
An Out-Of-Core Dataflow Middleware to Reduce
the Cost of Large Scale Iterative Solvers

Zheng Zhou∗‡, Erik Saule∗, Hasan Metin Aktulga§, Chao Yang§, Esmond G. Ng§,
Pieter Maris¶, James P. Vary¶ and Ümit V. Çatalyürek∗†

∗Dept. of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
†Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA

‡Wuhan University, P. R. China
§Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA

¶Department of Physics and Astronomy, Iowa State University Ames, IA 50011, USA

Abstract—The emergence of high performance computing
(HPC) platforms equipped with solid state drives (SSD) presents
an opportunity to dramatically increase the efficiency of out-
of-core numerical linear algebra computations. In this paper, we
explore the advantages and challenges associated with performing
sparse matrix vector multiplications (SpMV) on a small SSD
testbed. Such an endeavor requires programming abstractions
that ease implementation, while enabling an efficient usage of the
resources in the testbed. For this purpose, we adopt a task-based
out-of-core programming model on top of a dataflow middleware
based on the filter stream programming model. We compare
the performance of the resulting out-of-core iterated SpMV
procedure running on the SSD testbed to the performance of an
in-core implementation on a multi-core cluster for solving large-
scale eigenvalue problems. Preliminary experiments indicate that
the out-of-core implementation on the SSD testbed can compete
with an in-core implementation in terms of the total CPU-hour
cost. We conclude with some architectural design suggestions that
can enable numerical linear algebra computations in general to
be carried out with high efficiency on SSD-equipped platforms.

I. INTRODUCTION

Out-of-core algorithms for efficiently solving large systems
of linear equations or computing eigenvalues of large matrices
have been an attractive research topic, especially back in the
90’s. Toledo gives an excellent survey of such algorithms [1].
More recently, out-of-core direct solvers on a single node
have been investigated for symmetric [2], [3] or asymmetric
matrices [4], [5]. Distributed out-of-core computations was
considered to compute the steady state of Markov chains
using Jacobi or Conjugate Gradient algorithms [6]. However,
during the last decade there has been little to no interest in
parallel out-of-core numerical linear algebra algorithms. We
argue that the main reason has been the poor performance of
these algorithms due to the high latency and low bandwidth
associated with traditional disk-based storage systems (see
Fig. 1). As we move away from registers to cache, to DRAM
and finally to hard-disk drive (HDD), we see a steady increase
of roughly 3 orders of magnitude in storage capacity between
layers. Similarly, data access latencies increase at the rate of
an order of magnitude between layers until we hit the “latency
gap” between the DRAM and HDD. Typically, access latency
of DRAM is about 100 CPU cycles, whereas this latency can
grow up to 10,000 cycles or more when we want to access

Registers
O(kB), 1 cycle

Cache
O(MB), 10 cycles

Memory
O(GB), 100 cycles

LATENCY GAP

Disk
O(TB), 10,000 cycles

Fig. 1. The memory heirarchy. Storage capacities and access latency times
of various layers of the memory hierarchy. UVC: will we add BW to figure?

data stored on disk. Likewise, while the bandwidth between
DRAM and CPU is on the order of tens of GBs, the peak
bandwidth from HDD through the modern SATA interface is
on the order of hundreds of MBs only.

A common solution to the low bandwidths and high laten-
cies associated with disk-based storage systems has been the
usage of the distributed memory on today’s high performance
computing (HPC) platforms as storage space, and access data
on other nodes through the interconnection network. The
challenge of keeping track of which data is stored where
and how to access it puts a major burden on the application
programmer. While partitioned global address space (PGAS)
languages aim to reduce this burden [7], [8], in data-intensive
applications communication and synchronization overheads
due to the use of a large number of processors may be
prohibitive.

At this point, the emergence of clusters equipped with
non-volatile NAND-flash memory based solid state drives
(SSD) presents unique opportunities. Since SSDs have no
moving parts, they can achieve much higher I/O operations per
second (IOPS) and sustained read/write bandwidths compared
to HDDs. For example, the recently released OCZ Z-Drive R4
CloudServ Series PCIe-based flash storage card can achieve
up to 1.4 M IOPS and 6 GB/s sustained read/write bandwidth.
SSDs also consume less energy, have excellent mean time
between failure rates, and they can withstand extreme shock,
vibration and temperature ranges [9]. These factors make
SSDs attractive for a wide range of purposes, such as mobile

computing (i.e., cell phones), business solutions (i.e., database
applications), cloud computing (i.e., large data centers), mili-
tary industry (i.e., mission-critical applications), and HPC (i.e.,
data-intensive applications).

HPC platforms equipped with SSD storage (such as Gordon
at SDSC1) can help alleviate the communication and synchro-
nization overheads in large-scale data-intensive applications.In
most applications, the entire data-set does not have to be
simultaneously resident on the DRAM. Consequently, the
computation can be carried out on a relatively smaller number
of processors, or even less, due to possible reduction in some
duplicated data. This, in turn, could help reduce significant
overheads due to communication and synchronization on large
clusters.

In this paper, we investigate the advantages and challenges
associated with performing large-scale sparse matrix vector
multiplications (SpMV) on a relatively small testbed equipped
with flash-memory based SSD cards. SpMV is the key ingre-
dient of several algorithms for solving large systems of linear
equations and large-scale eigenvalue problems. Traditionally,
numerical linear algebra computations are not viewed as data-
intensive applications. However, in certain cases (such as the
ab initio nuclear structure calculations that we describe in
Section II), extremely large sparse matrices (with billions of
columns and trillions of non-zero elements) may arise and
sparse matrix computations are notorious for their demand
on memory system. For efficient utilization of the high-
performance storage system, we adopt a dataflow middleware,
named DataCutter [10], and develop a system called DOoC
(short for Distributed Out-of-Core) for executing DAGs of
tasks in an out-of-core fashion (see Section III). In Section V,
we study the the performance of DOoC for iterated SpMV
computations. We show that DOoC is able to exploit nearly
the peak performance of the SSD-equipped testbed. The results
are also compared to those of an in-core implementation
on a multi-core cluster for solving large-scale eigenvalue
problems. In Section VI, we try to identify the source of bot-
tlenecks affecting the performance of our out-of-core SpMV
implementation. Finally, we conclude with some architectural
design suggestions that can enable numerical linear algebra
computations in general to be carried out efficiently on SSD-
equipped platforms.

