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A load distribution problem

Load matrix

In parallel computing, the load can be
spatially located. The computation
should be distributed accordingly.

Applications

Particles in Cell

Sparse Matrices

Direct Volume Rendering

Metrics

Load balance

Communication

Stability
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Different kinds of partition

Uniform Rectilinear P×Q-way jagged
(th)

m-way jagged hierarchical spiral
(def, heur, th, opt) (heur, opt) (heur, opt)
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Different load balance on 2304 processors

Particles (2050x2050) Uniform (17.5%) Rectilinear (15.1%)

P×Q-way jagged (2.3%) m-way jagged (2.0%) hierarchical (2.7%)
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This talk is about how to generate such
partitions, either optimally or heuristically,
and the type of guarantee we can obtain.
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The Rectangular Partitioning Problem

Definition

Let A be a n1 × n2 matrix of non-negative values. The problem is to
partition the [1, 1]× [n1, n2] rectangle into a set S of m rectangles. The
load of rectangle r = [x , y ]× [x ′, y ′] is L(r) =

∑
x≤i≤x ′,y≤j≤y ′ A[i ][j ]. The

problem is to minimize Lmax = maxr∈S L(r).

Prefix Sum

Algorithms are rarely interested in the value of a particular element but
rather interested in the load of a rectangle. The matrix is given as a 2D
prefix sum array Pr such as Pr [i ][j ] =

∑
i ′≤i ,j ′≤j A[i ′][j ′]. By convention

Pr [0][j ] = Pr [i ][0] = 0.
We can now compute the load of rectangle r = [x , y ]× [x ′, y ′] as
L(r) = Pr [x ′][y ′]− Pr [x − 1][y ′]− Pr [x ′][y − 1] + Pr [x − 1][y − 1].
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In One Dimension

Optimal : Nicol’s algorithm [Nic94] (improved by [PA04])

Based on parametric search.
Complexity: O((m log n

m )2).
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Simulation Setting

Classes (Some inspired by [MS96])

Processors

Simulation are perform with different number of processors: most squared
numbers up to 10,000.

Metric

Load imbalance is the presented metric : Lmax∑
i,j A[i ][j]

m

− 1.
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Rectilinear Partitioning

Generalities

The problem is NP-Hard.

Approximation algorithms exist but
are very slow.

RECT-NICOL [Nic94]

An iterative heuristics.

At each iteration the partition in one
dimension is refined.

Complexity:

O(n1n2) iterations (≤ 10 in practice).

1 iteration:
O(Q(P log n1

P )2 + P(Q log n2
Q )2).
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A P×Q-way Jagged Heuristic

JAG-PQ-HEUR

Sum on each column to generate a
1D problem.

Partition it into P parts.

For the first stripe, sum on each row.

Partition it in Q parts.

Treat all stripes.
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A P×Q-way Jagged Heuristic
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A P×Q-way Jagged Heuristic

JAG-PQ-HEUR

Sum on each column to generate a
1D problem.

Partition it into P parts.

For the first stripe, sum on each row.

Partition it in Q parts.

Treat all stripes.

Complexity :
O((P log n1

P )2 + P × (Q log n2
Q )2).
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Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 13 / 31

http://bmi.osu.edu/hpc


An optimal P×Q-way jagged partitioning : JAG-PQ-OPT

A Dynamic Programming Formulation


Lmax(n1,P) = min1≤k<n1 max(Lmax(k − 1,P − 1), 1D(k, n1,Q))
Lmax(0,P) = 0
Lmax(n1, 0) = +∞,∀n1 ≥ 1

O(n1P) Lmax functions to evaluate. (Each is O(k).)

O(n2
1) 1D functions to evaluate. (Each is O((Q log n2

Q )2).)

(Some significant implementation optimizations apply)
For a 512x512 matrix and 1000 processors, that’s 512,000+262,144
values. On 64-bit values, that’s 6MB.
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Performance of P×Q-way jagged (PIC-MAG it=30000)
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m-way jagged partitioning heuristics

JAG-M-HEUR

Similar to JAG-PQ-HEUR.

Cut in P stripes using an optimal 1D
Algorithm.

Distribute processors proportionally to
the stripe’s load.

Compute a 1D partitioning of each
stripe independently.

