
An Out-of-core Eigensolver on SSD-equipped

Clusters

Zheng Zhou∗‡, Erik Saule∗, Hasan Metin Aktulga§, Chao Yang§, Esmond G. Ng§,

Pieter Maris¶, James P. Vary¶ and Ümit V. Çatalyürek∗†

∗Dept. of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
‡Wuhan University, P. R. China

§Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
¶Department of Physics, Iowa State University, Ames, IA 50011, USA

†Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA

Abstract—Obtaining highly accurate predictions on properties
of light atomic nuclei using the Configuration Interaction (CI)
approach requires computing few extremal eigenpairs of a large

many-body nuclear Hamiltonian matrix, Ĥ . A forefront challenge

in CI calculations is the massive size of Ĥ and its eigenvectors.
The emergence of clusters equipped with non-volatile NAND-
flash memory based solid state drives (SSD) presents unique
opportunities. In this paper, we present the implementation
details of an out-of-core eigensolver using a novel distributed
out-of-core linear algebra framework, called DOoC+LAF. The
framework provides an easy-to-use high-level application in-
terface for linear algebra operations while providing efficient
execution by orchestrating pipelined execution of computation,
communication and I/O. We demonstrate the effectiveness of
our out-of-core eigensolver implemented using DOoC+LAF by
reporting performance results on large-scale eigenvalue problems
arising in nuclear structure calculations.

I. INTRODUCTION

The solution of the quantum many-body problem transcends

several areas of physics and chemistry. Nuclear physics faces

the multiple hurdles of a very strong interaction, three-nucleon

interactions, and complicated collective motion dynamics. The

configuration interaction (CI) method allows computing the

many-body wavefunctions associated with the discrete energy

levels of nuclei with high accuracy [1], [2].

Typically, one is only interested in a limited number of low

energy states, which can be computed by partially diagonaliz-

ing the nuclear many-body Hamiltonian, Ĥ . In MFDn (Many

Fermion Dynamics for nuclear structure), the Hamiltonian Ĥ
is constructed in a many-body basis space based on the har-

monic oscillator single-particle wavefunctions [3], [4]. Since

Ĥ is a large sparse matrix, a parallel iterative eigensolver is

preferred. These calculations require using large clusters.

A forefront challenge in CI calculations is the massive

size of Ĥ and its eigenvectors. The construction of Ĥ is

typically two orders of magnitude more expensive than a

This work was supported in part by U.S. Department of Energy Grant DE-
FC02-09ER41582 (SciDAC/UNEDF), DE-FG02-87ER40371, and DE-FC02-
06ER2775, and by the US NSF grants 0643969, 0904809 and 0904802, and
0904782. Computational resources were provided by the National Energy
Research Supercomputer Center (NERSC), which is supported by the Office
of Science of the U.S. Department of Energy. The authors would like to thank
Shane Canon for his help regarding the SSD-testbed.

single iteration of the eigensolver. Therefore in MFDn, once

Ĥ is constructed, it is stored throughout the computations,

rather than reconstructing it at each iteration. Consequently,

calculations that are possible using this approach are limited

by the amount of storage available.

While disk-based storage systems provide abundant storage

space at a low cost, their high latency and low bandwidth

would make data access a severe bottleneck in large computa-

tions. On the other hand, the emergence of clusters equipped

with non-volatile NAND-flash memory based solid state drives

(SSD) presents unique opportunities. Since SSDs have no

moving parts, they can achieve much higher I/O operations

per second and sustained read/write bandwidths compared to

magnetic disks. For example, the recently released OCZ Z-

Drive R4 CloudServ Series PCIe-based flash storage cards can

achieve up to 1.4 million IOPS and 6 GB/s sustained read/write

bandwidth. Moreover, these high-performance storage cards

can provide terabytes of storage space, e.g. the OCZ Z-Drive

R4 can provide up to 16 TB of storage on a single card. The

use of SSDs is being investigated for challenging problems

such as graph traversal [5].

In this paper, we explore the advantages and challenges

associated with using an SSD-equipped cluster for a data-

intensive scientific application like MFDn. We restrict our

attention to the part that requires accessing large amounts

of data in MFDn, the eigenvalue solver. Since the conver-

gence to the desired eigenpairs typically take hundreds of

iterations, solution of the eigenvalue problem is also the most

time-consuming part overall. Section II gives a description

of the eigenvalue problem in the nuclear CI approach, and

the iterative procedure that we adopt to solve this problem.

Section III discusses the requirements for an efficient parallel

out-of-core eigensolver. Since the Ĥ matrix is stored on the

storage system, matrix blocks need to be brought into the

local memory of compute nodes for processing. For this

purpose, we use a novel distributed out-of-core linear algebra

framework, called DOoC+LAF. This framework, presented

in Section IV, provides an easy-to-use high-level applica-

tion interface for linear algebra operations, while providing

efficient execution by orchestrating pipelined execution of

computation, communication and I/O. Section V presents the

0 2 4 6 8 10 12 14
N

max

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

M
-s

c
h
e
m

e
 b

a
si

s
sp

a
c
e
 d

im
e
n
si

o
n

4He
6Li
8Be
10B
12C
16O
19F
23Na
27Al

0 2 4 6 8 10
N

max

10
0

10
3

10
6

10
9

10
12

10
15

n
u
m

b
e
r

o
f

n
o
n
z
e
ro

 m
a
tr

ix
 e

le
m

e
n
ts

16O, dimension
2-body interactions
3-body interactions
4-body interactions
A-body interactions

Fig. 1. The dimension and the number of non-zero matrix elements of the
various nuclear Hamiltonian matrices.

implementation details of our out-of-core eigensolver using

the DOoC+LAF Application Programmer’s Interface (API).

Finally, we demonstrate the effectiveness of our out-of-core

eigensolver by reporting performance results on large-scale

eigenvalue problems arising in nuclear structure calculations.

We conclude by discussing how the ideas presented can be

extended to scientific computing applications in general.