II. EIGENVALUE PROBLEM IN THE CONFIGURATION
INTERACTION MODEL

In this section, we describe the characteristics of the ma-
trices associated with nuclear structure calculations, and how
severe communication overheads arise in large-scale in-core
calculations.

The key problem to be solved in nuclear structure cal-
culations is the nuclear many-body Schrödinger’s equation
Hψ = Eψ, where ψ is a many-body wavefunction and H
is a nuclear many-body Hamiltonian. In the Configuration
Interaction approach (CI), both the wave functions ψ and

1http://www.sdsc.edu/supercomputing/gordon/

the Hamiltonian H are expanded in a finite basis of Slater
determinant of single-particle states (anti-symmetrized product
of single-particle states). Each element of this basis is referred
to as a many-body basis state. The representation of H under
this basis expansion is a sparse symmetric matrix Ĥ . Thus, in
CI calculations, the Schrödinger’s equation becomes a finite-
dimensional eigenvalue problem, where we seek the lowest
eigenvalues (energies) and their associated eigenvectors (wave
functions). The total number of many-body states or the
dimension of Ĥ in our adopted harmonic oscillator (HO) basis,
which we denote by D, is controlled by the number of particles
A, and the truncation parameter Nmax, which is the maximum
number of HO quanta above the minimum for that nucleus.
Higher Nmax values yield more accurate results for the same
nucleus, but at the expense of an exponential growth in the
dimensions of Ĥ . The sparsity of Ĥ is determined by the in-
teraction potential used. We use a 2-body interaction potential
for the calculations presented in this paper, which means an
entry Ĥij of the Hamiltonian will be non-zero only when the
number of different single-particle states corresponding to row
i and column j of Ĥ is at most 2.

MFDn (Many Fermion Dynamics for nuclear structure)
code [11], [12] developed by Vary et al. is currently one of
the most advanced codes used in ab initio nuclear structure
calculations. Due to the large dimension and the sparsity of
Ĥ , in MFDn the Lanczos algorithm is preferred. Applying a
k-step Lanczos procedure to the matrix Ĥ , where k < D,
and a random initial starting vector x yields an orthogonal
set of Lanczos vectors spanning the k+1 dimensional Krylov
subspace of x, Ĥx, Ĥ2x, . . . , Ĥkx. Projecting Ĥ into this
basis space allows us to obtain approximations to the desired
eigenvalues of Ĥ by solving a much smaller problem. The
appeal of the Lanczos method is in its computational simplic-
ity. The computational cost of the method is dominated by the
associated sparse matrix vector multiplications (SpMV) and
(to a smaller extent) orthonormalization of Lanczos vectors.

Table I gives problem characteristics for some calculations
on the atomic nucleus is 10B (5 protons, 5 neutrons) with
different truncation parameters Nmax and Mj (total magnetic
quantum number) values. Test cases were selected such that
each calculation is performed on the minimum number of
processors that matches the memory needs of the calcula-
tion. All computations are carried out on the Hopper super-
computer, which is a Cray XE6 machine at the National
Energy Research Scientific Computing Center2 (NERSC).
Each compute node on Hopper contains 2 twelve-core AMD
“MagnyCours” processors (24 cores per node) with 32 GBs
of memory (slightly more than 1 GB of memory per core).
Hopper uses the Cray “Gemini” interconnect for internode
communication. The entire Hopper machine has over 150,000
cores.

In Table II, we present the performance details of running
MFDn on Hopper. As the dimension and the number of non-
zero elements of Ĥ increase, it becomes necessary to use tens

2http://www.nersc.gov

http://www.sdsc.edu/supercomputing/gordon/
http://www.nersc.gov

TABLE I
MATRIX DIMENSIONS D AND NUMBER OF NON-ZERO MATRIX ELEMENTS nnz OF THE HAMILTONIAN Ĥ ASSOCIATED WITH NUCLEAR STRUCTURE

CALCULATIONS OF 10B USING DIFFERENT PARAMETER PAIRS (Nmax ,Mj) AND THE NUMBER OF PROCESSORS np REQUIRED TO RUN EACH

EXPERIMENTS. ALSO SHOWN ARE THE AVERAGE SIZES OF THE LOCAL LANCZOS VECTORS vlocal AND LOCAL Ĥ MATRICES Ĥlocal .

Test Name (Nmax, Mj) D(Ĥ) nnz(Ĥ) np avg. size of vlocal avg. size of Ĥlocal

test276 (7,0) 4.66× 107 2.81× 1010 276 8.8 MB 880 MB
test1128 (8,1) 1.60× 108 1.24× 1011 1,128 13.6 MB 880 MB
test4560 (9,2) 4.82× 108 4.62× 1011 4,560 20.4 MB 800 MB
test18336 (10,3) 1.30× 109 1.51× 1012 18,336 27.2 MB 750 MB

TABLE II
PERFORMANCE OF 99 LANCZOS ITERATIONS DURING THE NUCLEAR

STRUCTURE CALCULATIONS OF 10B ON HOPPER USING MFDN
(VERSION13, BETA02), THE CURRENT RELEASE VERSION,

SINGLE-THREADED RUNS.

Stats test276 test1128 test4560 test18336
ttotal (sec) 244 543 759 1870

tcomm/ttotal as % 34% 60% 67% 86%
CPU cost per iter. (hours) 0.19 1.72 9.70 96.2

of thousands of cores so that the entire Ĥ matrix can fit into
the distributed memory. This brings significant communication
and synchronization overheads associated with the distribution
and summing up of Lanczos vectors during both SpMV and
orthogonalization phases, resulting in an inefficient utilization
of resources. At 18,336 cores, communication overhead during
Lanczos iterations is prohibitively high (86% of the total
execution time). This situation makes efficient calculations of
heavier nuclei out of reach, such as 14Carbon with Nmax=10
and Mj=0, where the amount of memory required to store the
Ĥ matrix together with the eigenvectors is estimated to take
up the entire 200 TBs of memory available on Hopper.

