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Abstract—The data one needs to cope to solve today’s
problems is large scale, so are the graphs and hypergraphs
used to model it. Today, we have BigData, big graphs, big
matrices, and in the future, they are expected to be bigger
and more complex. Many of today’s algorithms will be, and
some already are, expensive to run on large datasets. In this
work, we analyze a set of efficient techniques to make “big
data”, which is modeled as a hypergraph, smaller so that its
processing takes much less time. As an application use case,
we take the hypergraph partitioning problem, which has been
successfully used in many practical applications for various
purposes including parallelization of complex and irregular
applications, sparse matrix ordering, clustering, community
detection, query optimization, and improving cache locality
in shared-memory systems. We conduct several experiments to
show that our techniques greatly reduce the cost of the parti-
tioning process and preserve the partitioning quality. Although
we only measured their performance from the partitioning
point of view, we believe the proposed techniques will be
beneficial also for other applications using hypergraphs.

Keywords-Hypergraph sparsification; hypergraph partition-
ing; multi-level approach; identical nets; identical vertices;
Jaccard similarity.

I. INTRODUCTION

Using and analyzing large data for practical purposes has
always been a fundamental problem. But today, the data one
needs to cope with for a major scientific innovation or dis-
covery is immense, distributed, and unstructured. Although
recent advancements on computer hardware and storage
technologies allow us to gather and store large-scale data,
the data itself does not serve science and society. In addition
to its size, utilizing this data and finding meaningful patterns
inside it require complex algorithms and an immense amount
of computing power. Hence, techniques to make the data
smaller are always appreciated.

Hypergraphs emerged as a good alternative model for un-
structured data for many applications such as parallelization
of complex and irregular applications from various domains
including parallel scientific computing [1], [2], sparse matrix
reordering [3], [4], static and dynamic load balancing [5],
social network analysis [6], clustering and recommenda-
tion [7], and database design [8], [9], [10]. In many of these
applications, once the problem is modeled as a hypergraph,
the optimization problem in hand reduces to, sometimes

with little variations, the hypergraph partitioning problem.
Due to its wide area of applications, a considerable effort
has been put into providing tool support for hypergraph
partitioning (see hMeTiS [11], MLpart [12], Mondriaan [13],
Parkway [14], PaToH [15], UMPa [16] and Zoltan [17]).

There are two main criteria to evaluate the performance
of a tool: the quality of the partition with respect to a par-
titioning metric and the time required to partition the given
hypergraph. It has been repeatedly shown that minimizing
the partitioning metrics in the literature can significantly
increase the performance for many computations. However,
the relative importance of these criteria change with respect
to the application. If the partitioning time is bigger than
the gain in the computation time, it may be better to
trade quality for partitioning cost. But one needs to be
careful with this trade-off since worsening the quality can
also worsen the performance. For example, in a recent
study, Akbudak et al. studied different partitioning models
to optimize the cache locality for the sparse-matrix vector
multiplication kernel (SpMV) [18]. They reported that when
the 1D hypergraph model in [19] is used, the partitioning
overhead is amortized in 286 SpMV operations. For their
2D model, this number is 1110 but the SpMV performance
is 13% better than the 1D case at the same time. Hence,
the best model, or even the decision of using a partitioning
depends on the subsequent computation. Clearly, if the
partitioning process is made faster it will be much more
useful for many applications.

In the past, powerful parallel machines were only ac-
cessible by a small set of researchers. Today, a High
Performance Computing (HPC) system with thousands of
processors/cores is now almost an ordinary commodity.
However, when the number of processors increases to tens
of thousands, which is the case today, the data and task
distribution cost via partitioning also increases. Yet the
communication between processors and hence the quality
of the partition become more important with the increasing
size of the systems. Hence, reducing the partitioning cost,
especially for a larger system, is a crucial task.

In this work, we investigate hypergraph sparsification to
reduce the partitioning cost. At the high level, we model the
sparsification problem as finding the sets of identical (or very



similar) sets/nets/vertices in a hypergraph. Let S be such a
set containing distinct elements with identical connectivity
information. Hence, the same information is duplicated |S|
times in the hypergraph. Duplicate information causes two
main problems for a task: First, the same information is pro-
cessed several times, and this redundancy usually worsens
the efficiency of the task. Second, if the purpose of this task
is optimization, the redundant (or almost redundant) infor-
mation makes the search space larger and finding good (or
optimal) solutions harder. The action we take to remove such
information is using a single representative instead of all the
elements in S. The representative can be either an existing
element of S or can be artificially created according to a
criterion by using the properties of S’s elements.

In particular, here we investigate cheap hypergraph
sparsification heuristics: identical-net, identical-vertex, and
similar-net removal. Although identical-net removal has
been used in partitioning before [15], [20], [21], to the
best of our knowledge, there is no work which analyzes its
effectiveness in detail. Even though, some implementations
exist in widely-used partitioning tools such has PaToH and
Zoltan, it is disabled in PaToH, since on average, the existing
code does not amortize itself in PaToH’s recursive bisection
framework, and we show that Zoltan’s sort based approach
can be improved. Hence, the algorithms designed and an-
alyzed in this work can be used in other tools, including
PaToH and Zoltan, for faster partitioning. Furthermore, there
is no previous work which analyzes the effectiveness of the
similarity-based sparsification techniques we propose in this
paper for hypergraph based data.

