

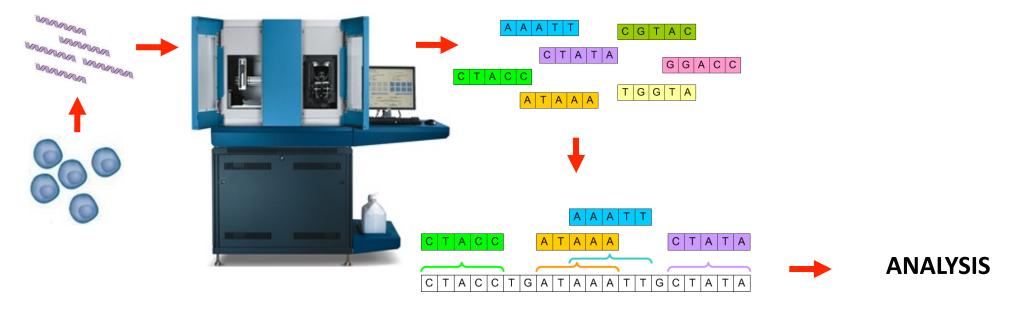
IPDPS - HiCOMB 2010
Ninth IEEE International Workshop on
High Performance Computational Biology

Exploring Parallelism in Short SequenceMapping Using Burrows-Wheeler Transform

Doruk Bozdag¹, Ayat Hatem^{1,2}, <u>Umit V. Catalyurek^{1,2}</u>
Department of Biomedical Informatics
Department of Electrical and Computer Engineering
The Ohio State University

Motivation

Burrows-Wheeler Transform


Parallelization strategies

Experimental results

Conclusion and future work

Motivation

SEQUENCING

- High throughput sequencing instruments (SOLiD, Solexa, 454) can sequence more than 1 billion bases a day
 - Hundreds of millions of 35-50 base reads

MAPPING

- Map reads to a reference genome efficiently
 - Human genome: 3Gb
- Sequential mapping takes about a day
 - Need fast, parallel algorithms that can handle mismatches

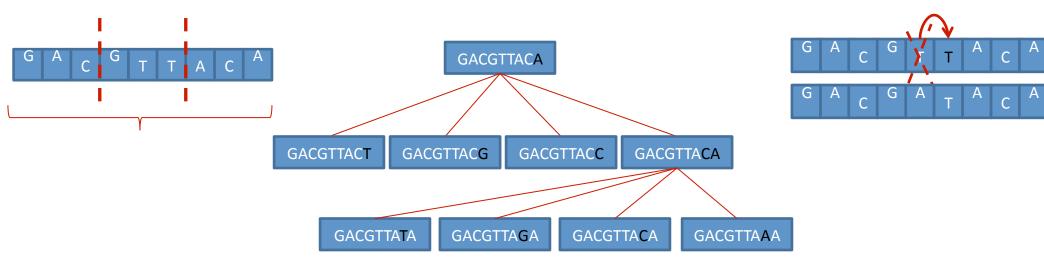
Our Ultimate Goal

- Develop generic parallelization framework
 - Identify limitations due to the application scenarios and tools
- Find the "right" tool for the given problem
 - Find the best way to parallelize for a given tool and scenario
 - Quality vs Runtime tradeoffs
- This work is a second step towards that goal [Bozdag IPDPS'09]

Short Sequence Mapping Tools

- Many tools have been developed:
 - MapReads, MAQ, RMAP, SHRiMP, ZOOM, mrFAST, SOCS, PASS

- State of the art tools:
 - BWA, Bowtie, and SOAPv2
 - All of them are based on the Burrows-Wheeler Transform
 - Two step mapping approach:
 - Build the index for the reference genome
 - Map reads to the index


Burrows-Wheeler Transform

- The Burrows-Wheeler transform (BWT) of a text T is a reversible permutation of the characters in that text
- Designed originally for data compression
- Used by data indexing techniques due to its efficiency
- BWT-based index can be searched in a small memory footprint
- Exact string matching algorithm has been developed by [FOCS 2000] to search through BWT-based index

