension will be partitioned in Q rectangles. Such a
partition is presented in Figure 1(b).

An intuitive heuristic to generate P × Q-way jagged
partitions, we call JAG-PQ-HEUR, is to use a 1D parti-
tioning algorithm to partition the main dimension and then
partition each interval independently. First, we project the
array on the main dimension by summing all the elements
along the auxiliary dimension. An optimal 1D partitioning
algorithm generates the intervals of the main dimension.
Then, for each interval, the elements are projected on the
auxiliary dimension by summing the elements along the
main dimension. An optimal 1D partitioning algorithm is
used to partition each interval. This heuristic have been
proposed several times before, for instance in [2].

The algorithm runs in O((P log n1

P )2 + P (Q log n2

Q )2).
Notice that using prefix sum arrays, there is actually no
projection to make: the load of interval (i, j) in the main
dimension is L(i, j, 1, n2).

We now provide an original analysis of the performance
of this heuristic under the hypothesis that all the elements
of the load matrix are strictly positive. First, we provide a
refinement on the upper bound of the optimal maximum load
in the 1D partitioning problem by refining the performance
bound of DC (and RB) under this hypothesis.

Lemma 1. If there is no zero in the array, applying
DirectCut on a one dimensional array A using m proces-
sors leads to a maximum load having the following property:
Lmax(DC) ≤

∑
A[i]
m (1 + ∆m

n ) where ∆ = maxi A[i]
mini A[i] .

Proof: The proof is a simple rewriting of the perfor-
mance bound of DirectCut: Lmax(DC) ≤

∑
i A[i]

m +

maxiA[i] ≤
∑

i A[i]

m (1 + ∆m
n ).

JAG-PQ-HEUR is composed of two calls to an optimal
one dimensional algorithm. One can use the performance
guarantee of DC to bound the load imbalance at both steps.
This is formally expressed in the following theorem.

Theorem 1. If there is no zero in the array, JAG-PQ-HEUR
is a (1 + ∆ P

n1
)(1 + ∆ Q

n2
)-approximation algorithm where

∆ =
maxi,j A[i][j]
mini,j A[i][j] , P < n1, Q < n2.

Proof: Let us first give a bound on the load of the
most loaded interval along the main dimension, i.e., the
imbalance after the cut in the first dimension. Let C denote
the array of the projection of A among one dimension:
C[i] =

∑
j A[i][j]. We have: L∗max(C) ≤

∑
i C[i]

P (1 +

∆ P
n1

). Noticing that
∑

i C[i] =
∑

i,j A[i][j], we obtain:

L∗max(C) ≤
∑

i,j A[i][j]

P (1 + ∆ P
n1

)
Let S be the array of the projection of A among the

second dimension inside a given interval c of processors:
S[j] =

∑
i∈cA[i][j]. The optimal partition of S respects:

L∗max(S) ≤
∑

j S[j]

Q (1 + ∆ Q
n2

). Since S is given by the
partition of C, we have

∑
j S[j] ≤ L∗max(C) which leads

to L∗max(S) ≤ (1 + ∆ P
n1

)(1 + ∆ Q
n2

)
∑

i,j A[i][j]

PQ
It remains the question of the choice of P and Q which

is solved by the following theorem.

Theorem 2. The approximation ratio of JAG-PQ-HEUR is
minimized by P =

√
mn1

n2
.

Proof: The approximation ratio of JAG-PQ-HEUR can
be written as f(x) = (1 + ax)(1 + b/x) with a, b, x > 0 by
setting a = ∆

n1
, b = ∆m

n2
and x = P . The minimum of f is

now computed by studying its derivative: f ′(x) = a− b/x2.
f ′(x) < 0 ⇐⇒ x <

√
b/a and f ′(x) > 0 ⇐⇒ x >√

b/a. It implies that f has one minimum given by f ′(x) =
0 ⇐⇒ x =

√
b/a.

Notice that when n1 = n2, the approximation ratio is
minimized by P = Q =

√
m.