We carefully design a set of experiments to analyze the
effectiveness of the proposed sparsification techniques, their
integration to the multi-level approach, and their efficient im-
plementation. For the experiments, we use a multi-level K-
way partitioning tool UMPa (pronounced as “Oompa”) [16]
and minimize the total communication volume which is
the classical partitioning objective used in practice. Our
experiments show that when the hypergraphs in the multi-
level framework are sparsified, one can obtain partitions with
similar quality in significantly less time.

The rest of the paper is organized as follows: Section II
gives the notation and background for hypergraph partition-
ing, and Section III describes the proposed sparsification
heuristics. The experimental results are presented in Sec-
tion IV. Section V concludes the paper.

II. BACKGROUND

A. Hypergraph partitioning

A hypergraph H= (V,N ) is defined as a set of vertices
V and a set of nets (hyperedges) N among those vertices.
A net n ∈ N is a subset of vertices and the vertices in n
are called its pins . The number of pins of a net is called the
size of it, and the degree of a vertex is equal to the number
of nets it is connected to. In this paper, we will use pins[n]

and nets[v] to represent the pin set of a net n and the set of
nets vertex v is connected to, respectively. Vertices can be
associated with weights, denoted with w[·], and nets can be
associated with costs, denoted with c[·]. The total number of
pins of the hypergraph is denoted by ρ =

∑
n∈N |pins[n]|.

A K-way partition of a hypergraph H is denoted as Π=
{V1,V2, . . . ,VK} where parts are pairwise disjoint (i.e., Vk∩
V` = ∅ for all 1 ≤ k < ` ≤ K), each part Vk is a nonempty
subset of V (i.e., Vk ⊆ V and Vk 6= ∅ for 1 ≤ k ≤ K),
union of K parts is equal to V (i.e.,

⋃K
k=1 Vk=V).

Let Wk denote the total vertex weight in Vk (i.e., Wk =∑
v∈Vkw[v]) and Wavg denote the weight of each part when

the total vertex weight is equally distributed (i.e., Wavg =
(
∑
v∈V w[v])/K). If each part Vk ∈ Π satisfies the balance

criterion

Wk ≤Wavg(1 + ε), for k = 1, 2, . . . ,K (1)

we say that Π is ε-balanced where ε represents the maximum
allowed imbalance ratio.

For a K-way partition Π, a net that has at least one pin
(vertex) in a part is said to connect that part. The number
of parts connected by a net n, i.e., connectivity, is denoted
as λn. A net n is said to be uncut (internal) if it connects
exactly one part (i.e., λn = 1), and cut (external), otherwise
(i.e., λn > 1).

There are various cutsize definitions [22] for hypergraph
partitioning. The one that will be used in this work, which
is shown to accurately model the total communication vol-
ume [1], is called the connectivity metric and defined as:

connH(Π) =
∑
n∈N

c[n](λn − 1) . (2)

In this metric, each cut net n of the hypergraphH contributes
c[n](λn − 1) to the cutsize. The hypergraph partitioning
problem can be defined as the task of finding a balanced
partition Π with K parts such that connH(Π) is minimized.
This problem is also NP-hard [22].

B. K-way partitioning and multi-level framework

Arguably, the multi-level approach [23] is the most suc-
cessful heuristic for the hypergraph partitioning problem.
Although, it has been first proposed for recursive-bisection
based graph partitioning, it also works well for hyper-
graphs [1], [11].

In the multi-level approach, a given hypergraph is coars-
ened to a much smaller one, a partition is obtained on
the smallest hypergraph, and that partition is projected to
the original hypergraph. These three phases will be called
the coarsening, initial partitioning, and uncoarsening phases,
respectively. The coarsening and uncoarsening phases have
multiple levels. In a coarsening level, similar vertices are
merged to make the hypergraph smaller. In the correspond-
ing uncoarsening level, the merged vertices are split, and the



Figure 1. A simple hypergraph with 6 nets and 5 vertices with the data structures used in the implementation.

partition of the coarser hypergraph is refined for the finer
one.

