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1 Introduction

Petascale scientific computing, next-generation telescopes, high-throughput experi-
ments, data-oriented business technologies and the Internet have been driving a rapid
growth in data acquisition and generation. Analysis of large-scale datasets is likely
to bring new breakthroughs in the academic and industrial world. These analyses
typically require the use of large computer systems, such as those that can be found
in data centers or high performance computing (HPC) facilities.

While the computing power of large computer systems that can enable timely
and scalable data analysis has been increasing steadily for decades, their memory
capacities have not been able to keep pace [1], see Fig. 1. As we move towards
the future, this gap is anticipated to widen even further. The main reason for this
trend is that it is not possible to meet the storage capacity and power consumption
requirements of future machines using the DRAM technology. Non-volatile memory
(NVM) solutions, on the other hand, feature much higher storage densities and lower
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Fig. 1 Memory in gigabytes per gigaflop of computing power for the leading 10 supercomputers
on the TOP500 list over the years

power requirements compared to DRAM. Therefore NVM technology will be one
of the key enablers for future high end computing architectures.

In datacenters, NVM storages are experiencing a fast adoption rate due to the high
bandwidth and low latency advantages that they provide over the traditional disk-
based storage systems in the management and analysis of large datasets. Several
NVM storage solutions from companies such as Fusion-IO, OCZ Technologies, HP
and Seagate already exist in the marketplace. Initially, these NVM storages were used
as mere disk replacements and they were connected to the compute resources through
low performance interfaces such as SCSI or SATA. Nowadays, we increasingly see
high performance NVM storages being connected through the PCI Express bus. As
the technology improves, it is anticipated that NVM storages will take their place as
a new layer in the memory hierarchy for datacenter systems [2].

NVM storages are already incorporated in today’s HPC architectures that are
designed to tackle challenging data-intensive problems. For example, the Gordon
computer at the San Diego Supercomputing Center (SDSC) houses 300 TBs of flash
memory storage in addition to 64 TBs of DRAM space. Trinity (Los Alamos) and
NERSC-8 systems, which are planned for operation in 2015, will use flash memory
based storages at a much greater scale. Their total flash memory storage capacity is
expected to be on the order of 5–10 PBs, which corresponds to about 2–3 times the
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total DRAM capacity on those systems. An important use case for the flash memory
storage on the Trinity and NERSC-8 systems will be to provide a fast workspace for
data-intensive applications. As we move towards the exascale era, NVM storages
which are currently seen as fast disk alternatives only will be introduced as a new
layer into the memory hierarchy in HPC systems as well. Non-Volatile Random
Access Memory (NVRAM) is a main component of exascale computer architecture
designs byAMD and IBM as part of their efforts in the DOE’s Fast Forward program,
[3, 4].

The drastic changes in system architecture will require rethinking systems soft-
ware as well. Specifically, with improvements in hardware performance, software
efficiency will become the next bottleneck. Scalable and efficient analytics on large
computer systems require advanced parallel programming skills. However, most
computational scientists and data scientist are not parallel programming experts. Be-
sides the need for carefully organizing communication and computations in large
scale applications, the need to manage data stored on NVM devices emerges in
current architectures designed for data-intensive computing. This adds considerable
complexity in code design and development.

Our vision is to increase the programmer productivity while still ensuring good
performance and scalability by enabling the separation of computation and data
movement. In our approach, the programmer can focus on the computational op-
erations that he/she wants to apply to the sets of data and delegates the chore of
data movement to the task-based data-flow middleware, DOoC (Distributed Out-
of-Core), that we describe in this chapter. DOoC is a runtime environment that
determines and executes optimal data movement policies for systems with deep mem-
ory/storage hierarchies. Conceptually, in DOoC the entire computation is represented
as a Directed Acyclic Graph (DAG), where an operation on a dataset corresponds
to a vertex, the input data for the computational task is represented as an incom-
ing edge to that vertex and the resulting data is represented as an outgoing edge of
the vertex. Our runtime environment carefully considers the characteristics of the
underlying memory/storage subsystem and the needs of the data-intensive applica-
tions that it supports to enable efficient execution of large-scale computations. The
overall goal of our work is to provide an easy-to-use high-level application interface
for data-intensive workloads, while providing efficient and scalable execution by
orchestrating pipelined execution of computation, communication and I/O.

We have designed and implemented DOoC to be a generic middleware that can be
used in a wide spectrum of applications in fields as diverse as graph mining, bioin-
formatics and scientific computing. A customizable frontend allows the application
developer to interact with the DOoC framework through a simple programming inter-
face. In this chapter, after giving an overview of the DOoC framework, we introduce
the Linear Algebra Frontend (LAF) which is developed to enable the implementation
of iterative numerical methods using DOoC. We present a case study on the imple-
mentation of a block eigensolver for the solution of large-scale eigenvalue problems
arising in nuclear structure computations. We give detailed performance and scalabil-
ity analysis for the resulting distributed out-of-core eigensolver on an experimental
testbed equipped with NVM storages. We conclude our chapter with a discussion on
the future work planned.
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2 Related Work

One can draw similarities between our approach and other approaches that use di-
rected acyclic graphs (DAG) to model computational dependencies. In the classical
DAG scheduling [5], the complete task graph is generated before scheduling. How-
ever, in our system the task graph is generated dynamically on-the-fly. Two other
middlewares are similar to our effort: StarPU [6] and PaRSEC [7]. They both have
been recently used for sparse linear algebra [8].

StarPU [6] is a task-based middleware like DOoC. It has been used for both dense
and sparse linear algebra. It is designed to take advantage of multicore systems with
accelerators and has been ported to support multiple architectures such as CUDA
devices, OpenCL devices, the IBM Cell processor and multicore CPUs. StarPU has
no support for out-of-core processing. It also allows multiple copies of a data item
to exist on multiple devices as long as they are identical copies. Once a modification
is made on one copy, the other existing copies must be deallocated. Two recent
developments in StarPU are the composability of StarPU applications [9] and the
support for distributed memory computing using MPI [10].

