
4/9/10 1

MSSG: A Framework for Massive-Scale
Semantic Graphs

Timothy D. R. Hartley1, Umit Catalyurek1,2,
Füsun Özgüner1

1Dept. of Electrical & Computer Engineering
2Dept. of Biomedical Informatics

The Ohio State University

Andy Yoo, Scott Kohn, Keith Henderson
Lawrence Livermore National Laboratory

4/9/10 2

Motivation
•  Graph data is growing in size

–  Kolda et al. (2004) estimate emerging graphs have 1015 entities!
–  Data will be dynamic

•  Large-scale data
–  Out-of-core data structures
–  Parallel computer (shared memory / cluster)

•  Cluster architecture
–  Commodity hardware is still cheap
–  High-speed interconnection networks are becoming commonplace

4/9/10 3

Related work
•  External Memory Data structures

–  Good online performance
•  B tree

–  Good I/O performance
•  Buffer tree (Arge 1996)

•  Parallel Graph
–  Efficient memory usage

•  Frontier BFS (Korf et al. 2005)

–  Efficient scale-free search
•  Prioritize hub vertices (Adamic et al. 2001)

•  Middleware
–  TPIE, River

4/9/10 4

Objectives
•  Design and implement a flexible, easy-

to-use API and associated middleware
platform for analyzing massive-scale
semantic graphs

4/9/10 5

Outline
•  Scale-free semantic graphs
•  Massive data
•  Design: MSSG architecture and services
•  Implementation: MSSG prototype

•  Experimental setup and results
•  Conclusion
•  Future Work

4/9/10 6

Semantic graphs
•  Vertices/Edges have type information
•  Topology restricted by ontological information
•  Useful to model real interaction networks

–  Social networks

4/9/10 7

Scale-free graphs
•  Roughly follow

power-law
•  Small-world

phenomenon

•  Many vertices have
low degree

•  A few 'hub' vertices
have large degree

•  Pubmed Extraction

4/9/10 8

Massive Data?
•  Massively multithreaded SMP

–  Cray MTA-2

•  Massively parallel cluster
–  IBM Bluegene/L

•  Advantages
–  High performance

•  Disadvantages
–  Expensive!
–  Algorithm tightly coupled with data distribution

4/9/10 9

MSSG architecture
•  Scalable

–  Parallel layout
•  Multiple front-end nodes
•  Multiple back-end nodes

–  External memory
•  Back-end nodes

•  Practical
–  Target graphs will be

dynamic
•  Streaming updates

Front-end Back-end Edges

Disk(s)
Input Graph

4/9/10 10

MSSG architecture (continued)
•  Services

–  Analysis
•  Graph Query Service

–  Storage
•  Ingestion Service
•  Graph Database Service

Front-end Back-end Edges

Disk(s)
Input Graph

4/9/10 11

Graph Query service
•  Queries come in via user-interface
•  Posted to database back-end nodes
•  Orchestrated by the query service
•  Implementation possibilities

–  BFS
–  Best-first search
–  Pattern search
–  Neighborhood quality quantification

4/9/10 12

Ingestion service
•  Edges streamed from

ingestion front-end node(s)
to database back-end node
(s)
–  Window size important

•  Amortize disk /
communication latency

•  Ingestion node(s) must
partition the graph
–  Plug-in architecture 0 1 2

4/9/10 13

Graph Database service
•  Exposes simple interface

–  Get adjacency list for vertex
–  Store vertex metadata (e.g. visited at level x)

•  Plug-in architecture to allow various database types to be
used
–  In memory

•  Array
•  HashMap

–  Out-of-core
•  BerkeleyDB
•  Commodity database installation (MySQL)
•  Streaming Graph
•  GrDB

4/9/10 14

Streaming Graph details
•  Active Disk research

–  Netezza streaming database

•  Finding adjacency list of a vertex requires full scan
–  Read a chunk of the graph from disk

–  Pick which edges match vertex
–  Return full list of adjacent vertices

•  Slow for single adjacency list lookup
•  Fast when fringe expansion touches large portion of graph

–  Lower seek overhead

•  Good as worst-case bound

4/9/10 15

GrDB: Scale-free graph storage
•  Wide variability in vertex degree
•  Design decisions

–  Fixed record size
•  Wasted space
•  MSSG targets streaming graphs

–  Variable record size
•  Efficient space usage
•  Complex

–  Multiple fixed record files
•  Efficient space usage
•  Simple

4/9/10 16

GrDB (continued)
•  Targeted to scale-free graphs
•  File-levels

–  Record sizes chosen to match scale-free graph vertex degree
distribution

–  File level 0
•  2 records

–  File level 1
•  4 records

•  Records grouped together into sub-blocks
•  Sub-blocks grouped into Disk-blocks

–  Disk-block = unit of I/O

4/9/10 17

GrDB (continued)

4/9/10 18

MSSG Prototype

Java

DataCutter

MPI

4/9/10 19

MSSG Prototype
•  MPI

–  Fast, scalable parallel communication
–  High-speed interconnect support

•  DataCutter
–  Easy-to-use filter-based API
–  Rapid development
–  Robust processing model

•  Java
–  Rapid development
–  Fast execution time

4/9/10 20

DataCutter
•  Component-Framework for task- and

data-parallel manipulation of large
scientific data
–  Transparent copies of filters
–  C++/Java/Python filters
–  Each filter runs as a thread

•  Filter-stream metaphor of data
processing
–  Data is streamed from producer to

consumer filters
•  Provide grid-based distributed

computation and application-specific
storage access

•  Filters form a parallel workflow across
any number of heterogeneous nodes

4/9/10 21

Experimental setup
•  24 nodes - dual 2.4GHz AMD Opteron 250

–  8 GB RAM per node
–  500 GB local disks in RAID 0 per node

–  Infiniband

•  Graphs
–  Pubmed-S: 3,751,921 vertices and 27,841,781 edges
–  Pubmed-L: 26,676,177 vertices and 519,630,678 edges
–  Syn-2B: 100 Million vertices and 2 Billion edges

•  Metrics
–  Search time (s)
–  Aggregate Edges/s processed

4/9/10 22

Experimental Results: Pubmed-S

4/9/10 23

Experimental Results: Pubmed-S

4/9/10 24

Experimental Results: Pubmed-L

4/9/10 25

Experimental Results: Pubmed-L

4/9/10 26

Experimental Results: Pubmed-L

4/9/10 27

Experimental Results: Syn-2B

4/9/10 28

Experimental Results: Syn-2B

4/9/10 29

Conclusions and Future Work
•  One of the first parallel, out-of-core BFS algorithms
•  Good first step
•  One trillion edge graph

–  Expected ingestion with GrDB in roughly 77 hours
–  Expected average search in 10s of minutes

•  Future work
–  I/O-efficient hash / index structure needed
–  More performance testing
–  Larger graphs

4/9/10 30

Thank you!

4/9/10 31

Breadth-first search
•  Serialized version

–  Use queue for frontier
vertices

•  Parallel version
–  Use global queue

•  High synchronization
overhead

–  Use local queue
•  Must decide vertex

partitioning

4/9/10 32

Breadth-first search (continued)
while (goal not found)

 while (fringe empty)
 fringe <- chunk from other node
 if (goal found by other node)

 quit search
 expand (fringe)
 if (goal found by this node)
 quit search
 send fringe to other nodes
 level = level + 1