III. DOOC: A DISTRIBUTED DATA STORAGE AND
SCHEDULER WITH OUT-OF-CORE CAPABILITIES

We propose storing the Hamiltonian matrix on non-volatile
storages instead of storing it on the distributed memory of
nodes. Non-volatile storages are typically much larger than
the DRAM memory allowing to reduce the number of nodes
required to store the matrix. We expect that by using PCIe-
based high performance flash memory SSDs, we can obtain
significantly lower data access latencies compared to tradi-
tional non-volatile storage devices such as HDDs. Also the
high sustained read/write bandwidths of individual SSDs can
potentially provide enough aggregated I/O bandwidths using
an array of SSDs to reach valuable tradeoffs between execution
time and total CPU-hours used for a large-scale computation.

To demonstrate the feasibility of this approach, in this work,
we have designed and developed DOoC, a distributed-memory
task-based runtime system with data-dependency and out-of-
core capabilities. The overall architecture of our middleware is
shown on Figure 2. We build our system on top of DataCut-
ter [10], which is an easy to program dataflow middleware
that naturally supports heterogeneous systems. Two major
components of our system are distributed storage layer, and

hierarchical data-aware task scheduler. Below, we briefly
discuss DataCutter, and the two major components of DOoC.

A. DataCutter

DataCutter [10] sits on top of the operating systems of
the involved computational nodes and provides the dataflow
interface abstraction to the application through the use of MPI.
DataCutter implements computations as a set of components,
referred to as filters, that exchange data through logical
streams. A stream denotes a uni-directional data flow from
some filters (i.e., the producers) to others (i.e., the consumers).
Data flows along these streams in untyped data-buffers in
order to minimize various system overheads. A layout is a
filter ontology which describes the set of application tasks,
streams, and the connections required for the computation. In
the implementation of the filter-stream programming model,
the key job left to application developers is writing the filter
functions and determining the filter and stream layout. Even on
a heterogeneous cluster, DataCutter can hide all architecture-
specific details and provide a single data-structure interface.
A filter can be replicable, if it is stateless, allowing simple
data-parallelism that can be managed by the runtime system.
Similarly, the runtime system can easily provide task- and
pipelined-parallelism by appropriately scheduling computa-
tions, such as either running two independent tasks concur-
rently (task-parallelism), or running two dependent tasks on
different data items (pipe-lined parallelism).

B. Distributed data storage layer

A distributed-memory data storage layer allows any compu-
tational task (i.e., filter) to access data stored on any node. It
supports prefetching, automatic memory management and out-
of-core operations. It provides functionality similar to Global
Array [13], which provides a Partitioned Global Address Space
semantic to a physically distributed array and can be used in
an out-of-core mode using Disk Resident Arrays. However,
Global Array needs complicated coherency protocols, locks
and synchronizations to resolve concurrent write accesses. Our
technique relies on immutable arrays which alleviates the need
for a complex communication protocol.

In our current prototype, the storage subsystem exposes
the data to the filters as one dimensional arrays. A filter can
request the access to an interval of an array either using read
permission or write permission. In immutable object paradigm,
a given memory location can only be written once and can not
be read before being written. This removes race conditions and

Comp1 Comp2 Comp3 Comp4 Comp5

I/O filter

Ar1
Ar2

/scratch

File System
Ar12

Ar3

Node 2 Node kNode 1

Hierarchical Scheduler

LocalScheduler

GlobalScheduler

Ar1

Ar7

Ar3

Storage

Ar3

Ar1

Storage Storage

LocalSchedulerLocalScheduler

Fig. 2. DOoC architecture. The storage system is distributed on each node with complete peer-to-peer connections between them. Each local storage filter
uses an I/O filter to interact with the file system. The hierarchical scheduler is composed of a local scheduler on each node, controlled by a global scheduler
located on the first node.

the need for distributed memory coherency protocols (which
are major concerns in similar systems with mutable objects
such as Global Array [13]). Once a filter no longer needs an
interval it should release it. For read operations, the storage
subsystem guarantees that the data are available until the
interval is released. For write operations, the data become
available for being read by other filters only after the interval
is released.

Arrays can be of arbitrary size, but they are structured in
blocks. If one needs to access data that span across multiple
blocks, it is required to use one interval per block. The data
within a block are stored contiguously in memory ensuring
that once obtained it can be accessed as fast as possible. Of
course, one can easily build an abstraction that allows to access
memory independently of the block it is stored in, trading
performance for semantic simplicity.

The storage subsystem provides interface for prefetching
some intervals, create some new arrays, delete existing arrays
and obtain a map of which part of the arrays are currently
available in the storage subsystem. Notice that the imple-
mentation in DataCutter is achieved by making the storage
subsystem a specific filter and all filters that need to interact
with the storage have a bidirectional link to it. This allows all
the interactions with the storage layer to be asynchronous.

Internal protocol: The storage layer is implemented by
deploying a storage filter on each compute node of the
distributed system. The storage layer is implemented to be as
asynchronous as possible. When a request is received, either

the storage has all the information to answer it and it replies
immediately, or it logs the request and replies back when
all the relevant information becomes available. When a data
interval which is not contained in the storage is requested,
since global mapping (of which data is stored where) is not
replicated on each node but instead partitioned, the storage
asks the storage filter on a randomly selected compute node
for this interval. To avoid asking for an interval multiple times,
the storage keeps track of which interval it has requested from
other computing nodes.

The storage supports an out-of-core mode of operation. A
directory in the filesystem is used by the storage filter as
its scratch memory. Upon start of the system, the storage
looks for files in that directory and records the name of
the arrays as well as their sizes. All reading of the data
stored on the filesystem are performed implicitly: when an
interval of data, which is not in the memory, is requested
it is read from the filesystem. However, the write operations
are performed explicitly upon request of a filter. Interactions
with the filesystem (both read and write) are performed by
a separate I/O filter. The I/O filter is only connected to the
storage filter and allows the interactions with the file system
to be completely asynchronous. There should be as many
I/O filters as is necessary to efficiently use the parallelism
contained in the I/O subsystem of the machine (most likely,
the number of I/O controllers).

Eventually, the allocation of a block will exceed the amount
of memory available in the node (which is a parameter of

the storage subsystem) and will trigger a memory reclaiming
procedure. This is simply achieved by reference counting. The
accesses to a given block of an array by filters are counted so
that the storage can know whether a block is currently in use
or not. When reclaiming memory, the storage reclaims blocks
that are stored on the disk of any node and which are not
currently used according to the Least Recently Used policy.
Of course, explicit memory management can also be directly
provided by the programmer.