PaRSEC (previously known as DAGuE [7]) has originally been designed for in-
core, dense linear algebra computations. Recently, it has been used to perform sparse
linear algebra operations [8]. It supports both accelerators and distributed memory
computing. The highlight of PaRSEC is the use of Parametrized Task Graph [11]
to store the task graph in a compact form to reduce the scheduling overheads and
synchronizations [12].

Out-of-core algorithms for sparse numerical linear algebra applications involving
large matrices have been an attractive research topic, especially back in the 90’s.
Toledo gives an excellent survey of such algorithms [13]. More recently, out-of-core
direct solvers on a single node have been investigated for symmetric [14, 15] or
asymmetric matrices [16, 17]. A parallel (but still single node) out-of-core multi-
frontal method has recently been developed [18] and recently improved to reduce the
amount of I/O transfers [19]. Distributed out-of-core computations were considered
to compute the steady state of Markov chains using Jacobi or Conjugate Gradient
algorithms [20]. Also approximations to compute the Page Rank of a graph accessed
from the disk has recently been proposed [21].

Another related area of work is the field of memory aware scheduling algorithms.
Out-of-core computing relies on reusing available data as much as possible and
minimizing the amount of data to transfer from the disk to perform the computation.
Many works in scheduling are applicable to out-of-core algorithms. [22] studies the
problem of scheduling independent tasks and DAGs onto a cluster to minimize both
the makespan of the application and the memory consumption of the node with the
most used memory. In this model, the assumption is that once memory is used it is
never freed. This assumption can model either the cost of a reading from the disk or
the space used on the disk by the tasks. This model is extended in [23] in the context
of load balancing for file servers where the author investigates the use of replication
of data items and their reallocation to better take the change in the load into account.
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The previously described model uses memory as an abstract concept. Some other
models attach actual piece of data to the computations and focus on assigning the
data to a compute node in order to minimize the cost of off-node data accesses [24].

Other related scheduling problems are concerned with the execution of a task
graph under memory pressure where data is deallocated once it is no longer used
and the goal of the scheduler is to execute the application using the least amount
of memory. This problem has historically been solved to schedule the execution of
binary arithmetic trees in compilers with unitary space cost to minimize the amount
of used registers [25]. Most of the work in the area is concerned with trees since
it has been shown that the problem is NP-Complete on DAGs [26]. The problem
of scheduling non-binary in-trees with arbitrary cost has been solved in polynomial
time [27]. There also have been interest in the case where multiple chains need to
be computed and a cache is available to store the result of some tasks removing the
need to compute it. Unfortunately, this problem has also been proved NP-Complete,
but some polynomial time approximation algorithms have been proposed for it [28].

Most of the work on memory pressured scheduling only consider the problem of
minimizing the memory requirement in a sequential setting. But if the problem can
not be solved in memory, then it becomes important to try to minimize the amount
of I/O performed to compute the final solution. This problem is shown to be NP-
Complete and heuristics have been proposed and tested on instances coming from
multifrontal methods [29]. Also, the trade-off of memory and execution time of the
execution of an in-tree on a parallel machine have recently been investigated in [30].

During the last decade there has been little interest in distributed memory out-of-
core numerical linear algebra algorithms. We argue that the main reason has been
the poor performance of these algorithms due to the high latency and low bandwidth
associated with traditional disk-based storage systems. At this point, the emergence
of clusters equipped with non-volatile NAND-flash memory based solid state drives
(SSD) presents unique opportunities and this is exactly what we explore in this
chapter.

3 An Out-of-Core Task-based Middleware

DOoC (Distributed Out-of-Core) is a recently developed generalized middleware
for distributed out-of-core computation and data analysis [31]. DOoC runs on top of
DataCutter [32], which itself is a distributed, coarse-grain data-flow middleware. We
have built our framework on top of DataCutter instead of directly implementing using
MPI (or any other low-level library that enables distributed-memory programming),
because the programing model of DataCutter naturally enables the separation of the
computations from the data movements and provides an efficient runtime system that
orchestrates pipelined executions with computation and communication overlapping.

Figure 2 depicts the architectural overview of our proposed framework, which
is composed of DOoC and LAF (Linear Algebra Frontend) [33]. DOoC provides
efficient execution of task graphs with given input and output data dependencies. In
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Fig. 2 Schematic overview of our framework Distributed Out-of-Core (DOoC) with LinearAlgebra
Frontend (LAF)

DOoC, task graphs and task codes need to be generated manually by the application
developer. Since our focus in this chapter is on iterative eigensolvers for large-scale
sparse matrices, we have designed and developed LAF, which we describe in more
detail in Sect. 4. LAF customizes our framework for linear algebra computations by
providing a high-level interface to application developers. It acts as a frontend that
translates basic linear algebra primitives into global task graphs that can be executed
by DOoC.

DOoC is composed of two parts: (i) a hierarchical scheduler responsible for
ordering and triggering the execution of tasks, and (ii) a storage service responsible
for managing the memory as a resource and handling transfers of data, which is
either the input for local computational tasks or the output of them. Data transfer in
the context of a distributed out-of-core computation involves reading from or writing
to the permanent storage system, or communicating with other compute nodes.

In DataCutter, which serves as the distributed data storage layer for DOoC, the
immutable object paradigm is adopted. In immutable object paradigm, a given mem-
ory location can only be written once and can not be read before being written. This
removes race conditions and the need for distributed memory coherency protocols
(which are major concerns in similar systems with mutable objects such as Global
Array [34]).

Below, we describe each component of the proposed framework in more detail.



An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 653

3.1 Global and Local Schedulers

Within the scheduler, the application is represented as a set of tasks. Each task is
annotated with the set of data it needs (input data) and the set of data it generates
(output data). These annotations are used to generate a partial ordering between the
tasks (such as the one presented in Fig. 2). An efficient partial ordering is achieved
by the use of hash tables, where for each data the mapping of which tasks use it as
input and which tasks produce it as output is kept.