Two algorithms exist to find an optimal P×Q-way jagged
partition in polynomial time. The first one has been proposed
first by [2] and is constructed by using the 1D algorithm



presented in [9]. The second one, we call JAG-PQ-OPT
is a dynamic programming algorithm proposed by [15].
Both algorithms partition the main dimension using a 1D
partitioning algorithm using an optimal partition of the
auxiliary dimension for the evaluation of the load of an
interval.

3.2.2. m-way Jagged Partitions. We introduce the notion
of m-way jagged partitions which allows jagged partitions
with different numbers of processors in each interval of
the main dimension. Indeed, even the optimal partition
in the main dimension may have a high load imbalance
and allocating more processor to one interval might lead
to a better load balance. Such a partition is presented in
Figure 1(c). We propose two algorithms to generate m-way
jagged partitions. The first one is a heuristic extending the
P×Q-way jagged partitioning heuristic. The second one is
a polynomial optimal dynamic programming algorithm.

We propose JAG-M-HEUR which is a heuristic similar
to JAG-PQ-HEUR. The main dimension is first partitioned
in P intervals using an optimal 1D partitioning algorithm.
Then each stripe S is allocated a number of processors QS

which is proportional to the load of the interval. Finally,
each interval is partitioned on the auxiliary dimension using
QS processors by an optimal 1D partitioning algorithm.

Choosing QS is a non trivial matter since distribut-
ing the processors proportionally to the load may lead
to non integral values which might be difficult to round.
Therefore, we only distribute proportionally (m − P ) pro-
cessors which allows to round the allocation up: QS =⌈
(m− P )

∑
i,j∈S A[i][j]∑
i,j A[i][j]

⌉
. Notice that between 0 and P pro-

cessors remain unallocated. They are allocated, one after the
other, to the interval that maximizes

∑
i,j∈S A[i][j]

QS
.

An analysis of the performance of JAG-M-HEUR similar
to the one proposed for JAG-PQ-HEUR that takes the
distribution of the processors into account is now provided.

Theorem 3. If there is no zero in A, JAG-M-HEUR is a
( m
m−P (1+ ∆

n2
)+∆ m

Pn2
(1+∆ P

n1
))-approximation algorithm

where ∆ =
maxi,j A[i][j]
mini,j A[i][j] , P < n1.

Proof: Let C denote the array of the projection of A
among one dimension: C[i] =

∑
j A[i][j]. Similarly to the

proof of Theorem 1, we have: L∗max(C) ≤
∑

A[i][j]
P (1 +

∆ P
n1

)
Let S denote the array of the projection of A among

the second dimension inside a given interval c of an
optimal partition of C. S[j] =

∑
i∈cA[i][j]. We have∑

j S[j] ≤ L∗max(C). Then, the number of processors

allocated to the stripe is bounded by:
(m−P )

∑
j S[j]∑

i,j A[i][j] ≤

QS ≤
(m−P )

∑
j S[j]∑

i,j A[i][j] + 1. The bound on
∑

j S[j] leads to

QS ≤ m−P
P (1 + ∆P

n1
) + 1.

We now can compute bounds on the optimal partition

of stripe S. The bound from Lemma 1 states: L∗max(S) ≤∑
j S[j]

QS
(1 + ∆QS

n2
). The bounds on

∑
j S[j] and QS imply

L∗max(S) ≤
∑

A[i][j]
m

m
m−P (1 + ∆

n2
(m−P

P (1 + ∆P
n1

) + 1)).
The load imbalance (and therefore the approximation

ratio) is less than m
m−P (1+ ∆

n2
(m−P

P (1+∆ P
n1

)+1)), which
can be rewritten as m

m−P (1 + ∆
n2

) + ∆ m
Pn2

(1 + ∆ P
n1

).
This approximation ratio should be compared to the one

obtained by JAG-PQ-HEUR: (1+∆ P
n1

)+∆ m
Pn2

(1+∆ P
n1

).
Basically, using m-way partitions trades a factor of (1 +
P ∆

n1
) to the profit of a factor m

m−P (1 + ∆
n2

). Since P
should be of the order of

√
m, JAG-M-HEUR should lead

to much better performance than JAG-PQ-HEUR for larger
m values.