Inexact Matching

- BWA, SOAP, and Bowtie use an exact matching algorithm based on the BWT-index
- Each one provides a different method to handle inexact matches

SOAP: Split rea

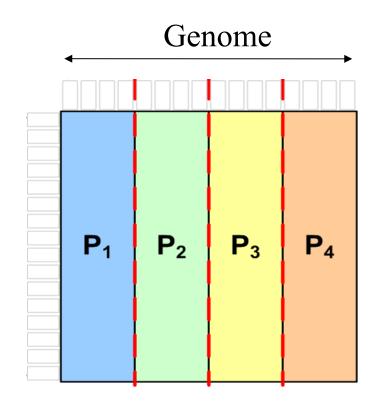
Split read into 3 fragments for hits that allow two mismatches

BWA:

Enumerate all possible strings

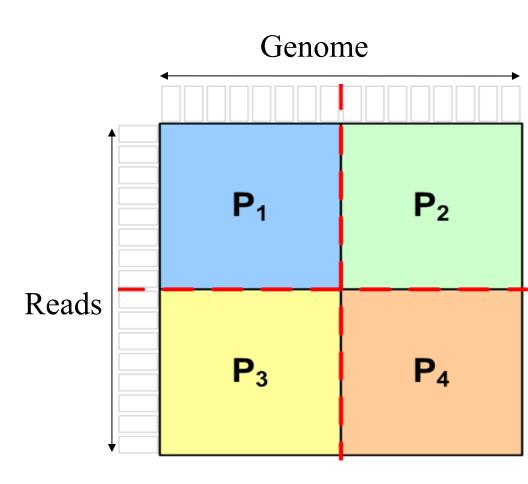
Bowtie:

Match not found at T, backtrack, change, find exact match


Short Sequence Mapping

- Quality of mapping depends on different factors
- Improved quality ——— Increased computational cost
- Tools provide different options to compromise quality to limit the computational cost
- Solution: parallel processing strategies