Each individual task is sequentially executed on a single computing node. The
tasks are created on the global scheduler. The global scheduler is responsible for
assigning these tasks to the local schedulers on compute nodes for processing, as
well as tracking the completions of those tasks. It assigns a task to a local scheduler
only when all the input data of the task have been generated or will be generated
as a result of executing the tasks already assigned to that particular local scheduler.
Among all the compute nodes, the global scheduler allocates a task onto the node
where most of the input data is already located at. This is a heuristic aimed at
minimizing the data movement required for starting to process tasks. Alternatively,
a task assignment can be forced to a different node by the application programmer,
too.

The local scheduler obtains regularly (default every 100 ms) from the storage
service (which we describe in the next subsection) the list of data that is available
on the local memory. Based on this information, the local scheduler decides which
tasks among those assigned to itself are ready for execution. The scheduler triggers
the execution of a ready task as soon as a computation thread becomes idle. There
are as many computation threads as the number of cores on a compute node. The
output data from executing a task, which will serve as the input data for a subsequent
task, resides in the compute node’s memory until it is consumed.

Another key responsibility of the local scheduler is to enable the pipelined execu-
tion of computation, communication and I/O. It achieves this by sending prefetching
requests to the storage service. The local scheduler first queries the storage service
to learn the amount of memory space available for prefetching. As long as there is
space available and there are tasks that are waiting for input data to be executed, the
local scheduler determines the data to be prefetched by using the greedy algorithm
presented in Algorithm 1 to order tasks.

This greedy algorithm orders the tasks in the local scheduler’s list based on the
amount of additional input data that needs to be brought into the local memory to
make each task ready for execution. The task which requires the least amount of
additional input data is ordered first, and the prefetching requests for its input data
are issued. Those input data are added to the list of available data, and the algorithm
continues to determine the next task for prefetching. Note that, data will be actually
available after it has been prefetched by the storage service. Prefetching is paused
when there is no more memory space available. The prefetched data is consumed
when ready tasks are executed. As soon as enough memory space becomes available,
prefetching is reinstantiated.
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3.2 Storage Service

The storage service is responsible for managing the local memory, managing the
data transfer to/from the permanent storage system and handling the communication
between compute nodes.

When the storage service starts, it queries the permanent storage system through its
file system and makes a list of the data stored there. This information is reported to the
global scheduler. In addition, the storage service provides functions to declare new
data objects and to destroy ones that are no longer necessary. In DOoC, declaring
a new data object does not actually induce memory allocation, it just induces the
creation of appropriate meta-data. The memory allocation is done when the newly
created data object is accessed for the first time.

The way DOoC handles an access to a data object differs based on whether it is
a read access or a write access. In a read access, if the data object is currently not in
that node’s local memory, it may be stored either on the permanent storage system or
on the memory of another node. If the data is stored on permanent storage system, it
is simply read from there. Otherwise, it needs to be communicated from the hosting
node. The storage service randomly queries other nodes until it locates the one where
the data object is stored. Once the data is located, a hint is created to speedup the
querying process in subsequent accesses to the same data object.

Write access to a data object is only possible if the data object resides in local
memory. Notice that because the data objects in DOoC are immutable, they are
only written once. Therefore there is no need for a complex coherency protocol. All
data access operations are performed asynchronously to be able to process multiple
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requests simultaneously. However, after a certain number of simultaneous requests
(default: 50) within a node, subsequent ones are queued.

A deallocation procedure is triggered when there is no more memory available on
a compute node. The input data that are necessary for executing the tasks currently
scheduled on the cores of that compute node, as well as any data object that cannot
be reobtained are excluded from deallocation. A data object cannot be reobtained,
if it was created on the node itself. Such data objects must be kept until they are
written to the permanent storage system or they are explicitly deallocated by the
application programmer. On the other hand, a data object can be reobtained if it was
read from the permanent storage system, or communicated from another node. Such
data objects are eligible for deallocation along with remaining data objects that do
not fit into any of the categories above. The storage service frees data objects eligible
for deallocation according to the Least Recently Used policy.

4 Linear Algebra Frontend (LAF)

The Linear Algebra Frontend (LAF) is a C++ library which works with objects
of different data types including dense and sparse matrices, (dense) vectors, and
scalars. Objects are persistent, and can be partitioned into chunks and distributed in
the system. Each object is identified by a string that gives it a unique name. Each
object is considered immutable, similar to objects in functional programming. Hence
it is generated once and is never overwritten. New objects can be generated from the
stored data, and also as a result of computation using provided primitives.

When an object is no longer needed, the associated memory needs to be deallo-
cated within the system. This is triggered upon the destruction of the object in the
frontend which can be explicit or automatic when the program exits the scope an
object was declared in.

Currently supported primitives are listed in Table 1. Although not comprehen-
sive, these operations are sufficient to implement various numerical methods for
the solution of linear systems or eigenvalue problems that are widely used in sci-
entific computing. The Conjugate Gradients, LOBPCG, Lanczos, and Page-Rank
algorithms are among the examples that can be implemented using the primitives
that currently exist in LAF.

Some of these primitives (such as dot product, MM and MV) require a reduction
phase when the data are partitioned into multiple chunks. The reduction operation
can be implemented using a static reduction tree. Since the summation operation
required for these reductions are commutative, it does not matter in which order the
different chunks are added up. So the reduction is first performed locally on each
node and then globally on the destination node to reduce communication overheads.
In order to prevent the accumulation of intermediate results on a node (which may
be very costly in terms of memory space), local reduction tasks are implemented
to listen on scheduling events. When the number of intermediate results associated
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Table 1 Primitives that are
currently available in LAF. A,
B and C are matrices, y, x
and w are vectors, and a and b
are scalars

Primitives Operation

Primitives that creates Matrix

MM, (Sym)SpMM C = AB
addM C = A+ B
axpyM C = aA+ b
randomM C = random()

Primitives that creates Vector

MV, (Sym)SpMV y = Ax
addV y = x + w

axpyV y = ax + b
Primitives that creates scalar

dot a =< x, y >

with a reduction operation reaches a threshold (default: 5), a local reduction task is
dynamically created.