We can also compute the number of stripes P which
optimizes the approximation ratio of JAG-M-HEUR.

Theorem 4. The approximation ratio of JAG-M-HEUR is

minimized by P =
m(
√

∆(∆+n2)−∆)

n2
.

Proof: We analyze the function of the approximation
ratio in function of the number of stripes: f(x) = ( m

m−x (1+

∆
n2

)+m∆
xn2

(1+ ∆x
n1

)). Its derivative is: f ′(x) =
1+ ∆

n2

(m−x)2− ∆
n2x2 .

The derivative is negative when x tends to 0+, positive
when x tends to +∞ and null when n2x

2 + 2m∆x −
∆m2 = 0. This equation has a unique positive solution:

x =
m(
√

∆(∆+n2)−∆)

n2

This result is fairly interesting. The optimal number of
stripes is linear in the number of processors, dependent on
∆ and dependent on n2 but not on n1. The dependency on
∆ makes the determination of P difficult in practice since a
few extremal values may have a large impact on the actual
∆ without impacting the load balance in practice. Therefore,
JAG-M-HEUR will use

√
m stripes.

We provide another algorithm, JAG-M-OPT which builds
an optimal m-way jagged partition in polynomial time using
dynamic programming. An optimal solution can be repre-
sented by k, the beginning of the last interval on the main
dimension, and x, the number of processors allocated to that
interval. What remains is a (m−x)-way partitioning problem
of a matrix of size (k−1)×n2. It is obvious that the interval
{(k−1), . . . , n1} can be partitioned independently from the
remaining array. The dynamic programming formulation is:

Lmax(n1,m) = min
1≤k≤n1,1≤x≤m

max Lmax(k − 1,m− x),

1D(k, n1, x)

where 1D(i, j, k) denotes the value of the optimal 1D
partition among the auxiliary dimension of the [i, j] interval
on k processors.

There are at most n1m calls to Lmax to evaluate, and at
most n2

1m calls to 1D to evaluate. Evaluating one function
call of Lmax can be done in O(n1m) and evaluating 1D
can be done in O((x log n2

x )2) using the algorithm from [9].



The algorithm can trivially be implemented in O((n1m)2 +
n2

1m
3(log n2

m )2) = O(n2
1m

3(log n2

m )2) which is polynomial.
However, this complexity is an upper bound and several

improvements can be made, allowing to gain up to two
orders of magnitude. First of all, the different values of both
functions Lmax and 1D can only be computed if needed.
Then the parameters k and x can be found using binary
search. For a given x, Lmax(k− 1,m− x) is an increasing
function of k, and 1D(k, n1, x) is a decreasing function of
k. Therefore, their maximum is a bi-monotonic, decreasing
first, then increasing function of k, and hence its minimum
can be found using a binary search.

Moreover, the function 1D is the value of an optimal
1D partition, and we know lower bounds and an upper
bound for this function. Therefore, if Lmax(k−1,m−x) >
UB(1D(k, n1, x)), there is no need to evaluate function
1D accurately since it does not give the maximum. Similar
arguments on lower and upper bound of Lmax(k−1,m−x)
can be used.

Finally, we are interested in building an optimal m-way
jagged partition and we use branch-and-bound techniques to
speed up the computation. If we already know a solution to
that problem, we can use its maximum load l to decide not
to explore some of those functions, if the values (or their
lower bounds) Lmax or 1D are larger than l.

3.3. Hierarchical Bipartition

Hierarchical bipartitioning techniques consist of obtaining
partitions that can be recursively generated by splitting one
of the dimensions into two intervals. An example of such
a partition is depicted in Figure 1(d). Notice that such
partitions can be represented by a binary tree for easy
indexing.