Most of the multi-level partitioning tools used in practice
are based on recursive bisection (RB). In RB, the multi-level
approach is used to partition a given hypergraph into two.
Each of these parts is further partitioned into two recursively
until K parts are obtained in total. Another approach is using
the direct K-way scheme with the multi-level framework,
which first coarsens the hypergraph, then directly obtains a
K-way partition of the smallest hypergraph in the initial
partitioning phase, and refines it while uncoarsening the
hypergraph. Hence, to partition a hypergraph, a K-way
partitioner has only one coarsening, one initial partitioning,
and one uncoarsening phase, where an RB-based partitioner
has K−1 of them. On the other hand, the initial partitioning
and uncoarsening phases are much cheaper for RB since
a K-way partitioner needs a K-way partition in the initial
partitioning scheme and a K-way refinement at each level of
the uncoarsening phase. Several works show that, the direct
K-way approach can be successfully used within a multi-
level framework [14], [16], [21] and it can produce higher
quality results. The only caveat is that the partitioning time
of a direct K-way approach increases more rapidly with
increasing K, in comparison to the RB-based partitioner.
In this work, we use a multi-level K-way partitioning tool
UMPa [16] and apply the proposed sparsification heuristics
not only to the original hypergraph but also to the coarser
hypergraphs obtained in the coarsening phase to further
reduce the execution time.

C. Data Structures for Hypergraphs
For efficient access, hypergraphs are usually stored and

utilized using two pairs of arrays which represent the hyper-
graph w.r.t. its nets (i.e., pins[]) and vertices (i.e., nets[]),
respectively.

1) xpids-pids pair gives the net view. The sizes of xpids
and pids are |N | + 1 and ρ, respectively. The array
pids stores the pin ids, and xpids[i] points to the start
location in pids for each net i. The last value of xpids
is equal to ρ. That is pids[xpids[i], . . . , xpids[i+1]−
1] contains the pin ids for net i.

2) xnids-nids pair gives the vertex view. The sizes
of xnids and nids are |V| + 1 and ρ, respectively.
The array nids stores the net ids, and xnids[i]

points to the start location in nids for each vertex
i. The last value of xnids is equal to ρ. That is
nids[xnids[i], . . . , xnids[i + 1] − 1] contains the net
ids for vertex i.

In multi-level partitioning context, these arrays are gener-
ated not only for the original hypergraph, but also for each
coarse hypergraph too. Hence, in any part of the partitioner,
accesses to pins[n] and nets[v] of a net n and a vertex v
can be handled very efficiently. A toy hypergraph and the
corresponding data structures are given in Figure 1.

III. SPARSIFICATION TECHNIQUES FOR HYPERGRAPHS

In this section, we materialize this sparsification approach
for the problem of scalable hypergraph partitioning. How-
ever, the heuristics and algorithms proposed here can be used
for other problems and applications.

A. Identical-Net Removal

Although we start with the description of the identical-net
removal heuristic, the techniques described in this subsection
are also valid for the other heuristics in this work. The
identicality of the nets depends on the set of vertices they
are connected to.

Definition 1: Two nets ni and nj are identical if pins[ni]
and pins[nj] are the same.

Given a hypergraph H = (V,N ), let {N1,N2, . . . ,Nκ}
be the partition of the net set N such that two nets in
N are in the same subset N`, 1 ≤ ` ≤ κ, if and
only if they are identical. The identical-net removal (INR)
process generates a smaller hypergraph H′=(V,N ′) where
N ′ = {n′1, n′2, . . . , n′κ} and each net n′` corresponds to
N` ⊆ N for 1 ≤ ` ≤ κ. The net n′` is also called
representative net of the nets in N`, and its pin set is defined
as

pins′[n′`]← pins[n] s.t. n ∈ N`, (3)

and the net set of each vertex v ∈ H′ contains the
representatives having v in their pin set.

In hypergraph partitioning context, if two nets ni and nj
are identical they are either both internal or both external
with respect to a partition Π. Furthermore, λni

= λnj
. Since

each net’s contribution to the connectivity-1 metric given



in (2) is proportional to its cost, the cost of a representative
n′` ∈ N ′ is computed as

c′[n′`]←
∑
n∈N`

c[n]. (4)

Let Π be a K-way partition of the vertex set V . The
contribution of net n′` ∈ N ′ to the cutsize connH′(Π)
is equal to the sum of contributions of the nets in N` to
connH(Π) since the connectivity λn′

`
of the representative

is equal to the connectivity of identical nets. That is, the
cutsize metrics, connH(Π) = connH′(Π), are equal. Hence,
an optimal partition Π for the sparsified hypergraph H′ is
also optimal for the original H.

Since INR is not expected to change the quality of the
final partition reducing the overhead of the net-removal
process is of utmost importance. The naive algorithm for
detecting and removing identical nets requires O(V 2) pair-
wise comparisons of the pin sets. The number of these
comparisons can be greatly reduced by using a simple
checksum function,

CS1(n) =
∑

i∈pins[n]

i, (5)

as shown by Algorithm 1, INRSRT. According to Defi-
nition 1, if two nets are identical their checksums must
be equal. Hence, the inequality of the checksums can be
used as a witness for two nets being non-identical. On the
other hand, such a witness is not sufficient to identify false-
positive net pairs who have the same checksum value but
are not identical.