II. EIGENVALUE PROBLEM IN THE CONFIGURATION

INTERACTION APPROACH

The eigenvalue problem arises in nuclear structure calcula-

tions because the nuclear wave functions Ψ are solutions of

the many-body Schrödinger’s equation:

Hψ = Eψ (1)

H =
∑

i<j

(pi − pj)
2

2mA
+

∑

i<j

Vij +
∑

i<j<k

Vijk + . . . (2)

In the CI approach, both the wave functions ψ and the Hamil-

tonian H are expanded in a finite basis of Slater determinant

of single-particle states (anti-symmetrized product of single-

particle states). Each element of this basis is referred to

as a many-body basis state. The representation of H under

this basis expansion is a sparse symmetric matrix Ĥ . Thus,

in CI calculations, Schrödinger’s equation becomes a finite-

dimensional eigenvalue problem, where we seek the lowest

eigenvalues (energies) and their associated eigenvectors (wave

functions). Many-body basis state i corresponds to the ith
row and column of the Hamiltonian matrix. The total number

of many-body states or the dimension of Ĥ in our adopted

harmonic oscillator (HO) basis, which we denote by n, is con-

trolled by the number of particles A, the truncation parameter

Nmax, and the maximum number of HO quanta above the

minimum for a given nucleus (see Figure 1). Higher Nmax

values yield more accurate results for the same nucleus, but at

the expense of an exponential growth in the dimension of Ĥ .

The sparsity of Ĥ is determined by the interaction potential

used. This paper uses a 2-body interaction potential.

In order to find the lowest nev number of eigenvalues

and eigenvectors of Ĥ , we use the locally optimal block

preconditioned conjugate gradient (LOBPCG) algorithm [6].

As mentioned above, in this paper we are focused on the

efficient execution of a single LOBPCG iteration in our out-

of-core approach, rather than how fast the LOBPCG algorithm

converges for a given nuclear structure calculation. Therefore,

for simplicity of presentation, we take the preconditioning

matrix M to be the identity matrix. Algorithm 1 gives the

pseudocode for a simplified version of the LOBPCG algo-

rithm, assuming M = I .

Algorithm 1: Pseudocode of the LOBPCG algorithm for

the eigenproblem of the form ĤΨ = EΨ . The precondi-

tioning matrix M is assumed to be the identity matrix.

Input: Ĥ , matrix of dimensions n× n
Input: Ψ0, a block of vectors of dimensions n× nev

Output: Ψ and E such that ‖ĤΨ − ΨE‖F is small.
Orthonormalize the columns of Ψ0

P0 ← 0
for i = 0, 1, . . . , until convergence do

Ei ← Ψi
TΨi/Ψi

T ĤΨi

Ri ← Ψi − EiĤΨi

Use Rayleigh-Ritz method on the span{Ψi, Ri, Pi}

Ψi+1 ← argmin
Y ∈span{Ψi,Ri,Pi}

Y TY/Y T ĤY

Pi+1 ← Ψi

Check convergence

III. AN OUT-OF-CORE PARALLEL EIGENSOLVER

Calculations for the solution of the nuclear eigenvalue

problem need to be performed in parallel due to the large

amount of computations involved. In a large-scale parallel

computation, a good load balance among computing nodes and

hiding overheads associated with data movement are necessary

to perform an efficient execution. Data movement in a parallel

computation generally refers to inter-node communication; in

an out-of-core implementation the I/O overheads associated

with accessing data on the storage system can be significant.

In Algorithm 1, the main computational tasks are the

multiplication of a sparse matrix with a dense block of vectors

(SpMM), ĤΨ , and the inner products between long dense

vector blocks, in particular Y TY and Y T ĤY . In this section,

we describe how these tasks are carried out in parallel.

A. Load-balanced Problem Decomposition

The original ordering of the many-body basis states as

they are constructed from the single-particle states leads to

an uneven distribution of the non-zero matrix elements in Ĥ .

Note that in SpMM computations, the load on a compute node

is proportional to the number of non-zero matrix elements

assigned to that node. Therefore, with an uneven distribution

of the non-zeros in Ĥ , achieving a load balanced computation

would be a challenging task. An even distribution of non-zeros

is accomplished in MFDn by an appropriate matrix reordering

through row/column permutation. As a result, an even 1D

partitioning of the rows of Ĥ among compute nodes would

yield a load balanced computation. However, as mentioned

above, the nuclear Hamiltonian matrix is symmetric. Since

the storage space is at premium, we store only half of the Ĥ
matrix. As depicted in the left subfigure of Figure 2(a), in a

1D decomposition of the lower triangular part of Ĥ , the load

assigned to the first compute node would be significantly less

compared to the load assigned to the last node. Therefore,

for an n × n matrix Ĥ , we store the first n/2 subdiagonals

in the lower triangular part, and the superdiagonals n/2 + 1
through n in the upper triangular part. In this case, an even 1D

partitioning of the rows of Ĥ gives a good load balance among

the compute nodes, as shown in the right of Figure 2(a).

B. Storage and Data Access

In our out-of-core implementation, once the nuclear Hamil-

tonian is constructed, it is stored on the permanent storage

system throughout the entire calculation. Since the size of a

row partition assigned to a compute node is generally too large

to fit into that node’s memory, each row partition is further

divided into several smaller blocks. Each matrix block (except

for the end-cases) is a sparse square matrix of dimensions b×b,
where b << n. The matrix block on the ith block row and

the jth block column is labeled as Ĥij . The total number of

matrix blocks is (n2
b+nb)/2, where nb = ⌈n/b⌉. Let [rsk, rek]

denote the range of the row indices of blocks assigned to the

compute node k for k = 1, 2, . . . , np, where np denotes the

total number of nodes. Each node stores this range information

for all other nodes for reasons that are described later.

We use the Compressed Sparse Column (CSC) format to

store the matrix blocks. Each block is stored in a separate

binary file on the permanent storage. The even distribution of

the non-zero matrix elements in Ĥ ensures that all files are

of approximately the same size and the computational cost

associated with processing a matrix block is also about the

same. (Except the diagonal blocks are twice smaller.)