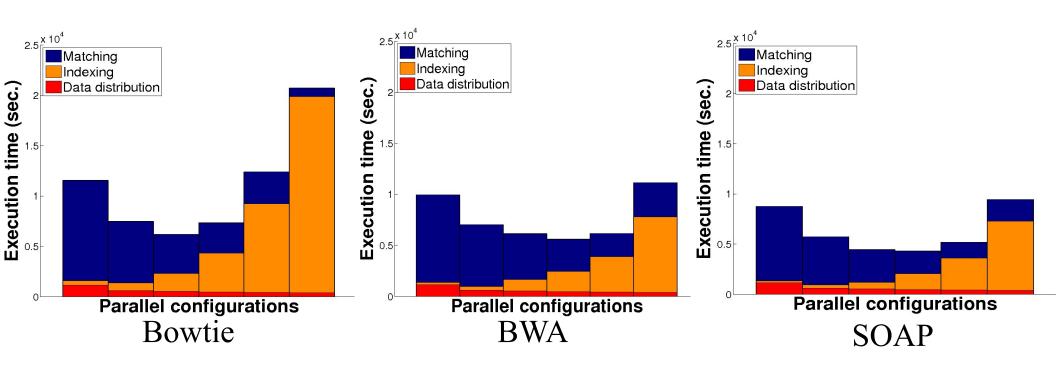
Parallelization Strategies



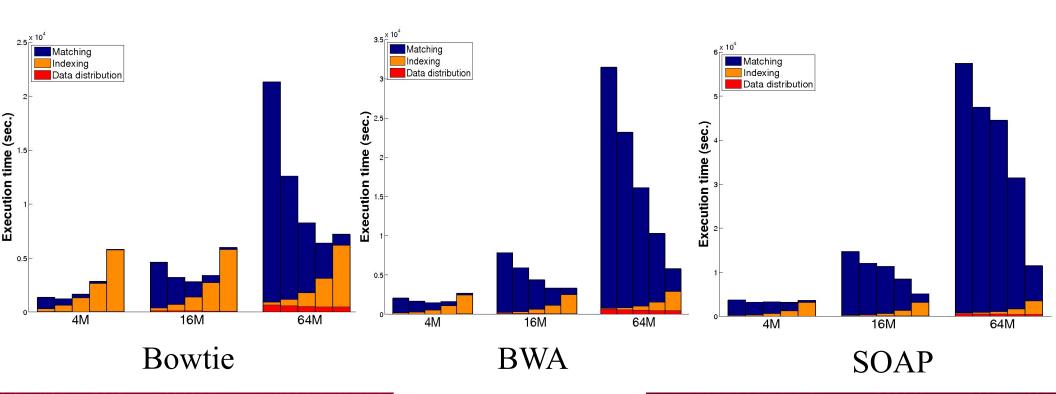
- Partition reads into NR parts
- Mapping very large number of reads to a small genome
- Partition genome into NG parts
 - Mapping a small number of reads to a large genome

Parallelization Strategies

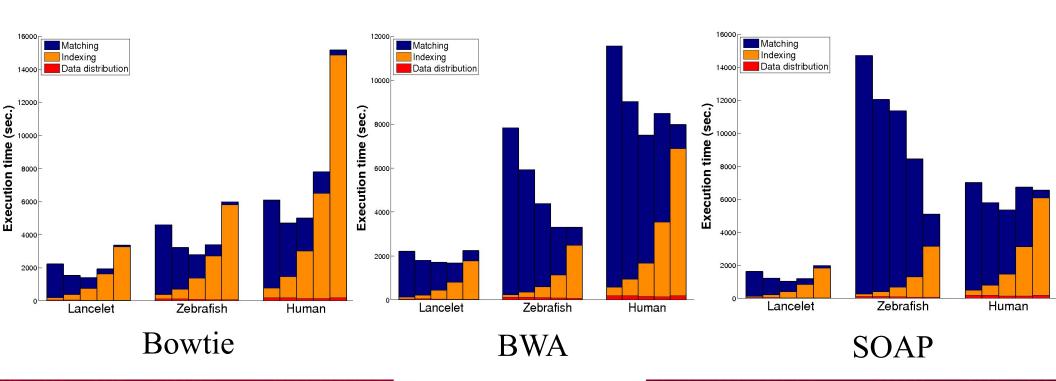
- Partition reads and genome
- Deciding number of read parts (NR) and genome parts (NG) depends on the number of reads and size of the genome
- Two main application scenarios
 - Index the genome each time for matching:
 - Partition reads and genome
 - Index the genome once:
 - Partition reads only


Experimental Setup

- Compared Bowtie v0.10.1, BWA v0.5.0, SOAP v2.20
- Experiments on 32-node dual 2.4 GHz Opteron cluster with 8GB of memory per node
- Used three reference genomes: human (3.1 Gbp), zebrafish (1.5 Gbp) and lancelet (0.9 Gbp)
- Reads:
 - Real data from a single run of SOLiD system of length 50bp
 - Synthetic data generated by wgsim of length 70bp
 - Wgsim tool is a part of SAMtools package


Experiments on Real Data

- Number of nodes: 32
- NR x NG: 1x32, 2x16, 4x8, 8x4, 16x2, 32x1
- G: Human. R: 130M
- Bowtie best configuration: 4x8. BWA and SOAP: 8x4



- Number of nodes: 16
- NR x NG: 1x16, 2x8, 4x4, 8x2, 16x1
- G: Zebrafish, R: 4M, 16M, 64M
- Matching time >> indexing time, larger NR is better

- Number of nodes: 16
- NR x NG: 1x16, 2x8, 4x4, 8x2, 16x1
- G: Lancelet, Zebrafish, Human. R: 16M
- Larger NG speeds up the indexing phase

