
Load-Balancing Spatially Located Computations using
Rectangular Partitions

Erdeniz Ö. Baş1,2, Erik Saule1, Ümit V. Çatalyürek1,3

{erdeniz,esaule,umit}@bmi.osu.edu

1Department of Biomedical Informatics
2Department of Computer Science and Engineering
3Department of Electric and Computer Engineering

The Ohio State University

SIAM Conference on Parallel Processing for Scientific Computing 2012

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

:: 1 / 31

http://bmi.osu.edu/hpc

A load distribution problem

Load matrix

In parallel computing, the load can be
spatially located. The computation
should be distributed accordingly.

Applications

Particles in Cell

Sparse Matrices

Direct Volume Rendering

Metrics

Load balance

Communication

Stability

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 2 / 31

http://bmi.osu.edu/hpc

Different kinds of partition

Uniform Rectilinear P×Q-way jagged
(th)

m-way jagged hierarchical spiral
(def, heur, th, opt) (heur, opt) (heur, opt)

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 3 / 31

http://bmi.osu.edu/hpc

Different load balance on 2304 processors

Particles (2050x2050) Uniform (17.5%) Rectilinear (15.1%)

P×Q-way jagged (2.3%) m-way jagged (2.0%) hierarchical (2.7%)

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 4 / 31

http://bmi.osu.edu/hpc

This talk is about how to generate such
partitions, either optimally or heuristically,
and the type of guarantee we can obtain.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 5 / 31

http://bmi.osu.edu/hpc

Outline

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
P×Q-way Jagged
m-way Jagged

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 6 / 31

http://bmi.osu.edu/hpc

The Rectangular Partitioning Problem

Definition

Let A be a n1 × n2 matrix of non-negative values. The problem is to
partition the [1, 1]× [n1, n2] rectangle into a set S of m rectangles. The
load of rectangle r = [x , y]× [x ′, y ′] is L(r) =

∑
x≤i≤x ′,y≤j≤y ′ A[i][j]. The

problem is to minimize Lmax = maxr∈S L(r).

Prefix Sum

Algorithms are rarely interested in the value of a particular element but
rather interested in the load of a rectangle. The matrix is given as a 2D
prefix sum array Pr such as Pr [i][j] =

∑
i ′≤i ,j ′≤j A[i ′][j ′]. By convention

Pr [0][j] = Pr [i][0] = 0.
We can now compute the load of rectangle r = [x , y]× [x ′, y ′] as
L(r) = Pr [x ′][y ′]− Pr [x − 1][y ′]− Pr [x ′][y − 1] + Pr [x − 1][y − 1].

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Preliminaries::Notation 7 / 31

http://bmi.osu.edu/hpc

In One Dimension

Optimal : Nicol’s algorithm [Nic94] (improved by [PA04])

Based on parametric search.
Complexity: O((m log n

m)2).

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Preliminaries::In One Dimension 8 / 31

http://bmi.osu.edu/hpc

Simulation Setting

Classes (Some inspired by [MS96])

Processors

Simulation are perform with different number of processors: most squared
numbers up to 10,000.

Metric

Load imbalance is the presented metric : Lmax∑
i,j A[i][j]

m

− 1.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Preliminaries::Simulation Setting 9 / 31

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
P×Q-way Jagged
m-way Jagged

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning:: 10 / 31

http://bmi.osu.edu/hpc

Rectilinear Partitioning

Generalities

The problem is NP-Hard.

Approximation algorithms exist but
are very slow.

RECT-NICOL [Nic94]

An iterative heuristics.

At each iteration the partition in one
dimension is refined.

Complexity:

O(n1n2) iterations (≤ 10 in practice).

1 iteration:
O(Q(P log n1

P)2 + P(Q log n2
Q)2).

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning:: 11 / 31

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
P×Q-way Jagged
m-way Jagged

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning:: 12 / 31

http://bmi.osu.edu/hpc

A P×Q-way Jagged Heuristic

JAG-PQ-HEUR

Sum on each column to generate a
1D problem.

Partition it into P parts.