The dense vector blocks Ψ and the result of the SpMM

ĤΨ are also partitioned into subvectors Ψi and ĤΨi for

i = 1, 2, . . . , nb, according to the partitioning of Ĥ into

blocks. Since the vectors are dense and the dimension of

Ĥ can be very large, the space required for storing Ψi and

ĤΨi subvectors can be significant. However, in MFDn only a

few lowest eigenvectors are needed, i.e., nev is on the order

of 10-15 eigenvectors. Therefore, the subvectors Ψi and ĤΨi

for i ∈ [rsk, rek] are stored on the local memory of the kth

compute node, which is the host node for these subvectors.

Figure 2(b) gives an overview of data accesses required for

processing a matrix block Ĥij on node p. Since only half of

the Hamiltonian is stored, there are two SpMM computations

associated with each matrix block: Ĥij × Ψj = ĤΨ ′

i , and the

transpose operation ĤT
ij×Ψi = ĤΨ ′

j . Before the computations

start, block Ĥij is brought into the node p’s memory from

the permanent storage system. The vector block Ψi is already

hosted locally by node p. The host of the vector block Ψj ,

node k, is found by locating the range where rsk ≤ j ≤ rek,

for 1 ≤ k ≤ np. Then Ψj is brought into the local memory by

communicating with the host node k, assuming p 6= k.

Figure 2(c) gives an overview of the SpMM computations

performed within a compute node, after all the input data

is brought to local memory. Processing a single Ĥij block

results in two intermediate output vector blocks that need to

be reduced to obtain the global result vectors ĤΨ . While ĤΨ ′

i

is reduced locally on node p, ĤΨ ′

j needs to be communicated

back to the host node k for reduction. Finally, the matrix block

Ĥij is discarded from the volatile memory to free up space

for processing the next block.

Once the SpMM computations are completed, the inner

products Y TY and Y T ĤY required for the Rayleigh quotient

estimations are computed in parallel. First, each compute node

performs the inner products of the vector block partitions that

it hosts. The actual estimate can be obtained through an all-

reduce operation among all compute nodes.

C. Overlapping I/O and Communication with Computation

During the SpMM computations, overheads associated with

data accesses can severely affect the overall efficiency of

the eigenvalue computations. The time required to read a

matrix block (which is of size several hundred MBs) from

the permanent storage system, and to communicate the dense

vector blocks from/to host nodes can be as much as the time

required to process a given matrix block, or even more in some

cases. Therefore, overlapping the I/O and communication

operations with SpMM computations is highly desirable.

The main idea here is to buffer (i.e., prefetch) the upcoming

matrix block(s) and the required input vector(s), while still

processing the current matrix block. In this way, as soon

as the processing the current matrix block is finished, the

processing can continue with the next block(s) without idling

in between. Furthermore, it turns out that the order in which

the matrix blocks are processed can have a significant effect. If

the compute node p processes the matrix blocks in a column-

major order, i.e., Ĥrsp,j , . . . , Ĥij , Ĥi+1,j , . . . , Ĥrep,j and then

continues with the j+1st column, the overall communication

overhead can be reduced significantly. This is because all

the matrix blocks in the jth column require the same input

subvectors Ψj , which need to be communicated from the

host node k. Also note that the intermediate results ĤΨ ′

j of

processing the matrix blocks in the jth column are all destined

to the same host node for reduction. Instead of sending all

intermediate results one by one and having them reduced on

node k, compute node p can perform the reductions on ĤΨ ′

j

subvectors locally, and communicate a single message to node

k, once it finishes processing the jth column.

IV. A DISTRIBUTED OUT-OF-CORE MIDDLEWARE WITH A

LINEAR ALGEBRA FRONTEND

In a recent work, we have started development of a gen-

eralized middleware for distributed out-of-core computation

and data analysis [7], which we call DOoC (Distributed Out-

of-Core). DOoC runs on top of DataCutter [8], which itself

is a distributed, coarse-grain dataflow middleware. We have

built our framework on top of DataCutter instead of directly

implementing using MPI (or any other low-level library that

enables distributed-memory programming), because the pro-

graming model of DataCutter naturally enables separation of

computation and data movements and provides an efficient

runtime system that orchestrates pipelined executions with

computation and communication overlapping.

Figure 3 depicts the architectural overview of our proposed

framework, which is composed of DOoC and LAF (Linear

Node

1

Node

2

Node

3

Node

4

Node

1

Node

2

Node

3

Node

4

Node

1

Node

2

(a) Load balanced 1D decomposition of the Hamilto-
nian matrix.

H

!"#$

!

!j

!i

!"#$
!j !i

(in memory)

Node 3

Communicate !j

from Node 2

Read Hij from
SSD storage

(b) IO and communication operations for processing
each matrix block.

Node 3

!"#$!j x = H!’i

SpMM(Hij,!j)
stored
locally

!i !"#
%
$ x = H!’j

SpMM(Hij
T,!i)

communicated
to Node 2

(c) SpMM computations within a
node.

Fig. 2. Distributed out-of-core SpMM.

Algebra Frontend). DOoC provides efficient execution of task

graphs with given input and output data dependencies, and

LAF acts as a frontend that translates basic linear algebra

primitives into global task graphs that can be executed by

DOoC. This work extends our previous work in three direc-

tions. First, in our earlier work task graphs and task codes were

manually generated by the application developer. Here, we

develop a customization of the framework for linear algebra

computations (i.e., LAF) which provides high-level interface to

application developer. Second, we present a complete eigen-

solver instead of a simplified repeated sparse-matrix vector

multiplication kernel. Last but not least, we strengthen the

implementation of DOoC by improving its global scheduler,

and making the storage layer more robust and proactive.

A. Distributed Out-of-Core (DOoC) Middleware

The Distributed Out-of-Core middleware is composed of

two parts: (i) a hierarchical scheduler responsible for ordering

and triggering the execution of tasks, and (ii) a storage service

responsible for managing the memory as a resource and

handling transfers of data, which is either the input for local

computational tasks or the output of them. Data transfer in

the context of a distributed out-of-core computation involves

reading from or writing to the permanent storage system, or

communicating with other compute nodes.