INRSRT first computes the checksum values of all n ∈ N .
Second, it sorts the nets with respect to these values. And
third, it examines only the nets with the same csum value
at a time to see if they are identical. In INRSRT, during
the examination for a net n ∈ N , rep[n] is set to an
existing representative id (line 4) which is added to N ′ after
a previous examination. If such a representative does not
exist, at line 5, rep[n] will be equal to a new id, and a new
representative will be added to H′. The pin set and cost
of the representative are assigned according to (3) and (4),
respectively. This algorithm has been used in the literature
with similar motivations such as detecting identical vertices
in graphs [24] and identifying supervariables in a nested-
dissection based matrix reordering scheme [25]. It has also
been used to remove identical nets [20], [21].

We say that a collision exists when csum[ni] = csum[nj ]
for two non-identical nets ni and nj . If there are no
collisions, i.e., no false positives, line 3 of INRSRT will
be executed at most once for each net n ∈ N . Since
each identicality check for a net n costs O(|pins[n]|), the
total cost due to 3 is O(ρ). Hence, with a good checksum
function, which only creates a negligible amount of conflicts,
the total complexity is O(|V| log |V| + ρ). We evaluate the
effectiveness of a checksum function w.r.t. two criteria:

Algorithm 1: INRSRT

Data: H = (V,N ), c, pins
Output: H′ = (V,N ′), c′, pins′

N ′ ← ∅
for eachn ∈ N do

1 csum[n]← CS1(n)
σ ← the permutation of the nets in the increasing order of
csum values
prev ← −1
r ← 1
for i = 1 to |N | do

n← σ[i]
if prev 6= csum[n] then
R← {n′r}
r ← r + 1
prev ← csum[n]

else
rep[n]← r

2 for eachn′` ∈ R do
3 if pins[n′`] = pins[n] then
4 rep[n]← `

c′[n′r]← c′[n′r] + c[n]
break

c← rep[n]
5 if c = r then

R← R∪ {n′r}
N ′ ← N ′ ∪ {n′r}
c′[n′r]← c[n]
pins′[n′r]← pins[n]
r ← r + 1

H′ ← (V,N ′)

• False-positive cost: The number of pairwise compar-
isons (line 3) during the course of INRSRT for two
non-identical nets.

• Checksum occupancy: The average number of distinct
representatives having the same checksum value. When
no false-positives exist, the occupancy is one. Other-
wise, it is greater.

When all κ representatives have the same checksum value,
the occupancy is κ, and the false-positive cost is O(κ|N |).
Hence, the total worst case complexity isO(|V| log |V|+κρ).
Furthermore, if κ is alsoO(|N |), i.e., all nets are distinct and
have the same checksum value, the total cost of line 3 will
be huge. Fortunately, hypergraphs from real life are random
enough to avoid such pathological cases even with a simple
checksum function such as CS1. Still, it is better in practice
to reduce the number of collisions to make the identical-net
removal faster. Yet again, using a simple function is also a
good practice since the cost of the checksum computation
will be less which may be important for some applications.

As described above, INRSRT sorts the nets with respect
to their checksums. This operation can be considered as
using the witnesses to eliminate a huge amount of pairwise



Algorithm 2: INRMEM

Data: H = (V,N ), c, pins
Output: H′ = (V,N ′), c′, pins′

N ′ ← ∅
for i from 1 to q do

first[i] = −1
for i from 1 to |N | do

next[i] = −1
1 csum[i]← CS1(ni) mod q

r ← 1
for i from 1 to |N | do

c← first[csum]
if c = −1 then

first[csum[i]] = i
c← i

while c 6= i do
`← rep[nc]

2 if pins′[n′`] = pins[ni] then
c′[n′`]← c′[n′`] + c[ni]
break

else
if next[c] = −1 then

3 next[c] = i

4 c← next[c]

if c = i then
5 N ′ ← N ′ ∪ {n′r}

c′[n′r]← c[ni]
6 pins′[n′r]← pins[ni]

rep[ni]← r
r ← r + 1

H′ ← (V,N ′)

comparisons. However, when a good checksum function
with a small occupancy and false-positive cost is used, the
sorting operation can be the dominant factor considering the
complexity of the rest of the algorithm. In this work, we
propose to use another, hash-based, approach given in Algo-
rithm 2, INRMEM that trades memory for performance. The
data structure we use contains two arrays, first and next,
of sizes q and |N |, respectively, to store the representative
information. Here, q is the first prime number greater than
|N |. INRMEM first initializes the entries in first to −1
and starts to traverse the nets from n1 to n|N |. For each
net ni, by using the first array, it checks if there exist
a net nc s.t. c < i and CS1(nc) ≡ CS1(ni) (mod q). If
such a net exists the corresponding entry in first will be
c, and −1, otherwise. In the former case, starting from nc,
the algorithm initiates a set of consecutive checks (line 2) to
eliminate false positives for ni by following the links in the
next array (line 4). Similar to INRSRT, if ni is identical
to an existing representative n′` its contribution is added
to c′[n′`]. If no such representative exists, a new one is
created (line 5) and next is updated accordingly (line 3).
With a good checksum function, the total complexity of

INRMEM is O(ρ), since the check to distinguish false
positives is executed only once for most of the nets.