5 A Case Study: Block Iterative Eigensolver Using DOoC+LAF

In this section, we present a case study using our DOoC+LAF framework. We give
the implementation details of a block eigensolver for the solution of large-scale
eigenvalue problems arising in nuclear structure computations.

5.1 Eigenvalue Problem in the Configuration Interaction
Approach

The eigenvalue problem arises in nuclear structure calculations because the nuclear
wave functions Ψ are solutions of the many-body Schrödinger’s equation:

Hψ = Eψ (1)

H =
∑
i<j

(pi − pj )2

2mA
+
∑
i<j

Vij +
∑
i<j<k

Vijk + . . . (2)

In the Configuration Interaction (CI) approach, both the wave functions ψ and the
HamiltonianH are expanded in a finite basis of Slater determinant of single-particle
states (anti-symmetrized product of single-particle states). Each element of this basis
is referred to as a many-body basis state. The representation of H under this basis
expansion is a sparse symmetric matrix Ĥ . Thus, in CI calculations, Schrödinger’s
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Fig. 3 The dimension and the number of non-zero matrix elements of the various nuclear
Hamiltonian matrices

equation becomes a finite-dimensional eigenvalue problem, where we seek the lowest
eigenvalues (energies) and their associated eigenvectors (wave functions). Many-
body basis state i corresponds to the ith row and column of the Hamiltonian matrix.
The total number of many-body states or the dimension of Ĥ in our adopted harmonic
oscillator (HO) basis, which we denote by n, is controlled by the number of particles
A, the truncation parameterNmax, and the maximum number of HO quanta above the
minimum for a given nucleus (see Fig. 3). Higher Nmax values yield more accurate
results for the same nucleus, but at the expense of an exponential growth in the
dimension of Ĥ . The sparsity of Ĥ is determined by the interaction potential used
which can be a 2-body, 3-body or even a higher order interaction. The approach
described above is implemented in the MFDn (Many Fermion Dynamics nuclei)
code, which is a state-of-the-art CI code to study the properties of light nuclei with
high precision [35–37]. In MFDn, a round-robin distribution of the many-body basis
states to the processors is used to ensure a uniform distribution of the nonzero matrix
elements in the Ĥ matrix. This way load imbalances among processors is reduced
significantly [38].

In order to find the lowest nev number of eigenvalues and eigenvectors of Ĥ ,
we use the locally optimal block preconditioned conjugate gradient (LOBPCG) al-
gorithm [39]. As mentioned above, in this paper we are focused on the efficient
execution of a single LOBPCG iteration in our out-of-core approach, rather than
how fast the LOBPCG algorithm converges for a given nuclear structure calculation.
Therefore, for simplicity of presentation, we take the preconditioning matrix M to
be the identity matrix. Algorithm 2 gives the pseudocode for a simplified version of
the LOBPCG algorithm, assumingM = I .
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5.2 Implementation Using 1D partitioning

Our first implementation of the out-of-core eigensolver is an implementation of the
LOBPCG algorithm given in Algorithm 2 using the linear algebra primitives of the
DOoC+LAF framework and using a one dimensional partitioning of the matrix.
In this scheme, the matrix is cut into p bands of equal size n

p
, and each band is

of length n
2 . The allocation of the parts of the matrix to each node is depicted in

Fig. 4a. The implementation is composed of two main parts: symmetric SpMM
computations, followed by two inner products. Each matrix block Ĥij stored on the
permanent storage system essentially corresponds to a task, which we denote by
SymSpMM(i, j ). The input data of SymSpMM(i, j ) are Ψi and Ψj subvectors. The 1D
decomposition of the matrix Ĥ is ensured by having the compute node p create the
subvector blocksΨrsp,Ψrsp+1, . . . ,Ψrep for the initial guessΨ using the DOoC+LAF
primitive randomM. As mentioned above, the global scheduler assigns each task to
the compute node which stores the most amount of input data required for that task.
Consequently, all tasks SymSpMM(i, j ), where rsp ≤ i ≤ rep and 1 ≤ j ≤ nb,
would be scheduled to the compute node p, essentially resulting in a load balanced
1D decomposition of the SpMM operation.

As a result of executing the task SymSpMM(i, j ) on node p, two intermediate
output vector blocks of ĤΨ ′

i and ĤΨ ′
j are produced. ĤΨ ′

i is consumed by a local

reduction task denoted byaddV(ĤΨi , ĤΨ ′
i ) on nodep. Similarly, ĤΨ ′

j is consumed

by the task addV(ĤΨj , ĤΨ ′
j ). However, note that ĤΨj is stored on node k such

that rsk ≤ j ≤ rek . Assuming that k �= p, the intermediate result vectors ĤΨ ′
j first

need to be communicated to node k for the execution of the task addV(ĤΨj , ĤΨ ′
j ).

Lemma Assume that on node p, the difference between the sizes of the small-
est and largest matrix blocks, as measured by the space required to store a block
in Compressed Sparse Column (CSC) format, is less than the size of any vector
block Ψi , for 1 ≤ i ≤ nb. Then Algorithm 1 orders the set of tasks on node p
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a b

Fig. 4 Different partitioning of the matrix Ĥ on the processors. Notice that since the matrix is
symetric, only half of it needs to be stored. a 1D decomposition on p nodes. b 2D decomposition
on p = k2 nodes

{SymSpMM(i, j ) | rsp ≤ i ≤ rep ∧ 1 ≤ j ≤ nb} such that they are executed in a
column-major order.

