
Linear Algebra-Based Triangle Counting via Fine-Grained
Tasking on Heterogeneous Environments

(Update on Static Graph Challenge)

Abdurrahman Yaşar†, Sivasankaran Rajamanickam∗, Jonathan Berry∗,
Michael Wolf∗, Jeffrey S. Young†, and Ümit V. Çatalyürek†

ayasar@gatech.edu, srajama@sandia.gov, jberry@sandia.gov,
mmwolf@sandia.gov, jyoung9@gatech.edu, and umit@gatech.edu

∗Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, U.S.A.
†College of Computing, Georgia Institute of Technology, Atlanta, GA, U.S.A.

Abstract—Triangle counting is a representative graph prob-
lem that shows the challenges of improving graph algorithm
performance using algorithmic techniques and adopting graph
algorithms to new architectures. In this paper, we describe
an update to the linear-algebraic formulation of the triangle
counting problem. Our new approach relies on fine-grained
tasking based on a tile layout. We adopt this task based algorithm
to heterogeneous architectures (CPUs and GPUs) for up to 10.8x
speed up over past year’s graph challenge submission. This
implementation also results in the fastest kernel time known
at time of publication for real-world graphs like twitter (3.7
second) and friendster (1.8 seconds) on GPU accelerators when
the graph is GPU resident. This is a 1.7 and 1.2 time improvement
over previous state-of-the-art triangle counting on GPUs. We also
improved end-to-end execution time by overlapping computation
and communication of the graph to the GPUs. In terms of end-to-
end execution time, our implementation also achieves the fastest
end-to-end times due to very low overhead costs.

I. INTRODUCTION

With increased use of accelerators for achieving better per-
formance, proposing algorithms that require ideally no archi-
tecture specific changes on code base is crucial for portability
on heterogeneous environments. This paper addresses these
two primary problems, using general purpose accelerators for
the graph challenge and doing that in a portable manner.

In this paper, we focus on a triangle counting algorithm that
utilizes both CPUs and GPUs on a compute node and uses
a portable tiled layout that requires almost no (algorithmic
or layout) change between different architectures. This paper
improves our previous work [1], [2] by using the linear
algebra based triangle counting algorithm on a tiled layout
and exploiting multiple levels of shared-memory parallelism
on CPUs and GPUs.

This algorithmic changes allow us to achieve the fastest
times for real world graphs like twitter and friendster com-
pared to past champions utilizing the GPUs. We achieve 3.7
seconds on twitter and 1.8 seconds on friendster graphs as
opposed to 6.5 and 2.1 seconds by past champions [3] when
the graph is GPU resident. However, we believe assuming the
graph is on the GPU is not realistic for several use cases,
therefore in this paper we also focus on an end-to-end time
metric when the graph is not GPU resident. In this case, we
are able to count triangles in twitter and friendster graphs
in 4.6 and 3.1 seconds where data copy is overlapped with

computation. In the following sections we only report end to
end results. In this paper, we propose a new linear algebraic
formulation for triangle counting problem that uses tiles and
a fine-grained parallel algorithm that exploits multiple level
of parallelism on different architectures. We implement a
highly efficient multi-core, multi-GPU hybrid framework that
outperforms state-of-the-art. Experimental results demonstrate
that our codes achieve the fastest kernel times on real-world
graphs when the graph resides on the GPU and the fastest
end-to-end times when the graph is not on the GPU. The
performance improvement is up to 10× over our previous
state-of-the-art implementation.

II. BACKGROUND

A. 2017 Static Graph Challenge

We used a linear algebra-based triangle counting imple-
mentation, KKTri (previously designated TCKK) [1] in the
the 2017 Static Graph Challenge [4]. That work, focused
on efficient shared memory parallelism on top of a portable
SpGEMM (called KK-MEM) [5] in the Kokkos Kernels li-
brary [6]. The primary focus of that work was on two linear-
algebra based formulations of triangle counting:
1) D = (L × U). ∗ L: This formulation represented triangle

counting in terms of sparse matrix-matrix multiplication
followed by an element-wise matrix multiplication where
L and U are the lower and upper triangle parts of the
adjacency matrix for the graph.

2) D = (L×L).∗L: This formulation was used primarily for
the 2017 Graph Challenge. This formulation follows the
same logic as the previous method.
Three optimizations were used to achieve good perfor-

mance: (1) in-place masked SpGEMM which reduced the
memory needed for triangle counting; (2) data compression on
the right hand side matrix that allowed using efficient bitwise
operations (3) ordering of the vertices a common heuristic to
reduce number of operations.