A classical algorithm to generate such a partition is
Recursive Bisection which has originally been proposed
in [21] and that we call in the following HIER-RB. It
cuts the matrix into two parts of (approximately) equal
load and allocates half the processors to each sub-matrix
which are partitioned recursively. The dimension being cut
in two intervals alternates at each level of the algorithm. This
algorithm can be implemented in O(m log max(n1, n2))
since finding the position of the cut can be done using a
binary search.

The algorithm was originally designed for a number of
processors which is a power of 2 so that the number of
processors at each step is even. However, if at a step the
number of processors is odd, one part will be allocated

⌊
m
2

⌋
processors and the other part

⌊
m
2

⌋
+ 1 processors. In such

a case, the cutting point is selected so that the load per
processor is minimized.

Variants of the algorithm exist based on the decision of
the dimension to partition. One variant does not alternate
the partitioned dimension at each step but virtually tries both

dimensions and selects the one that lead to the best expected
load balance [1]. Another variant decides which direction to
cut by selecting the direction with longer length.

We propose a polynomial algorithm for generating the
optimal hierarchical partition. It uses dynamic programming
and relies on the tree representation of a solution of the prob-
lem. An optimal hierarchical partition can be represented by
the orientation of the cut, the position of the cut (denoted
x or y, depending on the orientation), and the number of
processors j in the first part.

The algorithm consists in evaluating the function
Lmax(x1, x2, y1, y2,m) that partitions rectangle
(x1, x2, y1, y2) using m processors.

Lmax(x1, x2, y1, y2,m) = min
j

min
(

(1)

min
x

max(Lmax(x1, x, y1, y2, j), (2)

Lmax(x+ 1, x2, y1, y2,m− j)), (3)
min
y

max(Lmax(x1, x2, y1, y, j), (4)

Lmax(x1, x2, y + 1, y2,m− j))
)

(5)

Equations 2 and 3 consider the partition in the first
dimension and Equations 4 and 5 consider it in the second
dimension. The dynamic programming provides the position
x (or y) to cut and the number of processors (j and m− j)
to allocate to each part.

This algorithm is polynomial since there are O(n2
1n

2
2m)

functions Lmax to evaluate and each function can naively
be evaluated in O((x2− x1 + y2− y1)m). Notice that opti-
mization techniques similar to the one used in Section 3.2.2
can be applied. In particular x and y can be computed using
a binary search reducing the complexity of the algorithm to
O(n2

1n
2
2m

2 log(max(n1, n2)))).
Despite the dynamic programming formulation is poly-

nomial, its complexity is too high to be useful in prac-
tice for real sized systems. We extract a heuristic called
HIER-RELAXED. To partition a rectangle (x1, x2, y1, y2)
on m processors, HIER-RELAXED computes the x (or y)
and j that optimize the dynamic programming equation,
but substitutes the recursive calls to Lmax() by a heuristic
based on the average load: That is to say, instead of making
recursive Lmax(x, x′, y, y′, j) calls, L(x,x′,y,y′)

j will be cal-
culated. The values of x (or y) and j provide the position
of the cut and the number of processors to allocate to each
part respectively. Each part is recursively partitioned. The
complexity of this algorithm is O(m2 log(max(n1, n2)))).

3.4. More General Partitioning Schemes

The considerations on Hierarchical Bipartition can be
extended to any kind of recursively defined partitions such as
the ones presented in Figures 1(e) and 1(f). As long as there
are a polynomial number of possibilities at each level of the



recursion, the optimal partition following this rule can be
generated in polynomial time using the dynamic program-
ming technique. The number of functions to evaluate will
keep being in O(n2

1n
2
2m). The only difference will be in

the cost of evaluating the function calls. In most cases if the
pattern is composed of k sections, the evaluation will take
O((max(n1, n2)m)k−1).

This complexity is too high to be of practical use but it
proves that an optimal partition in these classes can be gener-
ated in polynomial time. Moreover, those dynamic program-
ming can generate heuristics similarly to HIER-RELAXED.