Proof Without loss of generality, let SymSpMM(rsp, j ) be the first task executed on
node p for some j . Then the subvectorΨj is the only input data on the local memory
of node p, besides the locally stored subvectors Ψi for rsp ≤ i ≤ rep. Additional
input data required to execute other tasks associated with the matrix blocks in the j th
column is the matrix block itself only. However, to execute a task corresponding to
a matrix block in a column c �= j , both the matrix block and the subvector Ψc would
be needed. Hence, the tasks of the j th column would be ordered by Algorithm 1
before the tasks in any other column. This leads to a column-major processing of
matrix-blocks. �

As a result, our out-of-core implementation using the DOoC+LAF framework is
able to execute the computations related to the solution of the eigenvalue problem
in a way that reduces the communication overheads. It is a natural result of the task
ordering algorithm, and the pipelined execution of computation, communication and
I/O operations in the DOoC+LAF framework. Since no explicit effort is required to
achieve this, a significant burden on the application programmer is removed.

After the symmetric SpMM computations are completed, two inner products of the
form Y T Y and Y T ĤY , where Y = span{Ψ ,R,P } and ĤY = span{ĤΨ , ĤR, ĤP },
need to be performed. Vector blocks R and P , and consequently Y , are also parti-
tioned according to the partitioning of Ψ and ĤΨ . Hence these inner products are
performed on node k, for k = 1, 2, . . . , np, as a set of tasks denoted by dot(Yi , Yi)
and dot(Yi , ĤYi), where rsk ≤ i ≤ rek . The local inner products are reduced on
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node 1. Then all computing nodes estimate the Rayleigh quotients. Once the esti-
mates for eigenvaluesE and eigenvectorsΨ are obtained, the computation continues
with the next iteration.

5.3 Implementation Using a 2D Partitioning

The 1D partitioning scheme, shown in Fig. 4a, requires that each node touches
n( 1

2 + 1
p

) row/column. When the number of nodes p increases, the volume of com-
munication will be proportional to the problem dimension, i.e., with n

2 . This indicates
a potential scalability bottleneck, as the number of nodes and problem dimensions
increase together in order to solve larger problems.

One can partition the upper triangle of the matrix in two dimensions (2D) by
using horizontal and vertical bands. Because the matrix is symmetric, a classical
checkerboard partitioning would make the nodes responsible for the diagonal blocks
processing half the non zeros of the other nodes. Therefore, we propose to split
the non diagonal blocks in two so as to remove this problem. Such a partitioning is
depicted in Fig. 4b and requires a number of nodes which is a square number p = k2.
Diagonal nodes touch only n

k
row/columns since the rows one touches are the same

as the columns it touches. Meanwhile the non diagonal nodes touch 3n
2k row/columns.

Since p = k2, the communication volume will behave like 3n
2
√
p

and is much better
than the number of node increases than the 1D decomposition.

Notice also that improving the communication volumes is not the only interest
of this 2D decomposition. Indeed when a processor touches a row or a column, not
only it will perform communications, but also it needs to store the partial results.
So a 2D decomposition will be necessary to allow to scale the computation to larger
problems in terms of size of the matrix or number of vectors.

In term of implementation within the DOoC+LAF framework, there is no differ-
ence between a 1D decomposition of the work and a 2D decomposition of the work. It
is sufficient to place the blocks of the matrix on the computing nodes that will process
them. The framework will automatically add the appropriate communications.

6 Experiments

Experiments are run on an experimental SSD testbed on the Carver cluster at NERSC.
The testbed is composed of 48 nodes: 40 computational nodes and 8 I/O nodes.
Each node is equipped with two Intel Xeon X5550 processors clocked at 2.67 GHz
(4 cores each, hyper-threading is disabled) and 24 GB of DDR3 memory. Each node
runs on Red Hat 5.5 with Linux kernel 2.6.18-238.12.1.el5. Nodes are interconnected
by 4X QDR InfiniBand technology, providing 32 Gb/s of point-to-point bandwidth
for high-performance message passing and I/O. Our codes are compiled with GCC
4.5.2. The InfiniBand interconnect is leveraged through the use of the MVAPICH 1.2
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Table 2 General information on the testcase
Nmax = 8

Matrix Dimension (n) 159.9 × 106

# Nonzero matrix elements 123.6 × 109

Total matrix size 920 GB

# Block row/columns (nb) 87

Total number of matrix blocks 3828

Average size of a matrix block 246 MB

Table 3 General information
on the vector block sizes Nmax = 8

Number of eigenpairs (nev) 8

Size of a subvector block Ψi 58.8 MB

Total size of the vector block Ψ 5.1 GB

Total size of all 6 vector blocks 30.6 GB

library. Each I/O node is equipped with two SSD cards, Virident tachIOn 400 GB,
connected through the PCI-express bus. Each card can deliver up to 1 GB/s sustained
read bandwidth, leading to a peak bandwidth of 2 GB/s per I/O node, and 16 GB/s
maximum I/O bandwidth from the permanent storage system to the compute nodes.
I/O nodes are accessed by the compute nodes through the Global Parallel File System
[40]. Data is streamed from the I/O nodes to the compute nodes using the 4X QDR
InfiniBand interconnect as well.

Performance evaluation of our out-of-core implementation is done with the
nuclear structure computations of the 10B (5 protons, 5 neutrons) nucleus. The
truncation parameter Nmax = 8 is used. Some key properties of this testcase are
summarized in Table 2. Since storage space is at premium for MFDn, matrix blocks
are stored in single precision CSC format.