Partition Checksum
N1 = {n1, n2, n3} CS1(n′1) mod q = 4
N2 = {n4} CS1(n′2) mod q = 2
N3 = {n5, n6} CS1(n′3) mod q = 4

Figure 2. Identical-net removal via INRMEM on a toy hypergraph in
Figure 1 with 6 nets (i.e., q = 7). On the left, the 3 subsets of identical
nets and the corresponding representatives’ CS1 mod q values are given.
On the right, the first-next data structure at the end of the process is
shown.

Since the net information is stored in sets, the order of
the set elements should not affect the csum value, i.e., the
checksum function should be order independent. Having
collision reduction in mind, in this work, we investigate two
simple order-independent checksum functions:

CS2(n) =
∑

i∈pins[n]

i2, (6)

CS3(n) =
∑

i∈pins[n]

i3. (7)

These functions can be integrated to the process by modi-
fying only lines 1 of INRSRT and INRMEM, respectively.
Another checksum function we used is MurmurHash, a
fast but order dependent hash function with good collision
properties [26]. Since the function is order dependent, we
need to sort the pin set of each net in the hypergraph as a
prerequisite for INRSRT and INRMEM.

B. Identical-Vertex Removal

The connectivity information of hypergraphs can be
viewed from two different perspectives: nets and vertices.
Here we investigate a hypergraph sparsification technique
from the vertices’ point of view. The identicality definition
of the vertices is similar to that of the nets:

Definition 2: Two vertices vi and vj are identical if
nets[vi] and nets[vj] are the same.

Given a hypergraph H = (V,N ), let {V1,V2, . . . ,Vκ}
be the partition of the vertex set V such that two vertices
in V are in the same subset V`, 1 ≤ ` ≤ κ, if and
only if they are identical. The identical-vertex removal
process generates a smaller hypergraph H′=(V ′,N ) where
V ′ = {v′1, v′2, . . . , v′κ} and each vertex v′` ∈ V ′ corresponds
to a V` for 1 ≤ ` ≤ κ. The vertex v′` is also called a
representative vertex for vertices in V`. The net set and
weight of a representative v′` ∈ V ′ are defined as

nets′[v′`]← nets[v] s.t. v ∈ V`,

w′[v′`]←
∑
v∈V`

w[v].



After vertex removal, the pin set of each net n ∈ H′ contains
the representative vertices having n in their net set.

Unlike the case for identical-nets, the optimality of the
partitioning is not preserved for identical-vertex removal:
Let Π and Π′ be two optimal partitions for H and H′,
respectively. Then we have connH(Π) ≤ connH′(Π′). The
equality does not always hold due to the load balancing
constraint since the original hypergraphH is more relaxed in
terms of vertex moves, and some partitioning configurations
for H may not be feasible for H′ due to its larger vertex
weights. However, removing identical vertices also reduces
the search space for the refinement heuristics employed in
the uncoarsening phase. As the experiments will show, this
may lead the partitioner to a slightly better final partition.

We use the same approach in INRMEM to detect the
identical vertices in H and to create H′. Hence, the imple-
mentations of the identical-net and -vertex removal heuristics
are very similar except that the former one uses xpids-pids
whereas the latter uses xnids-nids for efficient checksum
computations. Although identical-vertex removal can be
used for any hypergraph, for partitioning, we only use it
on the original, finer one, since the coarser hypergraphs are
generated by a vertex matching process which is expected
to match the identical vertices with high probability.

C. Similar-Net Removal

The sparsification heuristics in the previous sections are
solely based on the concept of identicality and they only aim
to remove the redundancy from a large hypergraph. That
is, they are only effective when there exists identical nets
and/or vertices in the hypergraph. Here, we will describe the
similar-net removal (SNR) heuristic, which can be used even
when there is no redundancy. The heuristic can be consid-
ered as a lossy compression technique since it discards some
information while sparsifying the hypergraph. Although
discarding information usually worsen the quality of the
final analysis/partition, the partitioning process will be faster
since the hypergraph will be smaller. Such a quality/time
tradeoff will be very useful in practice, especially when the
performance of the application is not very sensitive against
small changes in partitioning quality. The effectiveness of
such a tradeoff depends on the discovery of a large amount
of information which can be more or less compensated by
a relatively smaller representative. Considering each net is
a set of pins, to attack the information discovery problem,
we use the well-known Jaccard similarity metric [27]:

Definition 3: The similarity between two nets ni and nj
is defined as

J(ni, nj) =
|pins[ni] ∩ pins[nj ]|
|pins[ni] ∪ pins[nj ]|

.

Since the number of nets is large, it is infeasible to
compute the similarity for each net pair. Instead, in this
work, we propose computing a footprint of each net by

using the minimum hash values, which is an efficient way to
approximate J(ni, nj) [28]. Let σ be a random permutation
of the integers from 1 to |V|, and minσ(n) is the first vertex
id of a net n ∈ N under the permutation σ. Then,

Pr[minσ(ni) = minσ(nj)] = J(ni, nj).