1) Global and Local Schedulers: Within the scheduler, the

application is represented as a set of tasks. Each task is

annotated with the set of data it needs (input data) and the

set of data it generates (output data). These annotations are

used to generate a partial ordering between the tasks (such as

the one presented in Figure 3). An efficient partial ordering

is achieved by the use of hash tables, where for each data

the mapping of which tasks use it as input and which tasks

produce it as output is kept.

Each individual task is sequentially executed on a single

computing node. One can draw similarities between our ap-

proach and other approaches that use directed acyclic graphs

(DAG) to model computational dependencies. In the classical

DAG scheduling [9], the complete task graph is generated

before scheduling. However, in our system the task graph

is generated dynamically on-the-fly, as done in DAGuE [10].

DAGuE is designed for in-core, dense linear algebra computa-

tions. Our system is designed for efficient, distributed memory,

out-of-core execution of general data-intensive applications.

The tasks are created on the global scheduler. The global

scheduler is responsible for assigning these tasks to the local

schedulers on compute nodes for processing, as well as

tracking the completions of those tasks. It assigns a task to

a local scheduler only when all the input data of the task have

been generated or will be generated as a result of executing

the tasks already assigned to that particular local scheduler.

Among all the compute nodes, the global scheduler picks

the node where most of the input data is already located in

memory for executing a task. This is a heuristic aimed at

minimizing the data movement required for starting to process

tasks. Alternatively, a task assignment can be forced to a

different node by the application programmer.

The local scheduler obtains regularly (default every 100 ms)

from the storage service the list of data that is available on the

local memory. Based on this information, the local scheduler

decides which tasks among those assigned to itself are ready

for execution. The scheduler triggers the execution of a ready

task as soon as a computation thread becomes idle. There are

as many computation threads as the number of cores on a

compute node. The output data from executing a task, which

will serve as the input data for a subsequent task, resides in

the compute node’s memory until it is consumed.

Another key responsibility of the local scheduler is to enable

the pipelined execution of computation, communication and

I/O. It achieves this task by sending prefetching requests to the

storage service. The local scheduler first queries the storage

service to learn the amount of memory space available for

prefetching. As long as there is space available and tasks

waiting to be executed, local scheduler determines the data

to be prefetched by using the greedy algorithm presented in

Algorithm 2 to order tasks. This greedy algorithm orders the

tasks in the local scheduler’s list based on the amount of

additional input data that needs to be brought into the local

memory to make each task ready for execution. The task which

requires the least amount of additional input data is ordered

first, and the prefetching requests for its input data are issued.

Those input data are added to the list of available data, and the

algorithm continues to determine the next task for prefetching.

Please note that, data will be actually available after it has been

prefetched by the storage service. Prefetching is paused when

there is no more memory space available. The prefetched data

is consumed when ready tasks are executed. As soon as enough

LAF

DOoC

Compute Node - 3

Storage Service

Data

Chunks

Data

Chunks

Data

Chunks
SpMM

In

Data

Out

Data

In

Data

dot

In

Data

In

Data

Out

Data
Local Scheduler

Exec

Compute Node - 2

Storage Service

Data

Chunks

Data

Chunks

Data

Chunks
SpMM

In

Data

Out

Data

In

Data

dot

In

Data

In

Data

Out

Data
Local Scheduler

Exec

LOBPCG

End-User Code

!

SymSpMM(H, psi)
dot(phiT, phi)

...

LOBPCG.cpp

Primitive
Conversion

Compute Node - 1

Storage Service

Data

Chunks

Data

Chunks

Data

Chunks
SpMM

In

Data

Out

Data

In

Data

dot

In

Data

In

Data

Out

Data
Local Scheduler

Exec

Req Data

Global Task Graph Global Scheduler

Req Data

Req Data

Fig. 3. Schematic overview of our framework Distributed Out-of-Core (DOoC) with Linear Algebra Frontend (LAF).

memory space becomes available, prefetching is reinstantiated.

Algorithm 2: Task Ordering Algorithm.

AVAILDATA ← storage().getAvailData()
AVAILMEM ← storage().getAvailMem()
TASKS ← global().getSchedulableTasks()
OUTOFMEM ← False

PREFETCHLIST ← ∅
while not OUTOFMEM & not TASK.empty() do

for t ∈ TASKS do
TOFETCH ← input data(t) - AVAILDATA

costt ←
∑

d∈ToFetch size of (d)

t∗ = argmint∈Taskscostt
TOADD ← input data(t∗) - PREFETCHLIST

for d ∈ TOADD do
if size of (d) > AVAILMEM then

OUTOFMEM ← True

else
PREFETCHLIST ← PREFETCHLIST ∪ {d}
AVAILDATA ← AVAILDATA ∪ {d}
AVAILMEM ← AVAILMEM - size of(d)

TASKS ← TASKS − {t∗}

return PREFETCHLIST

2) Storage Service: The storage service is responsible

for managing the local memory, managing the data transfer

to/from the permanent storage system and handling the com-

munication between compute nodes.

When the storage service starts, it queries the permanent

storage system through its file system and makes a list of the

data stored there. This information is reported to the global

scheduler. In addition, the storage service provides functions

to declare new data objects and to destroy ones that are no

longer necessary. In DOoC, declaring a new data object does

not actually induce memory allocation, just the creation of

appropriate meta-data. The memory allocation is done when

the newly created data object is accessed for the first time.

The way DOoC handles an access to a data object differs

based on whether it is a read access or a write access. In a

read access, if the data object is currently not in the local

memory, it is being stored either on the permanent storage

system or is being hosted by another node. If the data is stored

on permanent storage system, it is simply read from there.

Otherwise, it needs to be communicated from the hosting

node. The storage service randomly queries other nodes until

it locates the one where the data object is stored. Once the data

is located, a hint is created to speedup the querying process

in subsequent accesses to the same data object.

Write access to a data object is only possible if the data

object resides in local memory. Notice that because the data

objects in DOoC are immutable, they are only written once.