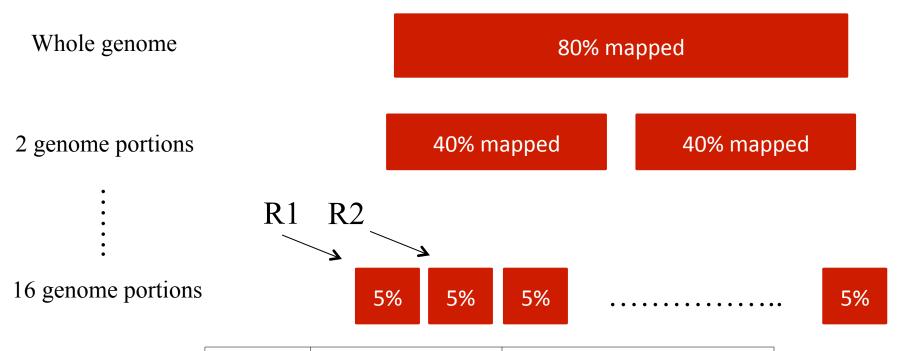
• Best configuration: provided 2.2 to 10.7 speed up on 16 nodes

Zebrafish genome															
	4M reads					16M reads				64M reads					
	(Index=7197, Match=951, Total=8148)					(Index=7197, Match=3878, Total=11075)				(Index=7197, Match=16438, Total=23635)					
	1x16	2 x 8	4 x 4	8 x 2	16 x 1	1x16	2 x 8	4x4	8 x 2	16 x 1	1x16	2 x 8	4x4	8 x 2	16 x 1
Data dist.	41	29	28	30	47	122	123	104	86	83	661	590	531	487	475
Indexing	259	580	1263	2624	5718	259	580	1263	2624	5718	259	580	1263	2624	5718
Matching	1051	627	356	176	50	4222	2519	1430	689	187	20404	11422	6478	3252	1010
Total	1351	1236	1648	2830	5815	4603	3222	2797	3398	5988	21324	12592	8272	6362	7204
16M reads															
	Lancelet genome					Zebrafish genome				Human genome					
	(Index=3297, Match=2337, Total=5634)				(Index=7197, Match=3878, Total=11075)				(Index=20775, Match=3961, Total=24736)						
	1x16	2x8	4x4	8 x 2	16x1	1x16	2 x 8	4x4	8 x 2	16x1	1x16	2 x 8	4x4	8 x 2	16 x 1
Data dist.	46	55	34	29	30	122	123	104	86	83	198	202	156	150	196
Indexing	155	318	716	1588	3230	259	580	1263	2624	5718	580	1253	2856	6338	14653
Matching	2031	1168	654	315	98	4222	2519	1430	689	187	5314	3244	1988	1316	322
Total	2233	1541	1405	1932	3358	4603	3222	2797	3398	5988	6092	4698	5000	7805	15170

Bowtie sequential and parallel running time

Some unexpected results

Zebrafish genome															
			4M read	s		16M reads				64M reads					
	(Index=7197, Match=951, Total=8148)					(Index=7197, Match=3878, Total=11075)				(Index=7197, Match=16438, Total=23635)					
	1x16	2 x 8	4 x 4	8 x 2	16 x 1	1x16	2 x 8	4 x 4	8 x 2	16 x 1	1x16	2 x 8	4 x 4	8 x 2	16 x 1
Data dist.	41	29	28	30	47	122	123	104	86	83	661	590	531	487	475
Indexing	259	580	1263	2624	5718	259	580	1263	2624	5718	259	580	1263	2624	5718
Matching	1051	627	356	176	50	4222	2519	1430	689	187	20404	11422	6478	3252	1010
Total	1351	1236	1648	2830	5815	4603	3222	2797	3398	5988	21324	12592	8272	6362	7204
16M reads															
		Lan	celet ger	nome		Zebrafish genome				Human genome					
	(Index=3297, Match=2337, Total=5634)					(Index=7197, Match=3878, Total=11075)				(Index=20775, Match=3961, Total=24736)					
	1x16	2 x 8	4x4	8 x 2	16x1	1x16	2 x 8	4x4	8 x 2	16 x 1	1x16	2 x 8	4x4	8 x 2	16x1
Data dist.	46	55	34	29	30	122	123	104	86	83	198	202	156	150	196
Indexing	155	318	716	1588	3230	259	580	1263	2624	5718	580	1253	2856	6338	14653
Matching	2031	1168	654	315	98	4222	2519	1430	689	187	5314	3244	1988	1316	322
Total	2233	1541	1405	1932	3358	4603	3222	2797	3398	5988	6092	4698	5000	7805	15170