C. A hierarchical data-aware scheduler

DOoC features a hierarchical data-aware task scheduler
which efficiently distributes the computations to the computing
filters. In our prototype system, the hierarchy is composed of
two levels: global scheduler and local scheduler. At the coarse
level, global scheduler allocates tasks to the computing nodes
which have the capabilities to process them. At the fine level,
local scheduler decomposes the tasks to expose more paral-
lelism when necessary, and reorders the tasks to minimize the
cost of memory transfers. One can draw similarities between
our approach and other approaches that uses Directed Acyclic
Graphs (DAG) to model computational dependencies, such
as DAGuE [14] which targets in-core, dense linear algebra
computations. Our system is designed for efficient, distributed
memory, out-of-core execution of data-intensive applications.

The global scheduler is responsible for distributing the tasks
across the nodes. Its input is the list of computations to be
executed. Each computation takes some data as an input and
outputs some data. Each data is a complete array that is
(or will be) stored within the storage layer. The input and
output data information is used to derive a DAG of the tasks.
The global scheduler is responsible for sending parts of the
DAG to compute nodes which will process them. The global
scheduler currently uses the following simple, affinity-based,
heuristic to fulfill this responsibility. Tasks are sent to the
compute nodes which host most of the data required to process
them. Exposing the application as a DAG of tasks enables the
middleware to perform smart scheduling decisions which yield
a more efficient execution. (See Section IV for an example.)

To execute the computations efficiently, each compute node
has its own local scheduler which is responsible for ensuring
that computations are performed in a correct order and tasks
are completed as fast as possible. The local scheduler on
each node receives tasks from the global scheduler, and splits
them (if possible) to match the parallelism available on the
node. All tasks that do not have any unprocessed predecessors
are marked as ready. The local scheduler periodically queries
the state of the storage to know which data are available in
memory and which are not. When a computing filter is free,
a task which is ready and whose data input are available in
memory is sent to the computing filter. The local scheduler
makes sure that there are a given number of ready tasks whose
data are in memory by sending sufficient prefetch requests to
the storage layer.

One can certainly question the efficiency of the scheduler for
an arbitrary application. The theoretical problem the scheduler

has to solve is a generic variant of the caching problem.
This problem is NP-Hard and it is difficult to find a good
approximate solution in the worst case, even if the DAG is only
composed of chains [15]. However, the pathological case for
most policies do not appear in practice: they typically appear
only when the size of the task and their duration follow some
maliciously crafted sequence.

IV. A USE CASE SCENARIO: ITERATED SPARSE MATRIX
VECTOR MULTIPLICATION

We evaluate the quality of our out-of-core dataflow middle-
ware DOoC described above by implementing a distributed
sparse matrix vector multiplication (SpMV), y = Ax, which
is actually a key ingredient of several iterative algorithms in
sparse linear algebra (as is the case in MFDn, see Section II).
We describe in this section the details of the implementation
and the impact of DOoC on performance at an abstract level.

The A matrix is assumed to be too large to fit into the dis-
tributed memory of compute nodes. Therefore it is partitioned
into sub-matrices of a K ∗K square grid, such that each sub-
matrix is small enough to fit into the local memory available
to a compute node along with the necessary input and output
vectors. Each sub-matrix is labeled by its coordinates on the
grid, i.e., Au,v corresponds to the sub-matrix on the uth row
and vth column of the grid for 0 ≤ u, v ≤ K − 1. Each sub-
matrix is stored in a separate file in binary Compressed Row
Storage (CRS) format. The iterated SpMV process is seeded
with an initial x vector which is partitioned accordingly to
the row partitioning of the A matrix, that is to say into K
parts. The initial vector x0 is stored as sub-vectors x0u for
0 ≤ u ≤ K − 1 in a distributed fashion.

The SpMV is executed by first generating intermediate
results: xiu,v = Au,v∗xi−1

u . Then the output vector is generated
by summing intermediate results: xiu =

∑
v x

i
u,v . Depending

on the degree of parallelism available on a node (i.e., the
number of threads), local schedulers can decide to execute
the multiply and sum operations assigned to them in parallel
by partitioning the output vector. The list of operations for the
first two iterations with a 3×3 partitioning of the A matrix is
presented in Figure 3: 9 sub-matrix sub-vector multiplications
and 6 sub-vector additions are necessary at each iteration.
Dependencies between these operations are shown in Figure 4.

Using the DOoC middleware has several benefits. An easy
way to program the iterated SpMV procedure using MPI
is to perform the computation one iteration at a time, and
perform all iterations identically. Assume that computations
are performed using 3 nodes and node i stores the sub-matrices
A1,i, A2,i and A3,i on its file system. If a node can keep
only one sub-matrix at a time on its main memory, then a
typical MPI programmer would reach the execution plan laid
out in Figure 5(a). Such an execution performs 6 matrix load
operations (3 per iteration), 6 matrix vector multiply operations
(3 per iteration) and 2 vector sum operations (1 per iteration)
on each node with little synchronization.

However, in a context where loading the matrix into the
memory is an expensive operation, one wants to reduce the

• x10,0 = A0,0 ∗ x00
• x10,1 = A0,1 ∗ x00
• x10,2 = A0,2 ∗ x00
• x11,0 = A1,0 ∗ x01
• x11,1 = A1,1 ∗ x01
• x11,2 = A1,2 ∗ x01
• x12,0 = A2,0 ∗ x02
• x12,1 = A2,1 ∗ x02
• x12,2 = A2,2 ∗ x02
• x10 = x10,0+x

1
1,0+x

1
2,0

• x11 = x10,1+x
1
1,1+x

1
2,1

• x12 = x10,2+x
1
1,2+x

1
2,2

• x20,0 = A0,0 ∗ x10
• x20,1 = A0,1 ∗ x10
• x20,2 = A0,2 ∗ x10
• x21,0 = A1,0 ∗ x11
• x21,1 = A1,1 ∗ x11
• x21,2 = A1,2 ∗ x11
• x22,0 = A2,0 ∗ x12
• x22,1 = A2,1 ∗ x12
• x22,2 = A2,2 ∗ x12
• x20 = x20,0+x