A natural question is given a maximum load, is it possible
to compute an arbitrary rectangular partition? [22] shows
that such a problem is NP-Complete and that there is no
approximation algorithm of ratio better than 5

4 unless P=NP.
Recent work [23] provides a 2-approximation algorithm
which heavily relies on linear programming.

4. Experimental Evaluation

4.1. Experimental Setting

This section presents an experimental study of the
some of the presented algorithms. For rectilinear partitions,
both the uniform partitioning algorithm RECT-UNIFORM
and RECT-NICOL algorithm have been implemented. For
jagged partitions, the heuristic and the dynamic program-
ming have been implemented for both P×Q-way and m-way
partitions: JAG-PQ-HEUR, JAG-PQ-OPT, JAG-M-HEUR,
JAG-M-OPT. Each jagged partitioning algorithm exists in
three variants, namely -HOR which considers the first di-
mension as the main dimension, -VER which considers the
second dimension as the main dimension, and -BEST which
tries both and selects the one that leads to the best load
balance. For hierarchical partitions, both recursive bisection
HIER-RB and the heuristic HIER-RELAXED derived from
the dynamic programming have been implemented. Each
hierarchical bipartition algorithm exists in four variants
-LOAD which selects the dimension to partition according
to get the best load, -DIST which partitions the longest
dimension, and -HOR and -VER which alternate the dimen-
sion to partition at each level of the recursion and starting
with the first or the second dimension.

The algorithms were tested on the BMI department cluster
called Bucki. Each node of the cluster has two 2.4 GHz
AMD Opteron(tm) quad-core processors and 32GB of main
memory. The nodes run on Linux 2.6.18. The sequential
algorithms are implemented in C++. The compiler is g++
4.1.2 and -O2 optimization was used.

The algorithms are tested on different classes of instances.
Some are synthetic and some are extracted from real appli-
cations. The first set of instances is called PIC-MAG. These
instances are extracted from the execution of a particle-in-
cell code which simulates the interaction of the solar wind

(a) PIC-MAG (b) SLAC (c) Diagonal

(d) Peak (e) Multi-peak (f) Uniform

Figure 2. Examples of real and synthetic instances.

on the Earth’s magnetosphere [6]. In those applications,
the computational load of the system is mainly carried
by particles. We extracted the distribution of the particles
every 500 iterations of the simulations for the first 33,500
iterations. These data are extracted from a 3D simulation.
Since the algorithms are written for the 2D case, in the PIC-
MAG instances, the number of particles are accumulated
among one dimension to get a 2D instance. A PIC-MAG
instance at iteration 20,000 can be seen in Figure 2(a). The
intensity of a pixel is linearly related to computation load
for that pixel (the whiter the more computation). During the
course of the simulation, the particles move inside the space
leading to values of ∆ varying between 1.21 and 1.51.

The SLAC dataset (depicted in Figure 2(b)) is generated
from the mesh of a 3D object. Each vertex of the 3D object
carries one unit of computation. Different instances can be
generated by projecting the mesh on a 2D plane and by
changing the granularity of the discretization. This setting
match the experimental setting of [9]. In the experiments, we
generated instances of size 512x512. Notice that the matrix
contains zeroes, therefore ∆ is undefined.

Different classes of synthetic squared matrices are also
used, these classes are called diagonal, peak, multi-peak and
uniform. Uniform matrices (Figure 2(f)) are generated to
obtain a given value of ∆: the computation load of each cell
is generated uniformly between 1000 and 1000 ∗∆. In the
other three classes, the computation load of a cell is given by
generating a number uniformly between 0 and the number of
cells in the matrix which is divided by the euclidean distance
to a reference point (a 0.1 constant is added to avoid dividing
by zero). The choice of the reference point is what makes the
difference between the three classes of instances. In diagonal
(Figure 2(c)), the reference point is the closest point on the
diagonal of the matrix. In peak (Figure 2(d)), the reference
point is one point chosen randomly at the beginning of the



Figure 3. HIER-RB on 1024x1024 Peak.

execution. In multi-peak (Figure 2(e)), several points (here
3) are randomly generated and the closest one will be the
reference point. Those classes are inspired from the synthetic
data from [15].