In other words, if x is a random variable s.t.

|x| =
{

1, if minσ(ni) = minσ(nj),
0, otherwise.

then x is an unbiased estimator of J(ni, nj). However,
its variance is too high. In practice, one can use multiple
independent permutations and get the average of the x values
to reduce the variance [28], [29]. However, this alone is not
sufficient for efficient hypergraph sparsification since it is
still based on pairwise similarity. In this work, to obtain a
more efficient solution, we use t permutations σ1 to σt and
first generate a minwise footprint of each net. The similarity
definition is then modified as follows:

Definition 4: Two nets ni and nj are similar if their
minwise footprints are the same, where the footprint of a
net n ∈ N is defined as

mf(n) = (minσ1
(n), . . . ,minσt

(n)) .

Following the definition, given a hypergraphH=(V,N ), the
similar-net heuristic constructs a partition {N1,N2, . . . ,Nκ}
of the net set N where two nets ni and nj are in the same
subset N` if and only if their footprints are identical. It then
generates a smaller hypergraph H′ = (V,N ′) where N ′ =
{n′1, n′2, . . . , n′κ} and each net n′` corresponds to N` ⊆ N
for 1 ≤ ` ≤ κ. The net n′` is also called a representative net
for nets in N` and its cost is defined as

c′[n′`]←
∑
n∈N`

c[n].

Since the connectivity of the nets in a subset N` can be
different, the representation of the connectivity information
removed from H will be lossy, and the amount of discarded
information depends on the assignment of pins′[n′`]. We
investigated three options:
• Large (LRG): pins′[n′`] is set to the pin set of the net

with the largest pin set in N`.
• Important (IMP): pins′[n′`] is set to the pin set of the

net n which maximizes∑
v∈pins[n]

 ∑
ni∈pins[v]∩N`

c[ni]

 .

This metric prioritizes the pins which are connected to
heavy nets with large c[.] values.

• Union (UNI): pins′[n′`] is set to
⋃
n∈N`

pins[n].
After computing the footprints, we use the same approach

in INRMEM to detect similar nets in H and to create H′.



We changed line 2 since we are now checking footprints
instead of pin sets. Among other minor modifications, we
also changed line 6 w.r.t. the option we use while generating
the pin set of the representatives.

D. Parallelization of Sparsification Techniques

Although they are much cheaper than partitioning, the ef-
ficiency of the proposed heuristics may need to be improved
by implementing them in parallel for other applications us-
ing hypergraphs. If this is the case, the first task, computation
of the checksum values is pleasingly parallel since each
thread can process a vertex/net without any concurrency
problem. As the experiments show, the sorting phase of
INRSRT dominates its execution time. Hence, it should be
the first target for parallelization. After that, the false positive
detection can be handled by multiple threads where each
thread analyzes a different set of nets/vertices sharing the
same hash value.

The proposed approach given in INRMEM is also
amenable for parallelization. Similar to INRSRT, the check-
sum computations can be naively parallelized. After that one
can do only a single pass on the nets to build a variant of
first/next data structure by simply storing the id of every
net in it without doing an equality check. Figure 3 shows this
variant after adding all the elements in the toy hypergraph
of Figure 3 when CS1 is used. Then starting from the non-

Figure 3. The first/next structure when all the elements are added.

negative entries in the first array, each thread can check
the false positives throughout the path by following the next
pointers till a null pointer (−1) is reached. Starting from the
one in Figure 3, after the false-positive checks, the same
structure in Figure 2 will be obtained.

For some applications with huge and dynamic data, the
heuristics may need to be executed several times and their
efficiency can be of interest. Hence, we believe that the
algorithmic details are important. However, in this work,
we do not experiment with parallel implementations of the
heuristics, since in the partitioning context, they are already
cheap and their effectiveness in practice is much more
important.

IV. EXPERIMENTAL RESULTS

For the experiments, we used a machine with a 2.27GHz
dual quad-core Intel Xeon (Bloomfield) CPU and 48GB
main memory. All the codes is implemented in C++ and

compiled with g++ version 4.5.2. To create our test in-
stances, we used a set of 28 matrices from the dataset of
10th DIMACS implementation challenge on graph parti-
tioning and graph clustering [30]. We have used the row-
net hypergraph representation of the matrices [1]. For all
the matrices in our set, the number of vertices (and nets) is
between 5 × 105 and 5 × 106, and the number of pins is
roughly between 3 × 106 and 10 × 107. The properties of
the hypergraphs we use are given in Table I.