2
1,0+x

2
2,0

• x21 = x20,1+x
2
1,1+x

2
2,1

• x22 = x20,2+x
2
1,2+x

2
2,2

Fig. 3. Commands emitted for the first two iterations of the sparse matrix
vector multiply operation.

x12

x11

x10

x10,0(A0,0)

x10,1(A0,1)

x10,2(A0,2)

x11,0(A1,0)

x11,1(A1,1)

x11,2(A1,2)

x12,0(A2,0)

x12,1(A2,1)

x12,2(A2,2)

x20,0(A0,0)

x20,1(A0,1)

x20,2(A0,2)

x21,0(A1,0)

x21,1(A1,1)

x21,2(A1,2)

x22,0(A2,0)

x22,1(A2,1)

x22,2(A2,2)

x20

x21

x22

Fig. 4. Dependencies between the operations of Figure 3. Commands are
abbreviated using the output vector name. The matrix blocks necessary for
an operation are indicated between parentheses.

number of matrix load operations. This can be achieved by a
simple reordering of the operations as depicted in Figure 5(b).
The first iteration is performed similarly, but the second
iteration is performed backwards. In this way, the intermediate
result vectors x2u,2 are computed directly after the x1u,2’s. Since
the sub-matrices Au,2 are already in the memory, the number
of matrix loads is reduced by 1 for the second iteration. Notice
that the same scheme could be used for subsequent iterations.
Swapping the order of traversal for each iteration leads to
a cost of 3 matrix loads for the first iteration and 2 matrix
loads for each subsequent iteration. This plan is automatically
discovered and executed by the DOoC middleware without
requiring any effort or input from the application programmer.

In an out-of-core execution, it is desirable to overlap the
expensive loads from the file system with useful computations.
If there is enough memory to store multiple sub-matrices at
once, this overlapping can be achieved by loading the next
sub-matrix, while still processing a sub-matrix. As mentioned
in Section III, the local scheduler achieves this otherwise
tedious task transparently, by querying the storage layer to
learn about the amount of memory available, and issuing
prefetching requests.

Finally, note that the reduction tasks required to obtain

the result vector can be performed as soon as intermediate
results become available. One does not have to wait for all
SpMV tasks to be finished for reductions. DAG execution
model adopted by DOoC makes the interleaving of SpMV
and reduction tasks possible, potentially leading to better
performance.

V. EXPERIMENTS

Experiments are run on an experimental SSD testbed on
the Carver cluster at NERSC. The testbed is composed of 50
nodes: 40 computational nodes and 10 I/O nodes. Each node
is equipped with two Intel Xeon X5550 processors clocked
at 2.67 GHz (4 cores each, hyper-threading is disabled) and
24 GB of DDR3 memory. Each node runs on Red Hat 5.5 with
Linux kernel 2.6.18-238.12.1.el5. All nodes are interconnected
by 4X QDR InfiniBand technology, providing 32 Gb/s of
point-to-point bandwidth for high-performance message pass-
ing and I/O. DataCutter and the application are compiled with
GCC 4.5.2. The InfiniBand interconnect is leveraged through
the use of the MVAPICH 1.2 library.

Each I/O node is equipped with two SSD cards, Virident
tachIOn 400 GB, connected through the PCI-express bus. Each
card can deliver up to 1 GB/s sustained read bandwidth, lead-
ing to a peak bandwidth of 2 GB/s per I/O node. I/O nodes are
accessed by the compute nodes through a Global Parallel File
System (GPFS) [16]. The maximum throughput the storage
system can deliver is 20 GB/s. This is the performance we try
to achieve in our experiments. Data is streamed from the I/O
nodes to the requesting compute nodes using the 4X QDR
InfiniBand interconnect.

Each local storage of our distributed data storage layer
“owns” a part of the globally distributed data. Ideally, it would
be beneficial for scheduling purposes, if each local storage
had a dedicated file system to its own. Unfortunately, in our
testbed all compute nodes share the single GPFS. To separate
the data of each local storage, each compute node simply uses
a different directory in GPFS. However, we should note that
since the GPFS is shared, in some experiments this resulted
in some noticeable variation in read bandwidth observed by
individual compute nodes.

All runs are performed using a perfect square number of
nodes so that the overall matrix is easily partitioned into a
square grid. During the runs, each compute node is responsible
for a block of the matrix with 50 million rows and columns
which contains about 12.8 billion non-zero elements in total.
Each block of the matrix is further decomposed into 25 sub-
matrices, each of which actually constitutes the smallest unit
of data transferred from the I/O nodes to compute nodes for
processing. The size of a sub-matrix stored in binary CSR
format is about 4 GBs. These submatrices have been generated
randomly, such that the separation between two consecutive
nonzero entries on a row is uniformly distributed in the interval
[1 : 2d], where d is a parameter. d is chosen to yield a certain
number of total non-zero elements in a sub-matrix. Larger
matrices are built by replicating the matrix block generated
for a compute node for all nodes in an experiment.

L(A1,0) x11,0

L(A2,0) x12,0

L(A0,0) x10,0

L(A2,1) x12,1

L(A1,1) x11,1

L(A0,1) x10,1 L(A0,2) x10,2

L(A2,2) x12,2

L(A1,2) x11,2

x20,0L(A0,0)

x21,0L(A1,0)

x22,0L(A2,0)

x20,1L(A0,1)

x21,1L(A1,1)

x21,2L(A2,1)

L(A0,2) x20,2

L(A1,2) x21,2

L(A2,2) x22,2

x10

x11

x12 x22

time

P3

P2

P1 x20

x21

(a) Regular

x22,1

x21,1L(A1,1)

x20,1L(A0,1)

L(A2,1)

x20,0

x21,0

x22,0

x21

x20

x22x22,2

x21,2

x20,2

L(A2,0)

L(A1,0)

L(A0,0)

L(A1,0) x11,0

L(A2,0) x12,0

L(A0,0) x10,0 L(A0,2) x10,2

L(A2,2) x12,2

L(A1,2) x11,2

L(A2,1) x12,1

L(A1,1) x11,1

L(A0,1) x10,1x10

x12

time

P3

P2

P1

x11

(b) Back and forth

Fig. 5. Two Gantt charts of a scenario with three nodes. The tasks are denoted by the name of the output vector. Since loading the matrices into the memory
from disk is typically an expensive operation, they are denoted in bold.

