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\ETe Medical Data Preprocessing

raes Center

Mapping Sequences to Reference Genome

* Solexa and SOLiD sequencers
e ~35-70 bp DNA segments

* Mapping Methods

* Need to allow mismatches and gaps
* SNP locations
e Sequencing errors
e Reading errors

* Indexing and hashing
* genome
¢ Ssequence reads

e Use of quality scores

e Performance
* Partitioning the genome or sequence reads
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\ETe Medical Data Preprocessing

rueed Center

Mapping Sequences to Reference Genome

 ELAND (Cox, unpublished)

e “Efficient Large-Scale Alignment of Nucleotide Databases” (Solexa
Ltd.)

* Very fast
e Allow at most 2 mismatches
* SegMap (Jiang, 2008)
* “Mapping massive amount of oligonucleotides to the genome”
* Allow at most 5 mismatches and gaps

 RMAP (Smith, 2008)

* “Using quality scores and longer reads improves accuracy of Solexa
read mapping”

* MapReads (Applied Biosystems)
Department of




‘ \ETg Medical Mapping Procedure

* Two steps:
e Data or genome transform
* Hashing table
* Borrows-Wheeler transform
* Mapping
* Table lookup or index search
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‘ T8 Medical Tradeoffs

* Limiting the number of allowed mismatches

* |lgnoring insertions and deletions or limiting their
number and length

* |gnoring base quality score information

* Limiting the number of reported matching
ocations

* Imposing constraints on read length

* |gnoring information about errors particular to
each sequencing technology
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‘ SIS Medical Different Approaches

 Multi-threading
* Most on the second step (e.g., Bowtie, SOCS)

* Or can be for reading and writing (e.g., a GMAP
implementation)

* Relatively easy
 Not scalable
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‘ SIS Medical Different Approaches

* Cloud computing
* CloudBurst
* MapReduce for RMAP
* Amazon EC2
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Experiment Using Amazon EC2

Select suitable
Amazon Machine
Image (AMI)

Logon to EC2 account
and start the AMI

v

v

Transfer the Eland
program and reference
genomes to the AMI

Upload the sequence
data

2

v

Compile the Eland
program and compress
the genomes in the AMI

Run Eland to align
sequences on selected
number of nodes
(instances)

v

Transfer results from AMI
to local PC

v

v

Save the AMI

Terminate AMI and Exit
EC2

h

Customize the AMI

Y

Execute workflow
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[T Medical Experiment Using Amazon EC2

raes Center

. Cloud computing — Amazon Elastic Computing Cloud (EC2)
Low-cost : pay per use
« Easy to maintain and set up
Mapping 7.8 million short reads to the human genome in less than
0.5 hour for less than $4

1800
1600
1400
o
£
= 800
600
400
200
0
’b&@ AL 2 A T ,\\0@\%,{»\ ,‘5\\6,\9 ,9(\"% *5\

Chromosomes

Department of
Biomedical Informatics



‘ SIS Medical Different Approaches

 Computer cluster
* Scalability
* Partition the reads
* Partition the genome
* Partition both
* SOAPv1, MapReads, RMAP
* MPI
* Middleware - DataCutter
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c,: Time to hash a single
genome subsequence

G: Size of genome t [ ]

c,: Time to process a single H
read if no collision ]

c.: Time to resolve a collision ]

R: Number of reads (c+c.G)R

N: Number of computation -
nodes

! [ ]
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o8 Medical Partition Reads Only
el Center (PRO)

 Partition reads into - cyG }
N equal parts.
e Useful whenRis R
large and G is (c'+c°G)W| P
small. ™
* Memory P>
requirement does —
not scale P,
P4
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Ao Medical Partition Genome Only
el Center (PGO)

* Partition genome
into N equal parts

]

e Useful when Gis
large and R is small.

* Memory
requirement scales (cr+cc%)R P, P, P, P,
perfectly

\ 4
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%I:@ Medical Partition Reads and Genome (PRG)
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* A generalization of
PRO and PGO |

* Nodes are
arranged in

N=N_xN. mesh c,+cc§ R
RXNg ( NG)NR
e Useful unless

G>>R or G<<R

* Memory scales
worse than PGO,
but better than
PRO
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\EITS Medical Suffix Based Assighment
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* A new dimension in partitioning load

* Assign a set of suffixes of length s to each node
* 45 suffixes for a given s

* Each node scans reads and genome subsequences, then only
processes those ending with assigned suffixes

* Only consider the last s care positions to handle mismatch cases

AlA| [C|A
====‘_
A|C| [C|C
(Tc|T AlG
AlA AlG CG‘ C|T
AT C|T
G<
G|A TIA
\CT G|C T|C GlC
G|IG| |T|G
» Pa <
GI|T TIT
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%zg% Medical Suffix Based Assignment (SBA)

raes Center

Cgs : Time to compare a
genome sequence
against suffixes

A 4

: Time to compare a read
against suffixes

rs

G,R
(cr"'ch)W P

* Under perfect balance G
and R are partitioned
equally P2

* Limited scalability due c.<R
to c,s and ¢,  terms

e Useful for medium
values of N

*  Memory requirement P
scales well 4

v
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%zg% Medical SBA after Partitioning Reads (SPR)
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e Partition reads Ns .  ¢.G
into N parts,
then apply SBA A

on each part c+c. G )R
(ertee ) P,

A A

A 4

 Nodes are
arranged in R P
N=N.xN; mesh Nr 2

* Takes advantage
of SBA when R is I:,3

large
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%zg% NCezIl SBA after Partitioning Genome (SPG)

raes Center

e Partition genome Cqg— G
into N parts, D >
then apply SBA |
on each part 1

* Nodes are G.R
arranged in (°'+°°W)N—S P P

N=N xN; mesh

* Takes advantage Y
of SBA when G is

large
e P> P4

\ 4
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‘ \Siy Medical Experimental Setup

 Ourimplementation is based on MapReads, a part of SOLID System
Color Space Mapping Tool

* Implemented in C using MPI
* Used default covers with allowing up to 2 mismatches

* Experiments on 64-node dual 2.4GHz Opteron cluster with 8GB
memory

* Nodes are interconnected via Infiniband, used MVAPICH v0.9.8
e Reads from a single run of SOLiD system
* Human Genome Build 36.1 (http://genome.uscs.edu)

* N,=N,=N,=+N
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 G:800M, R: (16M, 32M, 64M, 130M), L: 50, N:16
e Partitioning reads helps reducing matching time
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{[E1TS Medical Varying Genome Size
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e G:(50M, 200M, 800M, 3080M), R: 130M, N:16
e Partitioning genome helps reducing hashing time
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* G:800M, R: 130M, N: (4, 16,

Varying Number of Nodes

64)

* Up to 22x speedup: From a day to an hour!
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Il Matching reads
[Building index table
Il Data distribution + sampling
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B Medical Conclusions

* Three strategies for parallel computing of mapping

* Proposed 6 parallelization methods for short sequence
mapping using computer clusters

* Extensively analyzed performance of each method wrt.
genome size, number of reads and number of nodes

e Described theoretical cost models

* Evaluated performance experimentally

* Proposed a prediction function to select the best method
for a given scenario

* Achieved fairly good speedup that allows reducing the
mapping time from a day to an hour.
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* Ageneral model that CQNGNS cgsﬁ
encompasses all DI N S
parallelization l
methods A

© N=NaNoxNs (¢ e, G ) R

* Find best values of NGNs “NrNs
Ng, Ng and N for
givenR, G, N crs‘i

* Investigate causes of Nr
imbalance in SBA Y

* Develop aweb
service for parallel
short sequence

mapping
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