6.1 Practical Considerations

The number of eigenpairs to be computed is fixed at nev = 8 for our test-case.
Table 3 gives detailed information regarding the sizes of vector blocks involved
when nev = 8. The size of the entire Ψ vector block, which is also stored in
single precision, is 5.1 GB for the Nmax = 8 case. In the LOBPCG algorithm, 6
such vectors (Ψ ,R,P from the previous iteration and ĤΨ , ĤR, ĤP of the current
iteration) need to be hosted on the volatile memory available to compute nodes.
The total space required for this purpose would be 30.6 GB for the Nmax = 8 case,
respectively. On Carver, about 5 GB of the 24 GB memory on a compute node is
reserved for the OS kernel, and the network file system (NFS). Since matrix blocks to
be read are on the order of hundreds of MBs, and the messages to be communicated



662 E. Saule et al.

0

200

400

a b

600

800

1000

1200

6 8 9 10 11 12 16 19 22 25 29 36

Ti
m

e 
(in

 s
ec

on
ds

)

Number of Compu�ng Nodes

I/O

Computa�on

Run�me

0

100

200

300

400

500

600

700

800

9 16 25 36

Ti
m

e 
(in

 s
ec

on
ds

)

Number of Compu�ng Nodes

I/O

Computa�on

Run�me

Fig. 5 Runtime of the application and time spent doing computations and I/O. The I/O and
Computation mostly overlap. a 1D partitioning. b 2D partitioning

are on the order of tens of MBs (see the size of Ψi in Table 3), significant space is
needed for the I/O and MPI buffers. As a result, only 15 GB out of the 24 GB memory
on a compute node can be used by our out-of-core eigensolver. We choose to use at
most 5 GB of the usable memory for hosting the vector blocks, and the remaining
memory for processing the tasks. Therefore the minimum number of nodes required
for Nmax = 8 computations is 6, respectively.

We create 8 computation threads (one for each core), which collectively work on
the tasks assigned to a node. Since there are lots of I/O and communication operations
involved in our out-of-core eigensolver, per iteration timings may fluctuate during
execution. Therefore, we report the timings from the first 5 iterations of the LOBPCG
algorithm for a reliable performance evaluation.

Since all the computing nodes share the same file system, each node will read its
data in different directory so as to provide data partitioning.

6.2 Performance Results for Nmax = 8

Figure 5 presents the runtime obtained when executing the application on different
number of nodes. The figure also presents the time taken by the computations and
by the I/O separately. These times varies on all computation and I/O threads. The
figure reports the maximum value of all threads but the average value is fairly close
to the maximum.

The first remark is that the difference between the Runtime and the maximum of
I/O and computation is fairly small. This indicates that the computations and I/O are
fairly well overlapped and that the design of our middleware is sound. The runtime
decreases with an increase of the number of computing nodes. Though, the runtime
is fairly stable after 20 nodes. This comes from a saturation of the GPFS after 20
computing nodes which draws 16 GB/s, the peak performance for the I/O nodes. This
shows that the traditional organization of the cluster with I/O nodes on one side and
compute node on the other one is not a scalable setup for the data-intensive clusters.
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Indeed, within a single I/O node, we get a bandwidth from the disks to the memory
of about 2 GB/s. Yet to be able to reach such bandwidth from the application more
than twice the amount of compute nodes are required.

We can see on Fig. 5 that there is little difference in total runtime between using
1D and 2D decomposition. The only existing difference is entirely explained by the
difference of I/O performed by the 1D and 2D decomposition. The differences be-
tween 1D and 2D decompositions are presented in Fig. 6. One can see that the amount
of GPFS I/O (Fig. 6a) is slightly lower for the 2D decomposition. Indeed, when 2D
decomposition is used, less memory is used for storing the intermediate values of the
multiplications which leaves more memory available for caching the data from the
matrix (as explained in Sect. 5.3). Another interest of the 2D decomposition lies in
the amount of communication performed by each node involved in the computation
which is depicted in Fig. 6b. With a 1D decomposition, each processor transfers a
whole Ψ vector at each iteration. Leading to a communication volume (per node)
constant when the number of nodes increases. Meanwhile the communication volu-
tion when using a 2D decomposition decreases when the number of node increases.
This confirms the analysis of Sect. 5.3 that 2D decomposition is more scalable than
a 1D decomposition.

The DOoC+LAF runtime environment generates a detailed log file on each com-
pute node for all the steps it takes during the execution of a code. The analysis of
these log files can give important insights. One way to analyze how our out-of-core
eigensolver performs is to look at the number of jobs in the local scheduler’s queue
versus execution time plot, as shown in Fig. 7a. Here we plot the first 3 iterations of
theNmax = 8 case on 12 nodes with 1D decomposition. There are 87 rows of matrix
blocks in this calculation, therefore 3 nodes (nodes 1, 3 and 4) are responsible for
an extra row of matrix blocks compared to other compute nodes. This is reflected
as a higher peak at the start of an iteration for those 3 nodes. The rise of the peak
corresponds to the building and partitioning of the task graph part. The percentage
of this part is again negligible compared to the total time per iteration. The fall of the
peak means that the task graph is shrinking, because tasks are being executed. As
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a b

Fig. 7 Amount of free memory available and jobs in the local scheduler during an execution on 12
nodes with 1D decomposition

seen in the plot, the peak falls at a constant slope during the SpMM computations.
This means that computation and I/O operations are overlapped efficiently, and the
SpMM computations progress smoothly, without idling.

When using the DOoC+LAF framework, it is important to keep track of the
amount of memory available. Because this memory is used to prefetch the data of
the upcoming tasks. Here, the available memory is used to buffer the blocks of Ĥ
from the file system and Ψi vectors from other nodes. If the available memory is
low, the prefetching is no longer possible, the computation are sequentialized and
the overlapping of I/Os, computations and communications might not be effective.

Figure 7b shows the amount of available memory as the execution progresses.
At the start of an iteration, the local scheduler reserves memory space and issues
prefetching requests for the initial batch of matrix blocks. This results in a sharp
drop in the amount of memory available. As tasks associated with these matrix
blocks are completed, the memory space that becomes available is filled in further
with other matrix blocks. Once all the SpMM tasks are finished, we see a sudden
jump at the amount of memory space available. This is because the inner product
computations do not consume much memory. The slight load imbalance caused due
to the higher number of tasks on 3 nodes, is reflected as a phase difference in this
plot. Nodes 1, 3 and 4 finish their SpMM computations a little after other compute
nodes, and the amount of memory available makes a peak slightly later on these
nodes.