For experiments reported in this section, we have cho-
sen d such that the total number of non-zeros in a ran-
domly generated matrix, and the number of non-zeros per
row/column approximately match those of real MFDn matrices
(see test1128 of Table II vs. the 9-node experiment of Table III,
and also test4560 vs. 36-node experiment). The performance of
an SpMV computation strongly depends on the structure of the
sparse matrix and we are aware of the fact that our randomly
generated matrices differ from real MFDn matrices in this
respect. However, in an out-of-core computation, the main
factor that determines the overall performance will be how
fast sub-matrices can be transferred from the file system to the
local memory of compute nodes. This transfer rate depends
on the size of the sub-matrices rather than their structures.
Therefore we believe that the performance results that we
obtain from randomly generated matrices in this section will be
representative of the behavior of DOoC on out-of-core MFDn
computations.

A. Performance Results

In Table III, we present performance results collected from
4 SpMV iterations using a simple task scheduling policy. Here,
all compute nodes perform their local SpMV’s first. Then
partial results are reduced on the first processor of each row,
and the next iteration starts. According to Table III, overall
performance increases almost linearly from 1 to 9 nodes, but
plateaus after 16 nodes at around 3.2 Gflop/s. We extracted
the bandwidth obtained by the filesystem I/O components
(“read BW” column) from the logs of the application. We
also present the fraction of the total runtime of the application
which is not spent reading from the file system. Figure 6 (a)
presents the runtime of the system relatively to the minimum
achievable time assuming I/O is the only bottleneck and the
peak bandwidth of 20GB/s is sustained.

In the 16-node experiment, the I/O components see a
bandwidth of 18.6 GB/s. This indicates that our DOoC based
out-of-core iterated SpMV implementation attains 93% of the
20 GB/s peak I/O bandwidth of SSD-testbed. However, 36%
of the time is not spent in filesystem I/O: the I/O operations

represent only 64% of the total runtime. This indicates that
I/O operations are handled efficiently in our implementation,
but a significant portion of the overall execution is spent in
inter-node synchronizations after SpMV.

The performance loss comes mainly from the two global
synchronization steps in a single iteration: one after the SpMV,
and another one after the reduction. Also, the network is not
used efficiently: all the intermediate results xti,j are sent to
the node that host Ai,0. In the next experiment, we remove
the synchronization after the SpMV iteration, and keep only
the synchronization between iterations (because a Lanczos
iteration contains a reorthogonalization step which requires a
global-synchronization). Also, note that each compute node is
responsible from a block of 5∗5 arrangement of sub-matrices.
At the end of a local SpMV, each node has 5 intermediate
result vectors for a row of sub-matrices. In the simple task
scheduling policy used above, all these intermediate vectors
were being sent to the node responsible for the reduction. In
this experiment, the reduction is instead first performed locally
by each node before communicating the results.

Table IV presents the performance results from that ex-
periment. Figure 6 (b) presents the time relative to optimal
I/O time. Notice that all the runs on 9 nodes and more
are now 17%-28% faster compared to the previous case.
Performance degradation on one node is expected, since the
local reduction causes one extra copy without bringing any
improvements to the network communication. On 36 nodes,
90% of the time is spent in filesystem I/O and the actual I/O
bandwidth is measured to be 18.5 GB/s. Only a small part
of the actual computations and inter-node communications
are not overlapped with filesystem I/O operations. The I/O
operations are still performed at 92% of peak bandwidth.
In all configuration, DOoC efficiently overlaps computation,
communication and filesystem I/O: more than 85% of the time
is spent in file system I/O.

B. Comparison to MFDn runs on Hopper

Finally, we compare the performance of our DOoC-based
out-of-core iterated SpMV implementation against the in-core

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 4 9 16 25 36

Ti
m

e
 r

e
la

ti
v
e
 t

o
 p

e
a
k

sy
st

e
m

 I
/O

 t
im

e

Number of nodes

I/O
non overlapped comp. and comm.

(a) Simple schedule

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 4 9 16 25 36

Ti
m

e
 r

e
la

ti
v
e
 t

o
 p

e
a
k

sy
st

e
m

 I
/O

 t
im

e

Number of nodes

I/O
non overlapped comp. and comm.

(b) Interleaved schedule

Fig. 6. Runtime of DOoC on iterated SpMV relative to minimum time required to acquire the data assuming peak 20GB/s

TABLE III
RESULTS ON THE SSD TESTBED FOR SIMPLE SCHEDULING POLICY.

matrix # non-zeros matrix total read non-overlapped
#nodes dimension (billions) size (TBs) time (s) GFlops/s bandwidth (GB/s) time

1 50 M 12.8 0.10 290 0.35 1.5 13%
4 100 M 51.2 0.39 330 1.24 5.7 19%
9 150 M 115 0.88 384 2.40 12.8 30%

16 200 M 205 1.56 509 3.22 18.7 36%
25 250 M 320 2.43 791 3.23 17.9 32%
36 300 M 460 3.50 1172 3.15 18.3 36%

TABLE IV
RESULTS ON THE SSD TESTBED WITH INTRA-ITERATION INTERLEAVING AND AGGREGATION OF RESULT PER NODE.

read non-overlapped CPU-hour cost
#nodes dimension #nnz size (TB) time (s) GFlops/s bandwidth (GB/s) time per iteration

1 50 M 12.8 T 0.10 293 0.35 1.4 0% 0.16
4 100 M 51.2 T 0.39 335 1.22 5.8 13% 0.74
9 150 M 115 T 0.88 336 2.74 12.7 11% 1.68

16 200 M 205 T 1.56 432 3.79 18.2 14% 3.84
25 250 M 320 T 2.43 644 3.97 17.8 8% 8.95
36 300 M 460 T 3.50 910 4.05 18.5 10% 18.20

MFDn runs on Hopper. The number of processing units used
in the out-of-core runs are on the order of tens of cores,
while typically thousands of cores are needed for in-core runs.
Therefore a comparison in terms of time-to-completion would
not be meaningful. Instead, we compare the two implemen-
tations in terms of the total CPU-hours burned during an
iteration, which is computed by multiplying the number of
cores used with the time spent for an iteration. As mentioned
above, two cases allow for a fair comparison: 9-node out-
of-core run vs. test1128, and 36-node out-of-core run vs.
test4560. Notice that our out-of-core code does not implement
the full Lanczos algorithm required for MFDn computations.
But SpMV computations account for the major part of the
computations in a Lanczos iteration. Therefore this comparison
allows us to assess the feasibility of running MFDn on SSD-
equipped clusters, instead of large-scale clusters like Hopper.