For the first stripe, sum on each row.

Partition it in Q parts.

Treat all stripes.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 13 / 31

http://bmi.osu.edu/hpc

A P×Q-way Jagged Heuristic

∑ ∑ ∑ ∑ ∑ ∑ ∑

JAG-PQ-HEUR

Sum on each column to generate a
1D problem.

Partition it into P parts.

For the first stripe, sum on each row.

Partition it in Q parts.

Treat all stripes.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 13 / 31

http://bmi.osu.edu/hpc

A P×Q-way Jagged Heuristic

∑

∑

∑

∑

∑

∑

JAG-PQ-HEUR

Sum on each column to generate a
1D problem.

Partition it into P parts.

For the first stripe, sum on each row.

Partition it in Q parts.

Treat all stripes.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 13 / 31

http://bmi.osu.edu/hpc

A P×Q-way Jagged Heuristic

JAG-PQ-HEUR

Sum on each column to generate a
1D problem.

Partition it into P parts.

For the first stripe, sum on each row.

Partition it in Q parts.

Treat all stripes.

Complexity :
O((P log n1

P)2 + P × (Q log n2
Q)2).

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 13 / 31

http://bmi.osu.edu/hpc

An optimal P×Q-way jagged partitioning : JAG-PQ-OPT

A Dynamic Programming Formulation

Lmax(n1,P) = min1≤k<n1 max(Lmax(k − 1,P − 1), 1D(k, n1,Q))
Lmax(0,P) = 0
Lmax(n1, 0) = +∞,∀n1 ≥ 1

O(n1P) Lmax functions to evaluate. (Each is O(k).)

O(n2
1) 1D functions to evaluate. (Each is O((Q log n2

Q)2).)

(Some significant implementation optimizations apply)
For a 512x512 matrix and 1000 processors, that’s 512,000+262,144
values. On 64-bit values, that’s 6MB.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 14 / 31

http://bmi.osu.edu/hpc

Performance of P×Q-way jagged (PIC-MAG it=30000)

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

lo
ad

 im
ba

la
nc

e

number of processors

RECT-NICOL
JAG-PQ-HEUR

JAG-PQ-OPT

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 15 / 31

http://bmi.osu.edu/hpc

m-way jagged partitioning heuristics

JAG-M-HEUR

Similar to JAG-PQ-HEUR.

Cut in P stripes using an optimal 1D
Algorithm.

Distribute processors proportionally to
the stripe’s load.

Compute a 1D partitioning of each
stripe independently.

JAG-M-HEUR-PROBE

Partition all the stripes at once using a
multiple 1D arrays partitioning
algorithm [Fre92].

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged 16 / 31

http://bmi.osu.edu/hpc

m-way jagged partitioning heuristics

JAG-M-HEUR

Similar to JAG-PQ-HEUR.

Cut in P stripes using an optimal 1D
Algorithm.

Distribute processors proportionally to
the stripe’s load.

Compute a 1D partitioning of each
stripe independently.

JAG-M-HEUR-PROBE

Partition all the stripes at once using a
multiple 1D arrays partitioning
algorithm [Fre92].

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged 16 / 31

http://bmi.osu.edu/hpc

An optimal m-way partitioning JAG-M-OPT

A Dynamic Programming Formulation

Lmax(n1,m) = min1≤k<n1,1≤x≤m max(Lmax(k − 1,m − x), 1D(k , n1, x))
Lmax(0,m) = 0
Lmax(n1, 0) = +∞, ∀n1 ≥ 1

O(n1m) Lmax functions.

O(n2
1m) 1D functions. (m times more than for P×Q jagged)

(The same kind of optimizations apply.)
For a 512x512 matrix on 1,000 processors. That’s 512,000 + 262,144,000
values, if they are 64-bits, about 2GB (and takes 30 minutes).