Therefore there is no need for a complex coherency protocol.

All data access operations are performed asynchronously to

be able to process multiple requests simultaneously. However,

after a certain number of simultaneous requests (default: 50)

within a node, subsequent ones are queued.

A deallocation procedure is triggered when there is no

more memory available on a compute node. The input data

that are necessary for executing the tasks scheduled for that

compute node, as well as any data object that cannot be

reobtained are excluded from deallocation. A data object

cannot be reobtained, if it was created on the node itself.

Such data objects must be kept until they are written to the

permanent storage system or they are explicitly deallocated

by the application programmer. On the other hand, a data

object can be reobtained if it was read from the permanent

storage system, or communicated from another node. Such

data objects are eligible for deallocation along with remaining

data objects that do not fit into any of the categories above.

The storage service frees data objects eligible for deallocation

according to the Least Recently Used (LRU) policy.

B. Linear Algebra Frontend (LAF)

The Linear Algebra Frontend is a C++ library which works

with objects of different data types including dense and sparse

matrices, (dense) vectors, and scalars. Objects are persistent,

and can be partitioned into chunks and distributed in the

system. Each object is identified by a string that gives it a

unique name. Each object is considered immutable, similar

Primitives Operation

Primitives that creates Matrix

MM, (Sym)SpMM C = AB
addM C = A+B
axpyM C = aA+ b
randomM C = random()

Primitives that creates Vector

MV, (Sym)SpMV y = Ax
addV y = x+ w
axpyV y = ax+ b

Primitives that creates scalar

dot a =< x, y >

TABLE I
PRIMITIVES THAT ARE CURRENTLY AVAILABLE IN LAF. A, B AND C ARE

MATRICES, y, x AND w ARE VECTORS, AND a AND b ARE SCALARS.

to objects in functional programming. Hence it is generated

once and is never overwritten. New objects can be generated

from the stored data, and also as a result of computation using

provided primitives.

When an object is no longer needed, the associated memory

needs to be deallocated within the system. This is triggered

upon the destruction of the object in the frontend which can

be explicit or automatic when the program exits the scope an

object was declared in.

Currently supported primitives are listed in Table I. Al-

though not comprehensive, these operations are sufficient

to implement various useful numerical methods including

the Conjugate Gradients, LOBPCG, Lanczos, and Page-Rank

algorithms.

Some of these primitives (such as dot product, MM and

MV) require a reduction phase when the data are partitioned

into multiple chunks. The reduction operation can be imple-

mented using a static reduction tree. Since the summation

operation required for these reductions are commutative, it

does not matter in which order the different chunks are added

up. So the reduction is first performed locally on each node and

then globally on the destination node to reduce communication

overheads. In order to prevent the accumulation of intermedi-

ate results on a node (which may be very costly in terms of

memory space), local reduction tasks are implemented to listen

on scheduling events. When the number of intermediate results

associated with a reduction operation reaches a threshold

(default: 5), a local reduction task is dynamically created.

V. OUT-OF CORE EIGENSOLVER USING DOOC+LAF

Our out-of-core eigensolver is an implementation of the

LOBPCG algorithm given in Algorithm 1 using the lin-

ear algebra primitives of the DOoC+LAF framework. The

implementation is composed of two main parts: symmet-

ric SpMM computations, followed by two inner products.

Each matrix block Ĥij stored on the permanent storage

system essentially corresponds to a task, which we denote

by SymSpMM(i, j). The input data of SymSpMM(i, j) are Ψi

and Ψj subvectors. The 1D decomposition of the matrix Ĥ is

ensured by having the compute node p create the subvector

blocks Ψrsp , Ψrsp+1, . . . , Ψrep for the initial guess Ψ using the

DOoC+LAF primitive randomM. As mentioned above, the

global scheduler assigns each task to the compute node which

stores the most amount of input data required for that task.

Consequently, all tasks SymSpMM(i, j), where rsp ≤ i ≤ rep
and 1 ≤ j ≤ nb, would be scheduled to the compute node p,

essentially resulting in the load balanced 1D decomposition of

the SpMM operation as described in Section III-A.

As a result of executing the task SymSpMM(i, j) on node

p, two intermediate output vector blocks of ĤΨ ′

i and ĤΨ ′

j

are produced. ĤΨ ′

i is consumed by a local reduction task

denoted by addV(ĤΨi, ĤΨ
′

i) on node p. Similarly, ĤΨ ′

j is

consumed by the task addV(ĤΨj , ĤΨ
′

j). However, note that

ĤΨj is stored on node k such that rsk ≤ j ≤ rek. Assuming

that k 6= p, the intermediate result vectors ĤΨ ′

j first need

to be communicated to node k for the execution of the task

addV(ĤΨj , ĤΨ
′

j).

Lemma: Assume that on node p, the difference between the

sizes of the smallest and largest matrix blocks (as measured

by the space required to store a block in CSC format) is

less than the size of any vector block Ψi, for 1 ≤ i ≤
nb. Then Algorithm 2 orders the set of tasks on node p
{SymSpMM(i, j) | rsp ≤ i ≤ rep ∧ 1 ≤ j ≤ nb} such that

they are executed in a column-major order.

Proof: Without loss of generality, let SymSpMM(rsp, j) be

the first task executed on node p for some j. Then the sub-

vector Ψj is the only input data on the local memory of node

p, besides the locally stored subvectors Ψi for rsp ≤ i ≤ rep.

Additional input data required to execute other tasks associated

with the matrix blocks in the jth column is the matrix block

itself only. However, to execute a task corresponding to a

matrix block in a column c 6= j, both the matrix block and

the subvector Ψc would be needed. Hence, the tasks of the jth
column would be ordered by Algorithm 2 before the tasks in

any other column. This leads to a column-major processing of

matrix-blocks. �

As a result, our out-of-core implementation using the

DOoC+LAF framework is able to execute the computations

related to the solution of the eigenvalue problem in a way that

reduces the communication overheads, as discussed in Sec-

tion III-C. It is a natural result of the task ordering algorithm,

and the pipelined execution of computation, communication

and I/O operations in the DOoC+LAF framework. Since no

explicit effort is required to achieve this, a significant burden

on the application programmer is removed.