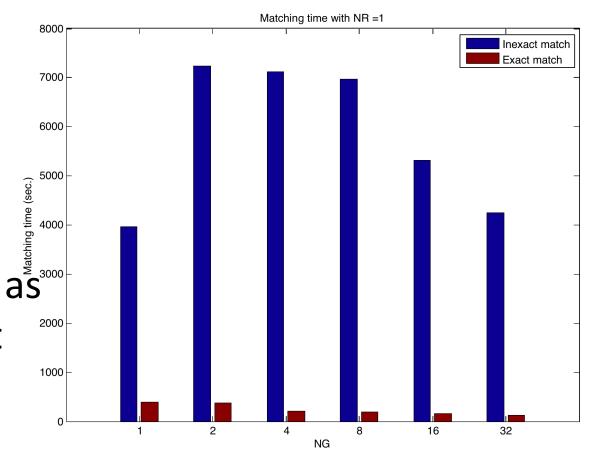

Bowtie sequential and parallel running time

16M Reads Whole genome 80% mapped 40% mapped 40% mapped 2 genome portions R1 R2 16 genome portions 5% 5% 5% 5%

16M Reads

	Mapped reads	Bowtie Matching Time
R1	90.04%	121
R2	4.2%	482

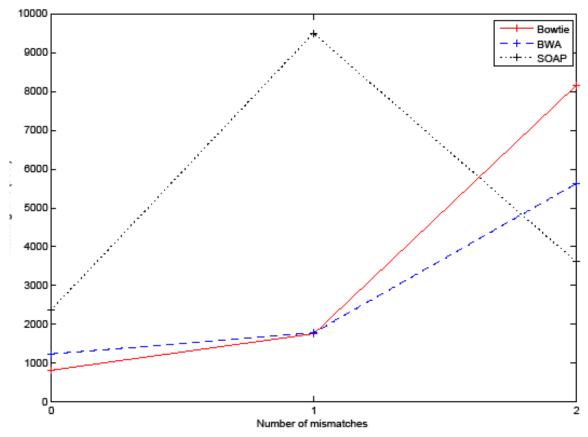
Inexact matching phase leads to increasing the running time


Inexact vs Exact Matching in Bowtie

R: 16M

G: Human

• NG: 1, 2, 4, 8, 16, 32


overhead is offset by decreased index size as NG increases but not enough!

Varying Number of Mismatches

- G: Human, R: 21M
- Number of mismatches: 0, 1, 2
- SOAP is not designed for finding "at most" 1 mismatch: requires 2 executions

Conclusions

- Experimented different data distribution strategies
- Tested on the state of the art mapping tools: Bowtie, BWA, and SOAP
- For Index+Matching Scenario observed 2.2 to 10.7 speedup on 16 nodes
- Best data distribution strategy depends on:
 - Input scenario: genome size, number of reads, and number of nodes
 - Relative efficiency of the indexing and matching steps
 - algorithm used for inexact matching
- In case of building the index once, it is better to use read partitioning only
- Although our intention was not to compare the tools, yet \odot
 - Bowtie indexing is relatively slow
 - On human genome, Bowtie is faster for exact matching but when increasing the number of mismatches SOAP becomes the fastest

Future Work: Our Goal

- Develop generic parallelization framework
 - Identify limitations due to the application scenarios and tools
- Find the "right" tool for the given problem
 - further analysis of tools and methods are needed
 - Quality vs Runtime tradeoffs

- For more information
 - umit@bmi.osu.edu
 - http://bmi.osu.edu/~umit or http://bmi.osu.edu/hpc
- Research at the HPC Lab is funded by