B. 2018 Static Graph Challenge

For the 2018 Static Graph Challenge [7], we designed a
linear algebra-based triangle counting implementation KKTri-
Cilk that inherited from the KK-SpGEMM algorithm [8] and

Ti,j

Tj,k

Ti,k

x .*

i

j

k

j k
Ti,j Ti,j

Tj,k

Fig. 1. Tiled Triangle Counting

improved load-balancing and efficient hyper-thread usage is-
sues using Cilk based programming model and optimizations.

The parallelization strategy and the runtime system is the
main difference between KKTri-Cilk and KKTri. KKTri used
a very simple scheme, partitioning the matrix evenly into
partitions of a fixed number of rows. To balance the work
among the tasks, KKTri-Cilk uses an heuristic to find the
partitions, creating partitions such that the number of non-
zeros within each partition are approximately equal.

Compression of the right hand side matrix can decrease the
problem size significantly, and allow using efficient bitwise
operations. However, compression is not always successful
because of the natural order of the matrices.

III. APPROACH

A lightweight 2D partitioning algorithm is implemented
to create tiles. This algorithm partitions the graph in two
dimensional space where diagonal tiles are required to be
squares. This partitioning is known as symmetric generalized
block distribution [9].

In Equation 1, we propose a new linear algebra based
triangle counting formulation that uses tiles. Similar to LL
and LU this formulation represents triangle counting in terms
of sparse matrix-matrix multiplication followed by an element-
wise matrix multiplication but with tiles. If number of tiles is
one then this formulation is identical with LL Algorithm [1].
Figure 1 illustrates this formulation. In the context of this
paper, a “task”, t, counts the triangles in a given triple of
tiles, t = {Ti,j , Tj,k, Ti,k}. However, counting triangles in
all possible triple of tiles, ends up counting each triangle
three times. Considering tasks, t = {Ti,j , Tj,k, Ti,k} where
i ≤ j ≤ k avoids unnecessary counting. With this restriction,
if a given graph partitioned into p × p tiles, then number of
tasks, Ntask, is defined as Ntask = p×(p+1)×(p+2)

6 . Tile based
triangle counting can be formulated as:

Di,j,k = (Ti,j × Tj,k). ∗ Ti,k (1)

Latapy et al. [10] proposes to use list intersection based
counting for small degree vertices and a hashmap based inter-
section for the other. In this work, a similar approach is used;
i.e. any task with sparse tiles will use list based intersection
and denser tiles will use a dense hashmap accumulator.

We use both CPUs and GPUs to process tasks together.
There is no architecture specific algorithmic change in the
code-base. This will allow execution on any accelerator and

TABLE I
OVERVIEW OF THE ARCHITECTURES. PINNED: TRANSFERS USING PINNED

MEMORY. PAGE-ABLE: TRANSFERS USING PAGE-ABLE MEMORY. H2D:
HOST TO DEVICE. D2H: DEVICE TO HOST.

DGX Newell Minsky
CPU Intel, E5-2698 POWER9 POWER8-NVL
Cores 2× 40 2× 16 2× 8
Host Memory 512 GB 320 GB 512 GB
L2-Cache 256 KB 512 KB 512 KB
L3-Cache 50 MB 10 MB 8 MB
GPU V100-SXM2 V100-SXM2 P100-SXM2
GPU Memory 32 GB 32 GB 16 GB
Number of GPUs 8 2 4

Pageable H2D 9.2 GB/S 12.2 GB/S 15.1 GB/S
D2H 8.0 GB/S 14.2 GB/S 8.9 GB/S

Pinned H2D 10.7 GB/S 60.0 GB/S 31.4 GB/S
D2H 12.1 GB/S 60.0 GB/S 32.6 GB/S

CPU combination. However, because of architectural differ-
ences, the parallelization approach differs between CPU and
GPU itself. While, CPU threads execute different tasks in
parallel, GPU threads execute cooperatively to complete the
same task in parallel. Assigning heavier tasks to GPUs is
one of the primary optimizations that is being used in hybrid
approaches [11] due to massive parallelism capabilities of
these devices. Hence, we try to estimate and execute heavier
tasks on GPUs.

We use Cuda streams to simultaneously execute several
tasks on the GPUs. Four Cuda streams are created for each
GPU in the node. Then, a CPU thread is created and made
responsible for the operations on the stream. GPUs and CPUs
compete for tasks and get a new one from a queue when they
are ready. Tasks are ordered based on their size in a task queue.
GPUs start to process tasks starting from the heaviest task
and CPUs start to process tasks from the lightest tasks. This
continues until all tasks have been executed.