After the symmetric SpMM computations are completed,

two inner products of the form Y TY and Y T ĤY , where Y =
span{Ψ,R, P} and ĤY = span{ĤΨ, ĤR, ĤP}, need to be

performed. Vector blocks R and P , and consequently Y , are

also partitioned according to the partitioning of Ψ and ĤΨ .

Hence these inner products are performed on node k, for k =
1, 2, . . . , np, as a set of tasks denoted by dot(Yi, Yi) and

dot(Yi, ĤYi), where rsk ≤ i ≤ rek. The local inner products

are reduced on node 1. Then all computing nodes estimate the

Rayleigh quotients. Once the estimates for eigenvalues E and

eigenvectors Ψ are obtained, the computation continues with

the next iteration.

Nmax=7 Nmax=8

Matrix Dimension (n) 46.6× 106 159.9× 106

Nonzero matrix elements 28.1× 109 123.6× 109

Total matrix size 209 GB 920 GB

Block row/columns (nb) 43 87

Total number of matrix blocks 946 3828

Average size of a matrix block 226 MB 246 MB

TABLE II
GENERAL INFORMATION ON THE TESTCASES

VI. PERFORMANCE EVALUATION

Experiments are run on an experimental SSD testbed on

the Carver cluster at NERSC. The testbed is composed of 48

nodes: 40 computational nodes and 8 I/O nodes. Each node

is equipped with two Intel Xeon X5550 processors clocked

at 2.67 GHz (4 cores each, hyper-threading is disabled) and

24 GB of DDR3 memory. Each node runs on Red Hat 5.5 with

Linux kernel 2.6.18-238.12.1.el5. Nodes are interconnected by

4X QDR InfiniBand technology, providing 32 Gb/s of point-

to-point bandwidth for high-performance message passing and

I/O. Our codes are compiled with GCC 4.5.2. The InfiniBand

interconnect is leveraged through the use of the MVAPICH 1.2

library. Each I/O node is equipped with two SSD cards, Viri-

dent tachIOn 400 GB, connected through the PCI-express bus.

Each card can deliver up to 1 GB/s sustained read bandwidth,

leading to a peak bandwidth of 2 GB/s per I/O node, and

16 GB/s maximum I/O bandwidth from the permanent storage

system to the compute nodes. I/O nodes are accessed by the

compute nodes through the Global Parallel File System [11].

Data is streamed from the I/O nodes to the compute nodes

using the 4X QDR InfiniBand interconnect as well.

Performance evaluation of our out-of-core implementation

is done with the nuclear structure computations of the 10B

(5 protons, 5 neutrons) nucleus. Two different truncation

parameters Nmax=7 and Nmax=8 are used, leading to two

eigenproblems of different sizes. Some key properties of these

testcases are summarized in Table II. Since storage space is

at premium for MFDn, matrix blocks are stored in single

precision CSC format.

A. Practical Considerations

The number of eigenpairs to be computed is fixed at

nev=8 for both test-cases. Table III gives detailed information

regarding the sizes of vector blocks involved when nev=8.

The size of the entire Ψ vector block, which is also stored

in single precision, is 1.5 GB and 5.1 GB for Nmax=7 and

Nmax=8 cases, respectively. In the LOBPCG algorithm, 6 such

vectors (Ψ,R, P from the previous iteration and ĤΨ, ĤR, ĤP
of the current iteration) need to be hosted on the volatile

memory available to compute nodes. The total space required

for this purpose would be 9 GB and 30.6 GB for Nmax=7

and Nmax=8 cases, respectively. On Carver, about 5 GB of

the 24 GB memory on a compute node is reserved for the

OS kernel, and the network file system (NFS). Since matrix

blocks to be read are on the order of hundreds of MBs, and

the messages to be communicated are on the order of tens

Nmax=7 Nmax=8

Number of eigenpairs (nev) 8 8

Size of a subvector block Ψi 34.7 MB 58.8 MB

Total size of the vector block Ψ 1.5 GB 5.1 GB

Total size of all 6 vector blocks 9 GB 30.6 GB

TABLE III
GENERAL INFORMATION ON THE VECTOR BLOCK SIZES

 !

 "!

 #!

 $!

 %!

 &!!

 &"!

 &#!

 &$!

 &%!

 ! '! &!! &'! "!!

()
*+
,-
 *
. /

(-
(
01
(/
 2
*
.(
0 3
4,
 5
67

-4)1 34, 218*,/27

,*/1 &
,*/1 "
,*/1 9
,*/1 #

iteration 2

Nodes 2, 3, 4

 SymSpMM dot

 SymSpMM dot
Node 1

load
imbalance

iteration 3

Fig. 4. Execution of the Nmax=7 case on 4 nodes with annotations.

of MBs (see the size of Ψi in Table III), significant space is

needed for the I/O and MPI buffers. As a result, only 15 GB

out of the 24 GB memory on a compute node can be used

by our out-of-core eigensolver. We choose to use at most

5 GB of the usable memory for hosting the vector blocks, and

the remaining memory for processing the tasks. Therefore the

minimum number of nodes required for Nmax=7 and Nmax=8

computations are 2 and 6, respectively.

We create 8 computation threads (one for each core), which

collectively work on the tasks assigned to a node. Since there

are lots of I/O and communication operations involved in our

out-of-core eigensolver, per iteration timings may fluctuate

during execution. Therefore in this section, we report the

timings from the first 5 iterations of the LOBPCG algorithm

for a reliable performance evaluation.

B. Performance Results for Nmax=7

The 10B nucleus, Nmax=7 testcase is executed using differ-

ent number of compute nodes that range from 2 to 22. The

amount of data read from the permanent storage system during

the execution when running on 4 nodes is shown in Figure 4. It

gives important insights regarding the execution of the out-of-

core eigensolver. While the amount of data read is increasing,

the eigensolver is in the SpMM phase, and during the plateaus

it is doing the inner products required for the Rayleigh quotient

estimations. As expected, the out-of-core eigensolver spends

most of the time doing SpMM computations.