The CPU-hour cost of a single iteration on our experimental

SSD-testbed is presented in Table IV. The CPU-hour costs
of various MFDn computations were presented in Table II.
Figure 7 presents a comparison of the data in these tables as
a line graph.

The 9-node run on the SSD-testbed has a cost of 1.68
CPU-hours per iteration. This is comparable to the test1128
case on Hopper which costs 1.72 CPU-hours per iteration.
However, the 36-node run costs 18.2 CPU-hours per iteration.
This is about 2 times worse than the comparable Hopper
run test4560, which costs 9.70 CPU-hours per iteration. As
mentioned above, after 16 nodes the I/O bandwidth on the
SSD testbed plateaus. Since the performance of our out-of-
core approach is clearly bounded by the bandwidth per node,
this result is not surprising. Therefore we have re-run the same
test-case (the matrix size of 3.50 TB) with 9 nodes where
we achieve the best I/O bandwidth per node ratio. As we
anticipated, the 9-node run took only slightly longer (1318 s vs.

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
e
ss

o
u
rc

e
 c

o
n
su

m
p

ti
o
n
 (

in
 C

P
U

-H
o
u
r/

it
e
ra

ti
o
n
)

Matrix Size (in TB)

DOoC (Table IV)
MFDn (Table II)

DOoC (Section V.A)

Fig. 7. CPU-hour costs of a single iteration on the SSD-testbed vs. MFDn
runs on Hopper.

1172 s) and achieved a sustained I/O bandwidth of 12.5 GB/s.
But the clear advantage of the 9-node run using the 3.50 TB
matrix case is the cost per iteration, which is only 6.59 CPU-
hours. This is significantly (32%) less than the cost of a
Lanczos iteration on Hopper for test4560, and it is marked
as a star in Figure 7.

VI. DISCUSSION AND FUTURE WORK

The results obtained in Sect. V-B are very encouraging.
Nevertheless, we believe that the I/O node, compute node
separation in the experimental SSD-testbed is prone to some
bottlenecks. First of all, the compute nodes need to go through
the interconnection network to access data stored on the
SSD cards. In a data-intensive application which deals with
large amounts of data, the interconnection network may easily
become the bottleneck. Heavy data transfers from the storage
system might encumber the network for other traffic such as
the communication between the computational nodes (i.e. the
communication of the input/output vectors during SpMV). In
this study, we were the sole users of the experimental testbed,
but in practice there would be several applications running
on a cluster at the same time. In such a case, accesses from
multiple applications to the same I/O nodes might cause severe
contentions. A final potential bottleneck is the GPFS which
manages the interaction between the I/O nodes and compute
nodes. GPFS does not allow manual tuning of parameters
critical to I/O performance (such as striping width and count).
Instead it dynamically alters these parameters to optimize the
application performance. However, GPFS is not developed
with today’s emerging non-volatile storage technologies and
the growing need for data-intensive applications, in mind.
Moreover, when multiple applications with different data ac-
cess characteristics access the same I/O node, GPFS’s dynamic
parameter adjustment algorithms may give sub-optimal results.

A. Different Software/Hardware Configurations

As future work, we are planning to try different filesystems
for accessing the data stored on the I/O nodes and compare
their performances against GPFS.

Also, we would like to investigate the effect of different
hardware configurations. For achieving the best performance
improvements in computationally heavy tasks, it is the de
facto standard to connect the GPU accelerators on the compute
nodes themselves, rather than hosting them on separate “ac-
celerator nodes”. By drawing an analogy from the GPU case,
we argue that for achieving the best performance with data-
intensive tasks on SSD-equipped platforms, SSD cards should
be positioned on the compute nodes themselves, as well. We
expect that such a design would solve most of the bottlenecks
mentioned above. So in this design, a dataflow middleware
such as DOoC presented in this work can seamlessly manage
the interaction with the distributed non-volatile storage system,
while increasing data locality for better performance.

B. Energy Efficiency

Power consumption of large-scale HPC platforms is another
major concern. Leaked current during idle CPU times and
the need to power up the entire DRAM constantly is a big
contributor to this power consumption. On the other hand,
SSDs are non-volatile, meaning that they do not need any
power to store data. So, during data-intensive computations on
SSD-equipped HPC platforms, power is needed only for the
data that resides on the DRAM. Combined with the potential
to reduce idle CPU times, SSD-equipped HPC platforms
might increase the energy efficiency for certain classes of
applications.

In this perspective, we are planning to investigate the SSD-
equipped clusters from an energy-efficiency point of view, too.
In the current configuration of the SSD-testbed we used, the
separation between I/O nodes and compute nodes prevents
shutting off unused I/O nodes to save energy. At all times, all
I/O nodes must be powered up. Furthermore, all I/O accesses
have to go through the InfiniBand network, which means huge
amounts of data must be transferred over long distances. This
is clearly a very costly operation in terms of energy usage. We
think that a study where the energy-efficiency of alternative
SSD-testbed configurations are compared against large-scale
clusters like Hopper could be very interesting.

The only impediment to wide-range adoption of SSD-
equipped HPC platforms could be the cost of high-end SSD
cards (which currently costs above $10,000). The growing
demand for high-performance non-volatile storage devices in
various markets should quickly reduce these costs, as has been
the case with most other computer technologies. Also, the
increased efficiency of data-intensive tasks (measured in terms
of CPU-hours and energy usage) that we expect from using
SSD-equipped clusters can help pay for itself in the long-run.

SSD-accelerated supercomputers are being investigated to
improve the efficiency of the graph traversal problem. In June
2011, according to the graph 500 benchmark3, the Leviathan
machine at LLNL is a single node machine equipped with
a 12TB SSD system from Fusion-IO was used to process a
graph of size 236 with the same throughput than Krakenm a

3http://www.graph500.org/

http://www.graph500.org/

machine with 6128 cores, using an in-memory algorithm on a
graph of size 234.