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged 17 / 31

http://bmi.osu.edu/hpc

Performance of m-way jagged (PIC-MAG it=30000)

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

lo
ad

 im
ba

la
nc

e

number of processors

RECT-NICOL
JAG-PQ-HEUR

JAG-M-HEUR
JAG-M-HEUR-PROBE

JAG-M-OPT

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged 18 / 31

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
P×Q-way Jagged
m-way Jagged

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection:: 19 / 31

http://bmi.osu.edu/hpc

Heuristics for Hierarchical Bisection

Recursive Bisection [BB87]: HIER-RB

Cut to balance the load evenly.

Allocate half the processors to each
side.

Cut the dimension balances the load
best.

Complexity: O(m log max n1, n2).

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 20 / 31

http://bmi.osu.edu/hpc

Performance of HIER-RB (PIC-MAG it=30000)

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

lo
ad

 im
ba

la
nc

e

number of processors

RECT-NICOL
JAG-M-HEUR-PROBE

HIER-RB

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 21 / 31

http://bmi.osu.edu/hpc

An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

Lmax(x1, x2, y1, y2,m) = minj min(
minx max(Lmax(x1, x , y1, y2, j), Lmax(x + 1, x2, y1, y2,m − j))
,miny max(Lmax(x1, x2, y1, y , j), Lmax(x1, x2, y + 1, y2,m − j)))

O(n2
1n

2
2m) Lmax functions. (n2

2 times more than m-way jagged)

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000
values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic: HIER-RELAXED

Build the solution according to

Lmax(x1, x2, y1, y2,m) = minj min(

minx max(L(x1,x ,y1,y2)
j , L(x+1,x2,y1,y2)

m−j)

,miny max(L(x1,x2,y1,y)
j , L(x1,x2,y+1,y2)

m−j))

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Dynamic Programming 22 / 31

http://bmi.osu.edu/hpc

An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

Lmax(x1, x2, y1, y2,m) = minj min(
minx max(Lmax(x1, x , y1, y2, j), Lmax(x + 1, x2, y1, y2,m − j))
,miny max(Lmax(x1, x2, y1, y , j), Lmax(x1, x2, y + 1, y2,m − j)))

O(n2
1n

2
2m) Lmax functions. (n2

2 times more than m-way jagged)

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000
values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic: HIER-RELAXED

Build the solution according to

Lmax(x1, x2, y1, y2,m) = minj min(

minx max(L(x1,x ,y1,y2)
j , L(x+1,x2,y1,y2)

m−j)

,miny max(L(x1,x2,y1,y)
j , L(x1,x2,y+1,y2)

m−j))

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Dynamic Programming 22 / 31

http://bmi.osu.edu/hpc

Performance of HIER-RELAXED (PIC-MAG it=30000)

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

lo
ad

 im
ba

la
nc

e

number of processors

RECT-NICOL
JAG-M-HEUR-PROBE

HIER-RB
HIER-RELAXED

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Dynamic Programming 23 / 31

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
P×Q-way Jagged
m-way Jagged

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts:: 24 / 31

http://bmi.osu.edu/hpc

Performance Over the Execution of PIC-MAG (m =6400)

 0.001

 0.01

 0.1

 1

 0 5000 10000 15000 20000 25000 30000 35000

lo
ad

 im
ba

la
nc

e

iteration

RECT-NICOL
JAG-M-HEUR-PROBE

HIER-RB
HIER-RELAXED

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 25 / 31

http://bmi.osu.edu/hpc

Relaxed Hierarchical Might Be Unstable (m =400)

 0.001

 0.01

 0.1

 1

 0 5000 10000 15000 20000 25000 30000 35000

lo
ad

 im
ba

la
nc

e

iteration

RECT-NICOL
JAG-M-HEUR-PROBE

HIER-RB
HIER-RELAXED

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 26 / 31

http://bmi.osu.edu/hpc

Sparsity (SLAC)

 0.001

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

lo
ad

 im
ba

la
nc

e

number of processors

RECT-NICOL
JAG-PQ-HEUR

JAG-M-HEUR
HIER-RB

HIER-RELAXED

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 27 / 31

http://bmi.osu.edu/hpc

Runtime on PIC-MAG (it=30000)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

tim
e

(s
)

number of processors

RECT-NICOL
JAG-PQ-OPT-DP

HIER-RB
JAG-PQ-HEUR

JAG-M-HEUR
JAG-M-HEUR-PROBE

JAG-M-OPT
HIER-RELAXED

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 28 / 31

http://bmi.osu.edu/hpc

What should I use?