Moreover, Figure 4 reveals that the computational load for

SpMM is fairly well-balanced among the 4 compute nodes.

While nodes 2, 3 and 4 finish their SpMM computations at

about the same time, node 1 finishes its shortly before them.

This is because there are 43 rows of blocks for the Nmax=7

case. Node 1 is responsible for 10 of those rows, while other

nodes are responsible for 11 rows. Therefore node 1 has

slightly less work to do.

Table IV presents for different number of nodes a break-

down of the execution time for the first 5 iterations of the

Nmax=7 case into 4 parts: tDAG−build is the time spent for

building the task graph, tDAG−exec is the time spent for

dynamically determining the order of task execution, tIO is

the maximum I/O time spent by a compute node for reading

matrix blocks from the SSD-based storage system, and tcomp

is the maximum amount of time spent by a computation thread

for SpMM as well as inner product computations. The total

execution time is given by ttotal. To compute the efficiency

of an execution, we take the performance on 2 nodes as

the base case with an efficiency of 1.0 (note that 2 is the

minimum number of nodes required for the Nmax=7 case).

Then for example, the efficiency on 5 nodes is computed

by the formula
2∗ttotal(2)
5∗ttotal(5)

. What is missing from this table

is how much time is spent for communication operations. The

DOoC+LAF framework is still under development and this is

a functionality which is currently not available. In order to

give an idea about the load on the interconnection network,

we report the total number of messages communicated during

execution, nmessages, and the total communication volume

Vcomm in the last 2 rows of Table IV.

As seen in Table IV, the building and traversal of the task

graph (tDAG−build + tDAG−exec) corresponds to only a few

percent of ttotal despite the scheduler handles about 30,000

tasks (O(iter × n2
b)). This shows that the overheads incurred

by the DOoC+LAF runtime environment is negligible for the

Nmax=7 case. On the other hand, the total execution time is

much less than the time spent in I/O and computation (tIO +
tcomp) together, while going from 2 to 5 nodes. This shows

that the DOoC+LAF runtime environment overlaps I/O and

computation efficiently.

A close examination of tcomp and tIO values going from

2 nodes to 11 or 22 nodes reveals that tcomp scales almost

linearly, while tIO scales super-linearly with increasing node

counts. In fact, at 22 nodes I/O operations take only 13

seconds. This is not surprising given that the total amount

of usable memory with 22 nodes (330 GB) is enough to store

all of the matrix blocks together with all 6 vector blocks in

local memory: the matrix is read only once.

However, on 11 and 22 nodes, the fact that ttotal is greater

than tIO + tcomp points to the presence of an important

overhead. We suspect that this overhead is due to the commu-

nications associated with bringing the input vector blocks to

the local memory and sending the intermediate output vector

blocks back. The amount of communication volume generated

by the algorithm with the 1D partitioning of the matrix is

in O(nev × n × np), where n is the matrix dimension and

np is the number of compute nodes. This is because in a

1D decomposition of the symmetric Hamiltonian matrix, each

node needs to access about half of the Ψ vector, and generates

output vectors spanning the same fraction of ĤΨ during the

SpMM computations. nmessages and Vcomm values reported

in Table IV confirm this analysis.

C. Performance Results for Nmax=8

The DOoC+LAF runtime environment generates a detailed

log file on each compute node for all the steps it takes during

#nodes 2 3 4 5 11 22

tDAG−build (s) .1 .1 .1 .1 .1 .2

tDAG−exec (s) 4 4 4 4 3 3

tIO (s) 577 394 280 230 73 13

tcomp (s) 511 352 264 218 98 54

ttotal (s) 606 424 325 286 185 191

efficiency 1.0 .95 .93 .85 .60 .29

nmessages 444 648 912 1146 2550 5124

Vcomm (GB) 13 20 27 33 74 149

TABLE IV
BREAK-DOWN OF THE EXECUTION TIME FOR THE FIRST 5 ITERATIONS OF

THE Nmax=7 CASE USING DIFFERENT NUMBER OF COMPUTE NODES. THE

LAST 2 ROWS SHOW THE LOAD ON THE INTERCONNECTION NETWORK.

the execution of a code. Analysis of these log files can give

important insights. One way to analyze how our out-of-core

eigensolver performs is to look at the number of jobs in the

local scheduler’s queue versus execution time plot, as shown

in the top subfigure of Figure 5. Here we plot the first 3

iterations of the Nmax=8 case on 12 nodes. There are 87 rows

of matrix blocks in this calculation, therefore 3 nodes (nodes

1, 3 and 4) are responsible for an extra row of matrix blocks

compared to other compute nodes. This is reflected as a higher

peak at the start of an iteration for those 3 nodes. The rise of

the peak corresponds to the building and partitioning of the

task graph part. The percentage of this part is again negligible

compared to the total time per iteration. The fall of the peak

means that the task graph is shrinking, because tasks are being

executed. As seen in the plot, the peak falls at a constant slope

during the SpMM computations. This means that computation

and I/O operations are overlapped efficiently, and the SpMM

computations progress smoothly, without idling.

When using the DOoC+LAF framework, it is important

to keep track of the amount of memory available. Because

this memory is used to prefetch the data of the upcoming

tasks. Here, the available memory is used to buffer the

blocks of Ĥ from the file system and Ψi vectors from other

nodes. If the available memory is low, the prefetching is no

longer possible, the computation are sequentialized and the

overlapping of I/Os, computations and communications might

not be effective.

The bottom plot in Figure 5 shows the amount of available

memory as execution progresses. At the start of an iteration,

the local scheduler reserves memory space and issues prefetch-

ing requests for the initial batch of matrix blocks. This results

in a sharp drop in the amount of memory available. As tasks

associated with these matrix blocks are completed, the memory

space that becomes available is filled in further with other

matrix blocks. Once all the SpMM tasks are finished, we see a

sudden jump at the amount of memory space available. This is

because the inner product computations do not consume much

memory. The slight load imbalance caused due to the higher

number of tasks on 3 nodes, is reflected as a phase difference

in this plot. Nodes 1, 3 and 4 finish their SpMM computations

a little after other compute nodes, and the amount of memory

available makes a peak slightly later on these nodes.