7 Conclusions

Adaption of NVM-based memory in future HPC architectures and data centers will
only increase with time. Efficient use of such, multilevel memory hierarchies will
require advanced parallel programming skils. Here, we presented an attempt to re-
lieve such burden from programmer, by providing a domain specific frontend that
uses already familiar Basic Linear Algebra Subprograms (BLAS)-like application
interface and leverages a capable task-based runtime system that will take care of
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efficient orchestration of the execution of use applications. Specifically, we have
presented early results of our out-of-core task-based runtime system, (Distributed
Out-of-Core (DOoC), together with a specialized frontend, Linear Algebra Frontend
(LAF), which is developed to enable the implementation of iterative numerical meth-
ods using DOoC. Although our out-of-core runtime system generic and could work
with any storage system, existance of high-bandwith, low-latency storage system
that are based on non-volatile memory makes it feasible to execute larger problems
that will not fit into physical RAM memory of the compute nodes. Our results shows
that LAF+DOoC pushes the hardware limitations of the underlying testbed we have
carried our experiments, while providing an extremely easy application interface.

We argue that in the future systems by co-locating SSD storages with computation
[41], one can further optimize the out-of-core execution further. Our task-based
runtime system DOoC is well positioned to take advantage of such hardware changes
without requiring the rewrite of application program.

References

1. P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to the new normal in computer
architecture,” Computing in Science Engineering, vol. PP, no. 99, pp. 1–1, 2013.

2. P. Ranganathan and J. Chang, “(Re)designing data-centric data centers,” Micro, IEEE, vol. 32,
no. 1, pp. 66–70, 2012.

3. E. Barragy, B. Brantley, S. Gurumurthi, M. Ignatowski, N. Jayasena, A. Lee, G. Loh, S.
Manne, M. O’Connor, P. Popescu, S. Reinhardt, and M. Schulte, “Amd’s fastforward extreme-
scale computing processor and memory research,” in US DOE Exascale Research Conference,
Arlington, VA, USA, Oct. 2012.

4. R. Nair, J. Moreno, and D. Joseph, “Advanced memory concepts for exascale systems,” in US
DOE Exascale Research Conference, Arlington, VA, USA, Oct. 2012.

5. Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to
multiprocessors,” ACM Comput. Surv., vol. 31, no. 4, pp. 406–471, Dec. 1999.

6. C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures,” Concurrency and Computation:
Practice and Experience, Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, Feb. 2011.

7. G. Bosilca, A. Bouteiller, A. Danalis, T. Hérault, P. Lemarinier, and J. Dongarra, “DAGuE: A
generic distributed DAG engine for high performance computing,” Parallel Computing, vol. 38,
no. 1-2, pp. 37–51, 2012.

8. G. Bosilca, M. Faverge, X. Lacoste, I. Yamazaki, and P. Ramet, “Toward a supernodal sparse
direct solver over DAG runtimes,” in Proceedings of PMAA’2012, London, UK, Jun. 2012.

9. A.-E. Hugo, A. Guermouche, R. Namyst, and P.-A. Wacrenier, “Composing multiple StarPU
applications over heterogeneous machines: a supervised approach,” in Third International
Workshop on Accelerators and Hybrid Exascale Systems, Boston, États-Unis, May 2013.

10. C. Augonnet, O. Aumage, N. Furmento, R. Namyst, and S. Thibault, “StarPU-MPI: Task
Programming over Clusters of Machines Enhanced with Accelerators,” in EuroMPI 2012, ser.
LNCS, S. B. Jesper Larsson Träff and J. Dongarra, Eds., vol. 7490. Springer, Sep. 2012, poster
Session.

11. M. Cosnard and M. Loi, “Automatic task graph genera tion techniques,” Parallel Processing
Letters, vol. 5, no. 4, p. 527–538, 1995.

12. M. Cosnard, E. Jeannot, and T. Yang, “Slc: Symbolic scheduling for executing parameterized
task graphs on multiprocessors,” in Proc. ICPP, 1999.



666 E. Saule et al.

13. S. Toledo, “A survey of out-of-core algorithms in numerical linear algebra,” in External memory
algorithms, J. M. Abello and J. S. Vitter, Eds. Boston, MA, USA: American Mathematical
Society, 1999, pp. 161–179.

14. J. K. Reid and J. A. Scott, “An out-of-core sparse cholesky solver,” ACM Trans. Math. Softw.,
vol. 36, no. 2, 2009.

15. V. Rotkin and S. Toledo, “The design and implementation of a new out-of-core sparse cholesky
factorization method,” ACM Trans. Math. Softw., vol. 30, no. 1, pp. 19–46, 2004.

16. P. R. Amestoy, I. S. Duff, Y. Robert, F.-H. Rouet, and B. Ucar, “On computing inverse entries
of a sparse matrix in an out-of-core environment,” CERFACS, Tech. Rep. TR/PA/10/59, 2010.

17. J. A. Scott, “Scaling and pivoting in an out-of-core sparse direct solver,” ACM Trans. Math.
Softw., vol. 37, no. 2, 2010.

18. E. Agullo, A. Guermouche, and J.-Y. L’Excellent, “A parallel out-of-core multifrontal method:
Storage of factors on disk and analysis of models for an out-of-core active memory,” Parallel
Computing, Special Issue on Parallel Matrix Algorithms, no. 6–8, 2008.

19. E. Agullo, A. Guermouche, and J.-Y. L’Excellent, “Reducing the I/O Volume in Sparse Out-
of-core Multifrontal Methods,” SIAM Journal on Scientific Computing, no. 6, 2010.

20. W. J. Knottenbelt and P. G. Harrison, “Distributed disk-based solution techniques for large
markov models,” in Proc. of Numerical Solution of Markov Chains, 1999.

21. Y.-Y. Chen, Q. Gan, and T. Suel, “Local methods for estimating pagerank values,” in Pro-
ceedings of the thirteenth ACM international conference on Information and knowledge
management, ser. CIKM ’04. New York, NY, USA: ACM, 2004, pp. 381–389.