Table I
HYPERGRAPHS USED IN THE EXPERIMENTS

#Vertices/ #Identical
Hypergraph Class #Nets Vertices #Pins
coPapersDBLP Citation 540,486 285,113 30,491,458
eu-2005 Cluster. 862,664 29,979 32,276,936
in-2004 Cluster. 1,382,908 122,984 27,182,946
delaunay n19 Delan. 524,288 0 3,145,646
delaunay n20 Delan. 1,048,576 0 6,291,372
delaunay n21 Delan. 2,097,152 0 12,582,816
hugetrace-00000 Frames 4,588,484 0 13,758,266
packing-500x100x100 Numer. 2,145,852 9 34,976,486
venturiLevel3 Numer. 4,026,819 0 16,108,474
channel-500x100x100 Numer. 4,802,000 0 85,362,744
rgg n 2 19 s0 Random 524,288 24,433 6,539,532
rgg n 2 20 s0 Random 1,048,576 46,228 13,783,240
rgg n 2 21 s0 Random 2,097,152 88,681 28,975,990
rgg n 2 22 s0 Random 4,194,304 169,311 60,718,396
ca2010 Redistr. 710,145 68,325 3,489,366
tx2010 Redistr. 914,231 116,811 4,456,272
af shell9 Sparse 504,855 403,884 17,084,020
audikw1 Sparse 943,695 629,360 76,708,152
ldoor Sparse 952,203 814,652 45,570,272
ecology2 Sparse 999,999 0 3,995,992
ecology1 Sparse 1,000,000 0 3,996,000
thermal2 Sparse 1,227,087 0 7,352,268
af shell10 Sparse 1,508,065 1,206,452 51,164,260
G3 circuit Sparse 1,585,478 0 6,075,348
kkt power Sparse 2,063,494 195,078 12,964,640
nlpkkt120 Sparse 3,542,400 0 93,303,392
belgium.osm Street 1,441,295 103 3,099,940
netherlands.osm Street 2,2166,88 61 4,882,476

In our first experiment, we compare the performance
of the algorithms and checksum functions described in
Section III. Figure 4 shows their execution times, false
positive costs, and occupancies normalized w.r.t. those of
INRSRT, when equipped with CS1. As expected, the check-
sum functions are performing slightly better in terms of
occupancy when used with INRSRT since the size of hash
range is not limited, i.e., the same with the range of a 32-
bit int. For INRMEM, this number is q, the first prime
number after |N | which is much smaller than the range
of an int in practice. We observed that except CS1,
all other functions have an occupancy value close to one
which is the optimal occupancy. Hence, an O(|N |) hash
range can be considered as good for practical performance.
Yet, it is not enough and a good checksum function is
necessary. As the figure shows, even a small increase on
the occupancy leads to a high false positive cost. This is
somehow expected because when there is more than one
representative sharing the same checksum value, all the
nets corresponding to a representative need to be compared



with other representatives. And when the cardinalities of
identical/similar-net sets are large, there can be a large false-
positive overhead. The experiments show that this overhead
is usually much smaller than the overhead of the sorting
phase of INR-SORT. Even for INRMEM equipped with CS1,
which has the highest false positive cost, the execution time
is much smaller than all the INRSRT variants. But INRMEM
equipped with CS2 is the best identical-net removal variant
according to our experiments, since the checksum function
CS2 is as good as CS3 and MurmurHash, and at the same
time, computationally cheaper. Hence, we will continue to
use it with INR-SORT for all our removal experiments in the
rest of this section.
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Figure 4. Performance of INRSRT and INRMEM with various checksum
functions. The results are normalized with that of INRSRT equipped with
CS1.

Table II
AVERAGE PARTITIONING TIMES (IN SECONDS) FOR BASE UMPA AND

ITS VARIANTS WITH IDENTICAL-NET (INR) AND -VERTEX
REMOVAL (IVR) HEURISTICS. THE LAST COLUMN SHOWS THE SPEEDUP

ON THE PARTITIONING TIME WHEN COMPARED WITH THE BASE

K Base UMPa INR INR+IVR Speedup
2 7.08 6.87 5.98 1.18
8 8.20 7.28 6.43 1.27

32 12.21 8.88 7.95 1.53
128 29.04 13.73 12.73 2.28
512 143.57 44.13 44.19 3.25

1,024 382.89 119.47 115.98 3.30

Table II shows the execution times of base UMPa and
its variants equipped with identical-net and -vertex removal
heuristics. Compared with the base, we obtain between
1.18–3.30 speedups while partitioning our hypergraphs to a
different number of parts. The speedup values are increasing
with K and this makes the heuristics more promising and
beneficial since the overhead of the partitioning problem is
usually an issue for large K values.

We observe that most of the improvement is obtained after

removing identical nets. As Table I shows, not all of our
hypergraphs contain identical vertices. But some have a lot:
for the graph ldoor, 85% of the vertices have some number
of identical copies in the graph. When this redundancy is
removed, we obtain an additional speedup of more than 2,
for K = 512, compared to UMPa equipped with INR. On
the other hand, 14/28 of the matrices in the test set have less
than 103 identical vertices hence, the overhead of executing
a vertex removal heuristic will only be a burden. Fortunately,
the heuristic is efficient and on average it does not increase
the overall time. When K is small, it even helps to reduce
the partitioning time.