The performance of the algorithms is given using the load
imbalance metric defined in Section 2. For synthetic dataset,
the load imbalance is computed over 10 instances as follow:∑

I Lmax(I)∑
I Lavg(I) − 1. The experiments are run on most square

number of processors between 16 and 10,000. Using only
square numbers allows us to fix the parameter P =

√
m for

all rectilinear and jagged algorithm.

4.2. Variants of the 2D algorithms

Since there are several variants of the same algorithm, we
are first presenting a comparison between the variants of a
given algorithm.

Let us start with HIER-RB. There are four variants of
this algorithm depending on the dimension that will be
partitioned in two. Figure 3 shows the load imbalance of
the four variants when the number of processors varies on a
1,024x1,024 instance generated according to the peak rule.
In general the load imbalance increases with the number of
processors. The HIER-RB-LOAD variant achieves overall
the best load balance and, from now on, we will refer to it
as HIER-RB. The results obtained on different classes of
instances concur with this result and, hence, are omitted.

There are also four variants to the HIER-RELAXED
algorithm. Figure 4 shows the load imbalance of the
four variants when the number of processors varies on
the multi-peak instances of size 512. In general the load
imbalance increases with the number of processors for
the HIER-RELAXED-LOAD and HIER-RELAXED-DIST.
The HIER-RELAXED-LOAD variant achieves overall
the best load balance. The load imbalance of the
HIER-RELAXED-VER (and HIER-RELAXED-HOR) vari-

Figure 4. HIER-RELAXED on 512x512 Multi-peak.

Figure 5. HIER-RELAXED on 4096x4096 Diagonal.

ant improves past 2,000 processors and seems to converge
to the performance of HIER-RELAXED-LOAD. The number
of processors where these variants start improving depends
on the size of the load matrix. Before convergence, the
obtained load balance is comparable to the one obtained by
HIER-RELAXED-DIST. The diagonal instances with a size
of 4,096 presented in Figure 5 shows this behavior. Since
HIER-RELAXED-LOAD leads to the best load imbalance,
we will refer to it as HIER-RELAXED.

The jagged algorithms have three variants, two depending
on whether the main dimension is the first one or the second
one and the third tries both of them and takes the best
solution. On all the fairly homogeneous instances (i.e., all
but the mesh SLAC), the results of the three variants are
quite close and the orientation of the jagged partitions does
not seem to really matter. However this is not the same in
m-way jagged algorithms where the selection of the main
dimension can make significant differences on overall load
imbalance. Since m-way jagged partitioning is as fast as



heuristic jagged partitioning, trying both dimensions and
taking the one with best load imbalance is a good option.
From now on, JAG-PQ-HEUR and JAG-M-HEUR will refer
to their BEST variant.

4.3. Execution time

In all optimization problems, the trade-off between the
quality of a solution and the computation time spent com-
puting it appears. We present in Figure 6 the execution time
of the different algorithms on 512x512 Uniform instances
with ∆ = 1.2 when the number of processors varies. The
execution times of the algorithms increase with the number
of processors. All the heuristics complete in less than one
seconds even on 10,000 processors. The fastest algorithm
is obviously RECT-UNIFORM since it outputs trivial par-
titions. The second fastest algorithm is HIER-RB which
computes a partition in 10,000 processors in 18 millisec-
onds. Then comes the JAG-PQ-HEUR and JAG-M-HEUR
heuristics which take about 106 milliseconds to compute
a solution of the same number of processors. The running
time of RECT-NICOL algorithm is more erratic (probably
due to the iterative refinement approach) and it took 448
milliseconds to compute a partition in 10,000 rectangles. The
slowest heuristic is HIER-RELAXED which requires 0.95
seconds of computation to compute a solution for 10,000
processors. The computation of JAG-PQ-OPT is much
higher, 10 seconds to compute a partition of more than 1,096
parts and 27 seconds for 10,000 parts. The computation
time of JAG-M-OPT is not reported on the chart. We never
run this algorithm on a large number of processors since
it already took 15 minutes to compute a solution for 961
processors. The results on different classes of instances are
not reported, but show the same trends. Experiments with
larger load matrices show an increase in the execution time
of the algorithm. Running the algorithm on matrices of size
8,192x8,192 basically increases the running times by an
order of magnitude.