JAG-M-HEUR-PROBE

Partition all the stripes at once using a
multiple 1D arrays partitioning
algorithm [Fre92].
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An optimal m-way partitioning JAG-M-OPT

A Dynamic Programming Formulation


Lmax(n1,m) = min1≤k<n1,1≤x≤m max(Lmax(k − 1,m − x), 1D(k , n1, x))
Lmax(0,m) = 0
Lmax(n1, 0) = +∞, ∀n1 ≥ 1

O(n1m) Lmax functions.

O(n2
1m) 1D functions. (m times more than for P×Q jagged)

(The same kind of optimizations apply.)
For a 512x512 matrix on 1,000 processors. That’s 512,000 + 262,144,000
values, if they are 64-bits, about 2GB (and takes 30 minutes).
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Performance of m-way jagged (PIC-MAG it=30000)
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Heuristics for Hierarchical Bisection

Recursive Bisection [BB87]: HIER-RB

Cut to balance the load evenly.

Allocate half the processors to each
side.

Cut the dimension balances the load
best.

Complexity: O(m log max n1, n2).
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Performance of HIER-RB (PIC-MAG it=30000)
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An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

Lmax(x1, x2, y1, y2,m) = minj min(
minx max(Lmax(x1, x , y1, y2, j), Lmax(x + 1, x2, y1, y2,m − j))
,miny max(Lmax(x1, x2, y1, y , j), Lmax(x1, x2, y + 1, y2,m − j)))

O(n2
1n

2
2m) Lmax functions. (n2

2 times more than m-way jagged)

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000
values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic: HIER-RELAXED

Build the solution according to

Lmax(x1, x2, y1, y2,m) = minj min(

minx max(L(x1,x ,y1,y2)
j , L(x+1,x2,y1,y2)

m−j )

,miny max(L(x1,x2,y1,y)
j , L(x1,x2,y+1,y2)

m−j ))
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An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

Lmax(x1, x2, y1, y2,m) = minj min(
minx max(Lmax(x1, x , y1, y2, j), Lmax(x + 1, x2, y1, y2,m − j))
,miny max(Lmax(x1, x2, y1, y , j), Lmax(x1, x2, y + 1, y2,m − j)))

O(n2
1n

2
2m) Lmax functions. (n2

2 times more than m-way jagged)

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000
values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic: HIER-RELAXED
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Lmax(x1, x2, y1, y2,m) = minj min(

minx max(L(x1,x ,y1,y2)
j , L(x+1,x2,y1,y2)

m−j )

,miny max(L(x1,x2,y1,y)
j , L(x1,x2,y+1,y2)

m−j ))
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Performance of HIER-RELAXED (PIC-MAG it=30000)
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Performance Over the Execution of PIC-MAG (m =6400)
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Ümit V. Çatalyürek
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Relaxed Hierarchical Might Be Unstable (m =400)
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Sparsity (SLAC)
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Runtime on PIC-MAG (it=30000)
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What should I use?

Dense instances

JAG-M-HEUR-PROBE and HIER-RELAXED dominates. (Best of two?)

But HIER-RELAXED is unstable: it gives very different solutions when
run on similar instances.

Sparse instances

Jagged partitions can reach a worse case scenario.

Hierarchical partitions get better results: HIER-RELAXED is the best.

Runtime (on a 514x514 matrix with 1024 processors)

HIER-RB one milliseconds

JAG-PQ-HEUR, JAG-M-HEUR: 10 milliseconds.

HIER-RELAXED, RECT-NICOL, JAG-M-HEUR-PROBE: 50 milliseconds.

JAG-M-OPT: hours.
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What did I left out?

More details in our Technical Report (arXiv 1104.2566)

Guarantees for most heuristics (approximation ratio).

m-way jagged admits optimal algorithms for fixed column cut and for
fixed processor distribution.

Multi-level partitioning can be used to achieve better solutions.

Will these algorithms help your application?

A sequential tool is available! Check it out at
http://bmi.osu.edu/hpc/software/spart/
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Thank you

Datasets

Thanks to Y. Omelchenko and H. Karimabadi for providing PIC-MAG
data; and R. Lee, M. Shephard, and X. Luo for the SLAC data.

More information

contact : umit@bmi.osu.edu
visit: http://bmi.osu.edu/hpc/, http://bmi.osu.edu/~umit or
http://bmi.osu.edu/hpc/software/spart/

Research at HPC lab is funded by
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