IV. EXPERIMENTAL EVALUATION

We present several experiments to identify the performance
trade-offs of the proposed work. These experiments were car-
ried out on three architectures with multicore processors and
GPUs that are shown in Table I. GNU compiler (g++) version
7.2, Cuda runtime version 10.0 and OpenMP version 4.0 are
used to compile and run the code on all the architectures.

A. Dataset and Copy Time Included Peak Rates

Table II lists 23 graphs that we used in our experiments
along with the number of vertices (|V |), number of edges
(|E|), number of triangles (|T |), size of the graph in memory
(Raw Size), number of tiles and number of tasks in the graph.
Note that when we partition the adjacency matrix into p
intervals on rows and on columns in total p×p tiles are created
which is reported in Table II. However, our algorithm only uses
upper triangular part of the matrix, therefore, only p×(p+1)

2
tiles are being used. In addition to 20 Challenge graphs for
which triangle counting is particularly costly, 3 additional large
real-world graphs [12], [13] are included in our experiments.
We used the Graph Challenge procedure of symmetrizing the
matrices (using undirected graphs). For all experiments, we

TABLE II
PROPERTIES OF THE DATASET. BEST OF THE MEDIANS OF THE COPY TIME INCLUDED EXECUTION TIMES IN SECONDS AND CORRESPONDING RATES ARE

REPORTED. GREEN - INSTANCES THAT ARE MORE THAN 5× FASTER THAN LAST YEAR SUBMISSION. BLUE - THE FASTEST RATE FOR A GRAPH.

Data Set |V | |E| |T | Raw Size Tiles Tasks Best Rates (×108)
Time (s) DGX Newell Minsky

cit-HepTh 27,770 352,285 1,478,735 2.2 MB 64 120 0.002 1.7 0.9 0.9
email-EuAll 265,214 364,481 267,313 9.5 MB 64 120 0.002 1.9 1.1 0.9
soc-Epinions1 75,879 405,740 1,624,481 3.9 MB 64 120 0.002 2.1 0.9 1.0
cit-HepPh 34,546 420,877 1,276,868 2.7 MB 64 120 0.002 2.0 1.6 1.1
soc-Slashdot0811 77,360 469,180 551,724 5.4 MB 144 364 0.002 2.9 0.9 1.3
soc-Slashdot0902 82,168 504,230 602,592 5.7 MB 144 364 0.002 3.1 1.3 1.2
flickrEdges 105,938 2,316,948 107,987,357 14 MB 144 364 0.016 1.5 1.3 1.1
amazon0312 400,727 2,349,869 3,686,467 28 MB 144 364 0.006 3.9 3.4 3.1
amazon0505 410,236 2,439,437 3,951,063 29 MB 144 364 0.007 3.7 3.4 2.8
amazon0601 403,394 2,443,408 3,986,507 28 MB 144 364 0.006 4.4 4.7 3.3
scale18 174,147 3,800,348 82,287,285 26 MB 256 816 0.021 1.8 1.4 1.4
scale19 335,318 7,729,675 186,288,972 56 MB 400 1540 0.041 1.9 1.5 1.4
as-Skitter 1,696,415 11,095,298 28,769,868 146 MB 400 1540 0.027 4.1 3.4 3.2
scale20 645,820 15,680,861 419,349,784 110 MB 400 1540 0.079 2.0 1.7 1.5
cit-Patents 3,774,768 16,518,947 7,515,023 352 MB 400 1540 0.038 4.4 3.6 3.4
scale21 1,243,072 31,731,650 935,100,883 216 MB 400 1540 0.144 2.2 1.8 1.7
soc-LiveJournal1 4,847,571 42,851,237 285,730,264 534 MB 400 1540 0.121 3.6 3.3 2.7
scale22 2,393,285 64,097,004 2,067,392,370 464 MB 576 2600 0.325 2.0 1.7 1.5
scale23 4,606,314 129,250,705 4,549,133,002 915 MB 576 2600 0.549 2.4 1.5 1.1
scale24 8,860,450 260,261,843 9,936,161,560 1.9 GB 784 4060 1.154 2.3 1.2 0.8
scale25 17,043,780 523,467,448 21,575,375,802 4.0 GB 1024 5984 2.400 2.2 0.9 0.6
twitter 61,578,414 1,202,513,046 34,824,916,864 13 GB 1296 8436 4.582 2.6 1.1 1.0
friendster 65,608,366 1,806,067,135 4,173,724,142 16 GB 1296 8436 3.133 5.8 2.6 2.2