Loading the data and computing the prefix sum array are
not included in the presented timing results and take about
40 milliseconds on a 512x512 matrix.

4.4. Jagged Partitioning Schemes

We proposed in Section 3.2.2 a new type of jagged
partitioning scheme, namely, m-way jagged, which does not
require all the slices of the main dimension to have the
same number of processors. This constraint is artificial in
most cases and we show that it significantly harms the load
balance of an application.

Figure 7 presents the load balance obtained on PIC-
MAG at iteration 30,000 with heuristic and optimal P ×
Q-way jagged algorithms and m-way jagged algorithms.
On less than one thousand processors, JAG-M-HEUR,

Figure 6. Runtime on 512x512 Uniform with ∆ = 1.2.

Figure 7. Jagged methods on PIC-MAG iter=30,000.

JAG-PQ-HEUR and JAG-PQ-OPT produce almost the
same results (hence the points on the chart are super
imposed). Note that, JAG-PQ-HEUR and JAG-PQ-OPT
obtain the same load imbalance most of the time even on
more than one thousand processors. This indicates that there
is almost no room for improvement for the P×Q heuristic.
The second remark is that the m-way jagged heuristic always
reaches a better load balance than the P ×Q-way jagged
partitions.

Figure 8 presents the load imbalance of the algorithms
with 6,400 processors for the different iterations of the PIC-
MAG application. P ×Q partitions have a load imbalance
of 18% while the imbalance of the heuristic m-way parti-
tions varies between 2.5% (at iteration 5,000) and 16% (at
iteration 18,000).

In Figure 7, the optimal m-way partition have been
computed up to 1,000 processors (on more than 1,000 pro-
cessors, the runtime of the algorithm becomes prohibitive).
It shows an imbalance of about 1% at iteration 30,000 of



Figure 8. Jagged methods on PIC-MAG with m = 6400.
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Figure 9. Impact of the number of stripes in
JAG-M-HEUR on a 514x514 Uniform instance with ∆ =
1.2 and m = 800.

the PIC-MAG application on 1,000 processors. This value
is much smaller than the 6% imbalance of JAG-M-HEUR.
It indicates that there is room for improvement for m-way
jagged heuristics. Indeed, the current heuristic uses

√
m

parts in the first dimension, while the optimal is not bounded
to that constraint. Figure 9 presents the impact of the number
of stripes on the load imbalance of JAG-M-HEUR on a
uniform instance as well as the worst case imbalance of the
m-way jagged heuristic guaranteed by Theorem 3. It appears
clearly that the actual performance follows the same trend
as the worst case performance of JAG-M-HEUR. Therefore,
ideally, the number of stripes should be chosen according to
the guarantee of JAG-M-HEUR. However, the parameters of
the formula in Theorem 4 are difficult to estimate accurately
and the variation of the load imbalance around that value can
not be predicted accurately.

The load imbalance of JAG-PQ-HEUR, JAG-PQ-OPT

Figure 10. Hierarchical methods on 4096x4096 Diago-
nal.

and JAG-M-HEUR make some waves on Figure 7 when the
number of processors varies. Those waves are caused by
the imbalance of the partitioning in the main dimension of
the jagged partition. Even more, these waves synchronized
with the integral value of n1√

m
. This behavior is linked to

the almost uniformity of the PIC-MAG dataset. The same
phenomena induces the steps in Figure 9.