Table III
AVERAGE PARTITIONING QUALITY (CUTSIZE) FOR BASE UMPA AND ITS
VARIANTS WITH IDENTICAL-NET (INR) AND -VERTEX REMOVAL (IVR)

HEURISTICS. THE LAST COLUMN SHOWS THE IMPROVEMENT ON THE
QUALITY METRIC WHEN COMPARED TO THE BASE

K Base UMPa INR INR+IVR Impr.
2 2,826.78 2,762.04 2,760.49 2.4%
8 15,183.28 15,026.15 14,915.84 1.8%

32 41,656.66 41,833.82 41,541.03 0.3%
128 102,209.71 101,865.58 101,690.31 0.5%
512 223,187.20 223,126.15 222,582.41 0.3%

1,024 321,706.01 321,728.75 319,865.46 0.6%

As Table III shows, the quality of the final partition
does not reduce when the proposed INR and IVR heuristics
are used. On the contrary, as described in Section III-B,
removing identical vertices reduces the search space and
hence, helps the refinement heuristics while minimizing
the partitioning objectives. As the experiments show, when
both heuristics are used, the partitioning quality is increased
within a small margin, 0.3%–2.4%, on average.

To measure the performance of the similar-net removal
heuristic, we compared the performance of INR+IVR with
and without SNR. Figure 5 shows the average partitioning
times and qualities of the version with SNR normalized w.r.t.
INR+IVR for K = {128, 512, 1024}. To analyze various
tradeoff configurations, we tried 4 different variants of SNR.
In Figures 5.(a) and Figures 5.(b), we used t = 4 and 8
permutations to generate the footprints. Since the footprints
are larger in the latter, the heuristic is more restricted, and
a smaller number of similar nets are removed. For each t
value, in addition to SNR, we used another variant SNR-P4
which restricts the removal process to only the nets with 4 or
more pins. In the figures, SNR-X and SNR-P4-X denote the
similar-net removal heuristics used with the representative
selection option X ∈ {LRG,IMP,UNI}.

When t = 8, we obtain around 10% additional reduction
on partitioning time with only 1%–2% reduction on quality.
On the other hand, when t = 4, since the heuristic is less
restricted, the improvements on the partitioning time are
larger: 22% and 15%, respectively, for the variants SNR-
LRG and SNR-P4-LRG. For these variants the reductions on
the partitioning quality are only 5% and 2%, respectively.
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Figure 5. Partitioning times and qualities when the similar-net removal heuristic is used in additino to UMPa equipped with the identical-net and -vertex
removal heuristics (INR+IVR). The results are normalized w.r.t. INR+IVR. In both figures, SNR-X is the proposed similar-net removal heuristic with the
representative selection option X. The SNR-P4-X variant processes only the nets with 4 or more pins.

Overall, by using all the proposed heuristics, we obtained
4.2 speedup w.r.t. base UMPa with 4% reduction on the
quality or a 3.9 speedup with only 2% quality reduction.

For the representative selection options, the experiments
do not reveal any significant evidence to differentiate LRG
and IMP. However, the results show that UNI is slightly
worse than the other two for exploiting the time/quality
tradeoff. This result is somehow expected since unifying pin
sets creates a representative net with a large number of pins
which can create a burden for the upcoming matching and
refinement heuristics during the multilevel scheme.

V. CONCLUSION AND FUTURE WORK

We investigated a set of lossless and lossy hypergraph
sparsification heuristics in the context of hypergraph par-
titioning, which is widely used in parallel computing for
load balancing and ordering. As the experiments show, the
heuristics are highly effective and efficient, and can be easily
integrated to the tools used in practice. The effectiveness of
the heuristics increases with the number of parts. This makes
them more promising and effective since the partitioning
overhead becomes an issue while parallelizing a computation
with today’s high performance machines which have a large
number of processors.

In addition to the proposed heuristics, there exist some
simple techniques which have already been employed in
UMPa base version such as trivially handling the vertices
connected to only one net and vice versa. Since these
techniques are relatively straightforward, we do not report
on them in this work. Vertices with degree 1 have been
studied also for the betweenness centrality computations [31]
where the practical implications of the existence of graph
theoretical structures such as articulation points and bridges
were also investigated. We believe that an extension of
these techniques to hypergraphs is an interesting study. As a
future work, we are planning to analyze how to exploit such
structures in the graph and hypergraph partitioning context.
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W. Mitchell, and J. Teresco, Zoltan 3.0: Parallel Parti-
tioning, Load Balancing, and Data-Management Services;
User’s Guide, Sandia National Laboratories, Albuquerque,
NM, 2007, tech. Report SAND2007-4748W.

[18] K. Akbudak, E. Kayaaslan, and C. Aykanat, “Hypergraph-
partitioning-based models and methods for exploiting cache
locality in sparse-matrix vector multiplication,” Bilkent Uni-
versity, Dept. of Computer Engineering, Tech. Rep., 2012.

[19] A. N. Yzelman and R. H. Bisseling, “Cache-oblivious sparse
matrix–vector multiplication by using sparse matrix partition-
ing methods,” SIAM J. Scientific Computing, vol. 31, no. 4,
pp. 3128–3154, 2009.

[20] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling,
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