22. E. Saule, P.-F. Dutot, and G. Mounié, “Scheduling With Storage Constraints,” in Proc of
IPDPS’08, Apr. 2008, conference, acceptance rate: 25.6%.

23. S. S. Tse, “Online bicriteria load balancing using object reallocation,” IEEE Transactions on
Parallel and Distributed Systems, vol. 20, no. 3, pp. 379–388, 2009.

24. Ü. V. Çatalyürek, K. Kaya, and B. Uçar, “Integrated data placement and task assignment
for scientific workflows in clouds,” in The Fourth International Workshop on Data Intensive
Distributed Computing (DIDC 2011), in conjunction with the 20th International Symposium
on High Performance Distributed Computing (HPDC 2011), Jun 2011.

25. R. Sethi, “Pebble games for studying storage sharing.” Theor. Comput. Sci., vol. 19, pp. 69–84,
1982.

26. S. Biswas and S. Kannan, “Minimizing space usage in evaluation of expression trees,” in
Foundations of Software Technology and Theoretical Computer Science, ser. Lecture Notes in
Computer Science, P. Thiagarajan, Ed. Springer Berlin Heidelberg, 1995, vol. 1026, pp. 377–
390.

27. C.-C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan, “Memory-optimal evaluation
of expression trees involving large objects,” in High Performance Computing – HiPC’99, ser.
Lecture Notes in Computer Science, P. Banerjee, V. Prasanna, and B. Sinha, Eds. Springer
Berlin Heidelberg, 1999, vol. 1745, pp. 103–110.

28. V. Rehn-Sonigo, D. Trystram, F. Wagner, H. Xu, and G. Zhang, “Offline scheduling of multi-
threaded request streams on a caching server,” in IPDPS, 2011, pp. 1167–1176.

29. M. Jacquelin, L. Marchal, Y. Robert, and B. Uçar, “On optimal tree traversals for sparse
matrix factorization,” in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE
International, 2011, pp. 556–567.

30. L. Marchal, O. Sinnen, and F.Vivien, “Scheduling tree-shaped task graphs to minimize memory
and makespan,” INRIA, Rapport de recherche RR-8082, Oct. 2012.

31. Z. Zhou, E. Saule, H. M. Aktulga, C.Yang, E. G. Ng, P. Maris, J. P. Vary, and Ü. V. Çatalyürek,
“An out-of-core dataflow middleware to reduce the cost of large scale iterative solvers,” in
2012 International Conference on Parallel Processing (ICPP) Workshops, Fifth International
Workshop on Parallel Programming Models and Systems Software for High-End Computing
(P2S2), Sep 2012.

32. M. D. Beynon, T. Kurc, Ü. V. Çatalyürek, C. Chang, A. Sussman, and J. Saltz, “Distributed
processing of very large datasets with DataCutter,” Parallel Computing, vol. 27, no. 11,
pp. 1457–1478, Oct. 2001.



An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing 667

33. Z. Zhou, E. Saule, H. M. Aktulga, C.Yang, E. G. Ng, P. Maris, J. P. Vary, and Ü. V. Çatalyürek,
“An out-of-core eigensolver on SSD-equipped clusters,” in Proc. of IEEE Cluster, Sep. 2012.

34. J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E.Apra, “Advances, applica-
tions and performance of the global arrays shared memory programming toolkit,” International
Journal of High Performance Computing Applications, vol. 20, pp. 203–231, 2006.

35. P. Maris, H. M. Aktulga, M. A. Caprio, Ü. V. Çatalyürek, E. G. Ng, D. Oryspayev, H. Potter,
E. Saule, M. Sosonkina, J. P. Vary et al., “Large-scale ab initio configuration interaction
calculations for light nuclei,” Journal of Physics: Conference Series, vol. 403, no. 1, p. 012019,
2012.

36. P. Maris, H. M. Aktulga, S. Binder, A. Calci, Ü. V. Çatalyürek, J. Langhammer, E. Ng, E.
Saule, R. Roth, J. P. Vary, and C. Yang, “No-Core CI calculations for light nuclei with chiral 2-
and 3-body forces,” Journal of Physics: Conference Series, vol. 454, no. 1, p. 012063, 2013.

37. H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary, “Improving the scalability of
a symmetric iterative eigensolver for multi-core platforms,” Concurrency and Computation:
Practice and Experience, p. in press, 2013.

38. P. Sternberg, E. G. Ng, C.Yang, P. Maris, J. P. Vary, M. Sosonkina, and H. V. Le, “Accelerating
configuration interaction calculations for nuclear structure,” in Proc. of SC08, 2008.

39. A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method,” SIAM Journal on Scientific Computing, vol. 23, no. 2,
pp. 517–541, 2001.

40. F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for large computing
clusters,” in Proc. of FAST’02, 2002, pp. 231–244.

41. M. Jung, E. H. W. III, W. Choi, J. Shalf, H. M. Aktulga, C.Yang, E. Saule, Ü. V. Çatalyürek, and
M. Kandemir, “Exploring the future of out-of-core computing with compute-local non-volatile
memory,” in Proc. of Conference on High Performance Computing Networking, Storage and
Analysis (SC ’13), Nov 2013.


	Part III Cloud Computing
	An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing
	1 Introduction
	2 Related Work
	3 An Out-of-Core Task-based Middleware
	3.1 Global and Local Schedulers
	3.2 Storage Service

	4 Linear Algebra Frontend (LAF)
	5 A Case Study: Block Iterative Eigensolver Using DOoC+LAF
	5.1 Eigenvalue Problem in the Configuration Interaction Approach
	5.2 Implementation Using 1D partitioning
	5.3 Implementation Using a 2D Partitioning

	6 Experiments
	6.1 Practical Considerations
	6.2 Performance Results for Nmax=8

	7 Conclusions
	References