Dense instances

JAG-M-HEUR-PROBE and HIER-RELAXED dominates. (Best of two?)

But HIER-RELAXED is unstable: it gives very different solutions when
run on similar instances.

Sparse instances

Jagged partitions can reach a worse case scenario.

Hierarchical partitions get better results: HIER-RELAXED is the best.

Runtime (on a 514x514 matrix with 1024 processors)

HIER-RB one milliseconds

JAG-PQ-HEUR, JAG-M-HEUR: 10 milliseconds.

HIER-RELAXED, RECT-NICOL, JAG-M-HEUR-PROBE: 50 milliseconds.

JAG-M-OPT: hours.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 29 / 31

http://bmi.osu.edu/hpc

What did I left out?

More details in our Technical Report (arXiv 1104.2566)

Guarantees for most heuristics (approximation ratio).

m-way jagged admits optimal algorithms for fixed column cut and for
fixed processor distribution.

Multi-level partitioning can be used to achieve better solutions.

Will these algorithms help your application?

A sequential tool is available! Check it out at
http://bmi.osu.edu/hpc/software/spart/

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 30 / 31

http://bmi.osu.edu/hpc/software/spart/
http://bmi.osu.edu/hpc

What did I left out?

More details in our Technical Report (arXiv 1104.2566)

Guarantees for most heuristics (approximation ratio).

m-way jagged admits optimal algorithms for fixed column cut and for
fixed processor distribution.

Multi-level partitioning can be used to achieve better solutions.

Will these algorithms help your application?

A sequential tool is available! Check it out at
http://bmi.osu.edu/hpc/software/spart/

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 30 / 31

http://bmi.osu.edu/hpc/software/spart/
http://bmi.osu.edu/hpc

Thank you

Datasets

Thanks to Y. Omelchenko and H. Karimabadi for providing PIC-MAG
data; and R. Lee, M. Shephard, and X. Luo for the SLAC data.

More information

contact : umit@bmi.osu.edu
visit: http://bmi.osu.edu/hpc/, http://bmi.osu.edu/~umit or
http://bmi.osu.edu/hpc/software/spart/

Research at HPC lab is funded by

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 31 / 31

http://bmi.osu.edu/hpc/
http://bmi.osu.edu/~umit
http://bmi.osu.edu/hpc/software/spart/
http://bmi.osu.edu/hpc

Marsha Berger and Shahid Bokhari.
A partitioning strategy for nonuniform problems on multiprocessors.
IEEE Transaction on Computers, C36(5):570–580, 1987.

Greg N. Frederickson.
Optimal algorithms for partitioning trees and locating p-centers in
trees.
Technical Report CSD-TR-1029, Purdue University, 1990, revised
1992.

Fredrik Manne and Tor Sørevik.
Partitioning an array onto a mesh of processors.
In PARA ’96: Proceedings of the Third International Workshop on
Applied Parallel Computing, Industrial Computation and Optimization,
pages 467–477, London, UK, 1996. Springer-Verlag.

David Nicol.
Rectilinear partitioning of irregular data parallel computations.
Journal of Parallel and Distributed Computing, 23:119–134, 1994.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 31 / 31

http://bmi.osu.edu/hpc

Ali Pinar and Cevdet Aykanat.
Fast optimal load balancing algorithms for 1d partitioning.
Journal of Parallel and Distributed Computing, 64:974–996, 2004.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 31 / 31

http://bmi.osu.edu/hpc

	Introduction
	Preliminaries
	Notation
	In One Dimension
	Simulation Setting

	Rectilinear Partitioning
	Nicol's Algorithm

	Jagged Partitioning
	PQ-way Jagged
	m-way Jagged

	Hierarchical Bisection
	Recursive Bisection
	Dynamic Programming

	Final thoughts
	Summing up