VII. CONCLUSIONS

To deal with the increasing complexity of scientific applica-
tions, researchers have been using larger number of processors
which lead to new challenges for efficient usage of the comput-
ing resources. The performance of certain applications such as
most computational biology problems, applications analyzing
huge flow of information from social media or financial
markets, as well as some computational physics and chemistry
applications dealing with sparse linear algebra problems is
memory-bound. As we move towards the exascale era, where
new architectures are anticipated to have less memory and less
network bandwidth per core, we believe that it will be a great
challenge for such applications to scale-up to the size of exa-
scale machines. At this point, we think that the emergence of
high-performance non-volatile storage devices presents a great
opportunity. Out-of-core algorithms running on these new
devices could decrease the CPU-hour and energy usage costs
for such applications. However, developing an application that
properly exploits the out-of-core execution capabilities is a
difficult task. Therefore we introduced DOoC, a middleware
that allows one to easily develop such applications by relying
on task-based decomposition and globally accessible arrays.
We demonstrated on a sparse linear algebra application that
DOoC is able to exploit most of the performance of the
system. It does not hinder the performance significantly. It
should allow a more efficient use of computing resources by
performing out-of-core operations on significantly less nodes
that are necessary to run the same application in-core.

However, this work is only the first step toward our goal.
We plan to demonstrate the gain in efficiency on a larger
cluster equipped with fast local storage. Developing more
linear algebra kernels will lower the bar for the application
scientists to use our proposed paradigm.

ACKNOWLEDGMENT

This work was supported in part by U.S. Department of
Energy Grant DE-FC02-09ER41582 (SciDAC/UNEDF), DE-
FG02-87ER40371, and DE-FC02-06ER2775, and by the US
NSF grants 0643969, 0904809 and 0904802, and 0904782.
Computational resources were provided by the National En-
ergy Research Supercomputer Center (NERSC), which is
supported by the Office of Science of the U.S. Department
of Energy.

REFERENCES

[1] S. Toledo, “A survey of out-of-core algorithms in numerical linear
algebra,” in External memory algorithms, J. M. Abello and J. S. Vitter,
Eds. Boston, MA, USA: American Mathematical Society, 1999, pp.
161–179.

[2] J. K. Reid and J. A. Scott, “An out-of-core sparse cholesky solver,” ACM
Trans. Math. Softw., vol. 36, no. 2, 2009.

[3] V. Rotkin and S. Toledo, “The design and implementation of a new
out-of-core sparse cholesky factorization method,” ACM Trans. Math.
Softw., vol. 30, no. 1, pp. 19–46, 2004.

[4] P. R. Amestoy, I. S. Duff, Y. Robert, F.-H. Rouet, and B. Ucar,
“On computing inverse entries of a sparse matrix in an out-of-core
environment,” CERFACS, Tech. Rep. TR/PA/10/59, 2010.

[5] J. A. Scott, “Scaling and pivoting in an out-of-core sparse direct solver,”
ACM Trans. Math. Softw., vol. 37, no. 2, 2010.

[6] W. J. Knottenbelt and P. G. Harrison, “Distributed disk-based solution
techniques for large markov models,” in Proc. of Numerical Solution of
Markov Chains, 1999.

[7] A. Krishnamurthy, K. E. Schauser, C. Scheiman, R. Wang, D. Culler,
and K. Yelick, “Evaluation of architectural support for global address-
based communication in large-scale parallel machines,” in Proceedings
of Architecture Support on Programming Languages and Operating
Systems, 1996.

[8] K. Datta, D. Bonachea, and K. Yelick, “Titanium performance and
potential: An npb experimental study,” in proc. of LCPC 2005, 2007,
pp. 200–214.

[9] G. Drossel, “Solid-state drives meet military storage security require-
ments,” Military Embedded Systems, Feb. 2007.

[10] M. D. Beynon, T. Kurc, U. V. Catalyurek, C. Chang, A. Sussman, and
J. Saltz, “Distributed processing of very large datasets with DataCutter,”
Parallel Computing, vol. 27, no. 11, pp. 1457–1478, Oct 2001.

[11] P. Sternberg, E. G. Ng, C. Yang, P. Maris, J. P. Vary, M. Sosonkina,
and H. V. Le, “Accelerating configuration interaction calculations for
nuclear structure,” in Proc. of the 2008 ACM/IEEE conference on
Supercomputing, ser. SC ’08, 2008.

[12] P. Maris, M. Sosonkina, J. P. Vary, E. G. Ng, and C. Yang, “Scaling of
ab-initio nuclear physics calculations on multicore computer architec-
tures,” Procedia CS, vol. 1, no. 1, pp. 97–106, 2010.

[13] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Apra, “Advances, applications and performance of the global arrays
shared memory programming toolkit,” International Journal of High
Performance Computing Applications, vol. 20, pp. 203–231, 2006.

[14] G. Bosilca, A. Bouteiller, A. Danalis, T. Hérault, P. Lemarinier, and
J. Dongarra, “DAGuE: A generic distributed DAG engine for high
performance computing,” Parallel Computing, vol. 38, no. 1-2, pp. 37–
51, 2012.

[15] V. Rehn-Sonigo, D. Trystram, F. Wagner, H. Xu, and G. Zhang, “Offline
scheduling of multi-threaded request streams on a caching server,” in
International Parallel and Distributed Processing Symposium, 2011, pp.
1167–1176.

[16] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proceedings of the Conference on File and
Storage Technologies, ser. FAST ’02. Berkeley, CA, USA: USENIX
Association, 2002, pp. 231–244.

	Introduction
	Eigenvalue Problem in the Configuration Interaction Model
	DOoC: A distributed data storage and scheduler with out-of-core capabilities
	DataCutter
	Distributed data storage layer
	A hierarchical data-aware scheduler

	A use case scenario: Iterated sparse matrix vector multiplication
	Experiments
	Performance Results
	Comparison to MFDn runs on Hopper

	Discussion and Future Work
	Different Software/Hardware Configurations
	Energy Efficiency

	Conclusions
	References