4.5. Hierarchical Bipartition

We proposed a new heuristic, HIER-RELAXED, to com-
pute hierarchical bipartitions based on the lesson learned
from the dynamic programming formulation for hierarchical
bipartition, we proposed in Section 3.3. Notice that we
did not implement the dynamic programming algorithm
since we expect it to run in hours even on small in-
stances. Figure 10 presents the performance of HIER-RB
and HIER-RELAXED on the diagonal matrix instances of
size 4,096. It is clear that HIER-RELAXED leads to a better
load balance than HIER-RB. However, the performance of
HIER-RELAXED might be very erratic when the instance
changes slightly. For instance, on Figure 11 the performance
of HIER-RELAXED during the execution of the PIC-MAG
application is highly unstable.

4.6. Which algorithm to choose ?

The main question remains. Which algorithm should be
chosen to optimize an application’s performance ?

From the algorithm we presented, we showed that m-
way jagged partitions provides a better solution than an
optimal P ×Q-way jagged partition. It is therefore better
than rectilinear partitions as well. The computation of an
optimal m-way jagged partition is too slow to be used in
a real system. It remains to decide between JAG-M-HEUR,
HIER-RB and HIER-RELAXED.



Figure 11. Hierarchical methods on PIC-MAG with m =
400.

Figure 12. All heuristics on PIC-MAG with m = 9216.

Figure 12 shows the performance of the PIC-MAG ap-
plication on 9,216 processors. The RECT-UNIFORM par-
titioning algorithm is given as a reference. It achieves
a load imbalance that grows from 30% to 45%. Both
RECT-NICOL and JAG-PQ-HEUR reach a constant 28%
imbalance over time. HIER-RB is usually slightly better and
achieves a load imbalance that varies between 20% and 30%.
HIER-RELAXED achieves most of the time a much better
load imbalance, rarely over 10% and typically between 8%
and 9%. JAG-M-HEUR achieves the best performance in all
iterations (but two) of all the tested algorithms by keeping
the load imbalance between 5% and 8%.

Figure 13 shows the performance of the algorithms
while varying the number of processors at iteration 20,000.
The conclusions on RECT-UNIFORM, RECT-NICOL,
JAG-PQ-HEUR and HIER-RB stand. Depending on the
number of processors, the performance of JAG-M-HEUR
varies and in general HIER-RELAXED leads to the best
performance, in this test.

Figure 13. All heuristics on PIC-MAG iter=20,000.

Figure 14. All heuristics on SLAC.

Figure 14 presents the performance of the algorithms on
the mesh based instance SLAC. Due to the sparsity of the
instance, most algorithms get a high load imbalance. Only
the hierarchical partitioning algorithms manage to keep the
imbalance low and HIER-RELAXED gets a lower imbalance
than HIER-RB.

The results indicate that as it stands, the algorithms
HIER-RELAXED and JAG-M-HEUR, we proposed, are
the one to choose to get a good load balance. However,
we believe a developer should be cautious when using
HIER-RELAXED because of the erratic behavior it showed
in some experiments (see Figure 11) and because of its
not-that-low running time (up to one second on 10,000
processors according to Figure 6). JAG-M-HEUR seems
much a more stable heuristic. The bad load balance it
presents on Figure 13 is due to a badly chosen number of
partitions in the first dimension.



5. Conclusion

Partitioning spatially localized computations evenly
among processors is a key step in obtaining good per-
formance in a large class of parallel applications. In this
work, we focused on partitioning a matrix of positive integer
using rectangular partitions to obtain a good load balance.
We introduced the new class of solutions called m-way
jagged partitions, designed polynomial optimal algorithms
and heuristics for m-way partitions. Using theoretical worst
case performance analyses and simulations based on logs
of two real applications and synthetic data, we showed
that the JAG-M-HEUR and HIER-RELAXED heuristics we
proposed get significantly better load balances than existing
algorithms.

As a future work, we plan to investigate the effect of these
different partitioning schemes in communication cost, as
well as taking into account data migration costs in dynamic
applications. We are also planning to integrate the proposed
algorithms in a real dynamic application and study their end-
to-end effects.
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