Finally, in Table V for different number of nodes, we

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

Nb
 jo

b
in

 lo
ca

l q
ue

ue

time (in seconds)

node 1
node 2
node 3
node 4
node 5
node 6
node 7
node 8
node 9

node 10
node 11
node 12

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400

Am
ou

nt
 o

f n
on

-lo
ck

ed
 m

em
or

y
(in

 G
B)

time (in seconds)

node 1
node 2
node 3
node 4
node 5
node 6
node 7
node 8
node 9

node 10
node 11
node 12

Fig. 5. Amount of free memory available and jobs in the local scheduler
during an execution on 12 nodes.

#nodes 6 8 10 12 22 29

tDAG−build (s) .7 .7 .7 .7 .8 .9

tDAG−exec (s) 53 53 56 56 56 61

tIO (s) 879 631 528 473 242 263

tcomp (s) 936 701 580 521 270 277

ttotal (s) 1136 842 698 641 454 481

efficiency 1.0 1.0 .98 .89 .68 .49

nmessages 2700 3608 4516 5424 9964 13142

Vcomm (GB) 141 188 235 282 518 683

TABLE V
BREAK-DOWN OF THE EXECUTION TIME FOR THE FIRST 5 ITERATIONS OF

THE Nmax=8 CASE USING DIFFERENT NUMBER OF COMPUTE NODES. THE

LAST 2 ROWS SHOW THE LOAD ON THE INTERCONNECTION NETWORK.

present a break-down of the total execution time of Nmax=8

computations into different parts. Due to the increase in the

number of tasks per node, task graph building and traversal

take 5% to 10% of the total execution time. However, we still

see an efficient overlapping of I/O and computations, leading

to a good scaling up to large number of nodes. We achieve .68

parallel efficiency on 22 nodes and .49 parallel efficiency on

29 nodes (performance on 6 nodes is taken as the base case).

VII. CONCLUSIONS AND FUTURE WORK

To deal with the increasing complexity of scientific applica-

tions, researchers have been using larger clusters which lead to

new challenges for efficient usage of resources. In most data-

intensive computations, larger clusters are not only used to

solve problems faster, they are used because the problem size

makes the use of smaller systems infeasible due to physical

memory limitations. However, in large-scale data-intensive

scientific applications, communication overheads also increase

with the number of nodes. Hence such large clusters are hard

to use efficiently for these purposes.

We think that the emergence of high-performance non-

volatile storage devices presents a great opportunity. Dis-

tributed out-of-core algorithms running on these new devices

would enable running large problems on small to moderate

size clusters. However, developing an application that properly

exploits the out-of-core execution capabilities is a difficult

task. Therefore we introduced a middleware (DOoC) that

allows one to easily develop such applications by relying on

task-based decomposition and distributed immutable objects.

Furthermore, we have developed a linear algebra frontend

(LAF) that translates basic linear algebra primitives into

tasks that can be executed on our DOoC middleware. We

demonstrated the effectiveness of our distributed out-of-core

framework by implementing an out-of-core eigensolver.

However, this work is only the first step toward our goal.

Our initial results are encouraging, but not yet competitive

with hand-optimized codes. We plan to improve the perfor-

mance of our system in different and compatible ways. In order

to reduce the communication overheads which hurt the scal-

ability of our eigensolver, we are planning to develop better

heuristics which would take into account the communication

volume generated. Also the local scheduler can make better

decisions by being aware of the source of the data (file system

or network) as well as location of the data in memory (NUMA

awareness). Supporting more linear algebra primitives will also

lower the bar for the application scientists to use our proposed

framework.

REFERENCES

[1] P. Maris, J. P. Vary, P. Navratil, W. E. Ormand, H. Nam, and D. J. Dean,
“Origin of the anomalous long lifetime of 14c,” Phys. Rev. Lett., vol.
106, no. 202502, 2011.

[2] P. Maris, A. M. Shirokov, and J. P. Vary, “Ab initio nuclear structure
simulations: the speculative 14f nucleus,” Phys. rev. C, vol. 81, no.
021301, 2010.

[3] P. Sternberg, E. G. Ng, C. Yang, P. Maris, J. P. Vary, M. Sosonkina, and
H. V. Le, “Accelerating configuration interaction calculations for nuclear
structure,” in Proc. of SuperComputing, 2008.

[4] P. Maris, M. Sosonkina, J. P. Vary, E. G. Ng, and C. Yang, “Scaling of
ab-initio nuclear physics calculations on multicore computer architec-
tures,” Procedia CS, vol. 1, no. 1, pp. 97–106, 2010.

[5] B. V. Essen, R. Pearce, S. Ames, and M. Gokhale, “On the role of
NVRAM in data-intensive architectures: an evaluation,” in Proc. of

IPDPS, 2012.
[6] A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally

optimal block preconditioned conjugate gradient method,” SIAM Journal

on Scientific Computing, vol. 23, no. 2, pp. 517–541, 2001.
[7] Z. Zhou, E. Saule, H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, J. P.

Vary, and U. V. Catalyurek, “An out-of-core dataflow middleware to
reduce the cost of large scale iterative solvers,” in Proc. of P2S2, 2012.

[8] M. D. Beynon, T. Kurc, U. V. Catalyurek, C. Chang, A. Sussman, and
J. Saltz, “Distributed processing of very large datasets with DataCutter,”
Parallel Computing, vol. 27, no. 11, pp. 1457–1478, Oct. 2001.

[9] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys,
vol. 31, no. 4, pp. 406–471, Dec. 1999.

[10] G. Bosilca, A. Bouteiller, A. Danalis, T. Hérault, P. Lemarinier, and
J. Dongarra, “DAGuE: A generic distributed DAG engine for high
performance computing,” Parallel Computing, vol. 38, no. 1-2, 2012.

[11] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proc. of FAST’02, 2002, pp. 231–244.