Geomean: 2.6 1.7 1.5

H
ep

Th

E
uA

ll

E
pn

in
s

H
ep

P
h

S
ls

hd
t8

S
ls

hd
t9

flc
kr

E
d

am
zn

12

am
zn

05

am
zn

01

sc
al

e1
8

sc
al

e1
9

S
ki

tte
r

sc
al

e2
0

P
at

en
ts

sc
al

e2
1

Li
ve

Jr
nl

sc
al

e2
2

sc
al

e2
3

sc
al

e2
4

sc
al

e2
5

tw
itt

er

frn
ds

tr0

2

4

6

8

10

R
el

at
iv

e
S

pe
ed

up

Fig. 2. Relative speedup between this work (on DGX architecture) and last
year’s submission. Black dashed line represents the baseline. Graphs are sorted
on x-axis based on their number of edges.

report the best of the median time of five runs with different
number of GPUs. Table II reports copy included best execution
time and rates on different architectures for each graph. This
work outperforms last year’s submission by 6× on friendster
graph and achieves 5.6× 108 rate.

B. Relative Speedup comparisons to Last Year’s Submission

Figure 2 presents relative speedup between this work and
our last submission (KKTri-Cilk) [2]. This work outperforms
KKTri-Cilk in 20 of 23 cases. In three small instances
(flickrEdges, amazon0505 and cit-Patents) KKTri-Cilk per-
forms better. This years work can achieve up to 11× speedup
on large graphs in which GPUs become more useful.

1 2 3 4
Number of GPUs

1

2

3

4

Sp
ee

du
p

friendster (w NVLink)
friendster (w/o NVLink)

Fig. 3. Effect of bandwidth

C. Effect of bandwidth on speedup

Figure 3 presents strong scaling of the friendster graph
up to 4 GPUs on two machines; with NVLink and without
NVLink. We observe from this figure that with NVLink
enabled architecture we get better scaling. Hence, we believe
that if we would have a server with 8 Volta GPUs with
NVLink, we could get even better execution times than the
reported ones.

V. CONCLUSIONS

We developed a fine-grained tasking based multi-core,
multi-GPU, triangle counting method. This linear algebra
implementation is up to 10.8× faster than our previous sub-
mission. This implementation results in the fastest end-to-end
time known at time of publication due to very low overhead
costs.
Acknowledgments: We thank Simon Hammond, Cynthia
Phillips, and Stephen Olivier for helpful discussions. Sandia

National Laboratories is a multi-mission laboratory managed
and operated by National Technology and Engineering Solu-
tions of Sandia, LLC., a wholly owned subsidiary of Honey-
well International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NA-0003525.

REFERENCES

[1] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Rajaman-
ickam, “Fast linear algebra-based triangle counting with kokkoskernels,”
in IEEE High Performance extreme Computing Conference (HPEC).
IEEE, 2017, pp. 1–7.

[2] A. Yaşar, S. Rajamanickam, M. M. Wolf, J. W. Berry, and Ü. V.
Çatalyürek, “Fast triangle counting using cilk,” in IEEE High Perfor-
mance extreme Computing Conference (HPEC). IEEE, 2018, pp. 1–7.

[3] Y. Hu, H. Liu, and H. H. Huang, “High-performance triangle counting
on gpus,” in IEEE High Performance extreme Computing Conference
(HPEC). IEEE, 2018, pp. 1–5.

[4] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kep-
ner, “Static graph challenge: Subgraph isomorphism,” in IEEE High
Performance extreme Computing Conference (HPEC). IEEE, 2017.

[5] M. Deveci, C. Trott, and S. Rajamanickam, “Performance-portable
sparse matrix-matrix multiplication for many-core architectures,” in
Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 2017, pp. 693–702.

[6] KokkosKernels. [Online]. Available:
https://github/kokkos/kokkoskernels

[7] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, et al., “GraphChallenge.
org: Raising the Bar on Graph Analytic Performance,” arXiv preprint,
2018.

[8] M. Deveci, C. Trott, and S. Rajamanickam, “Multithreaded sparse
matrix-matrix multiplication for many-core and gpu architectures,” Par-
allel Computing, pp. 33–46, 2018.

[9] M. Grigni and F. Manne, “On the complexity of the generalized block
distribution,” in International Workshop on Parallel Algorithms for
Irregularly Structured Problems. Springer, 1996, pp. 319–326.

[10] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theoretical Computer Science, pp. 458–473,
2008.

[11] G. Teodoro, T. D. R. Hartley, Ü. V. Çatalyürek, and R. Ferreira,
“Run-time optimizations for replicated dataflows on heterogeneous
environments,” in IEEE International Symposium on High Performance
Distributed Computing (HPDC), 2010, pp. 13–24.

[12] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2017.

[13] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software (TOMS), p. 1,
2011.

