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Problem definition

Let G = (V, E) be an undirected graph. .
Given a set of m seed nodes .
Q={q1,...,qm} st. QCV, 250 %% . .
and a parameter k, return top-k items .
which are relevant to the ones in Q,

but diverse among themselves, covering

different aspects of the query.

Online shopping Academic Social

product paper-to-paper collaboration friendship
G = (V7 E ) co-purchasing citations network network

* one product » paper/field of interest » user himself/herself
Q g \V4 * previous purchases » set of references + set of people

* page visit history * researcher himself/herself
R V product recommendations  references for related work friend recommendations

C “you might also like...” new collaborators “you might also know...”
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Problem definition

Let G = (V, E) be an undirected graph. .
Given a set of m seed nodes .
Q={q1,...,qm} st. QCV, 250 %% . .
and a parameter k, return top-k items .
which are relevant to the ones in Q,

but diverse among themselves, covering

different aspects of the query.

« We assume that the graph itself is the only information we have, and
no categories or intents are available
* no comparisons to intent-aware algorithms [Agrawal09, Welch11,etc.]
« but we will compare against intent-aware measures

» Relevance scores are obtained with Personalized PageRank (PPR)
[Haveliwala02] ) {1 Jm, ifveQ

V) =
p*(v) 0, otherwise.
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Result diversification algorithms

* GrassHopper [Zhu07]

— ranks the graph k times
 turns the highest-ranked vertex into a sink node at each iteration

highest-ranked
6 in the next step
2
highest-ranked 4 &
8 : vertex R g, turned into
ot 5. " asink node
0.015 o,
6 .l
'_::.&':::,'
e 0.01
4 AL
- »W~ S 0.005
2 * r‘-. e
% 5 10

R =1{91,92.93}
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Result diversification algorithms

* GrassHopper [Zhu07]

— ranks the graph k times
 turns the highest-ranked vertex into a sink node at each iteration

* DivRank [Mei10]
— based on vertex-reinforced random walks (VRRW)

 adjusts the transition matrix based on the number of visits to the
vertices (rich-gets-richer mechanism)

ST
sample graph weighting with PPR diverse weighting
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Result diversification algorithms

* GrassHopper [Zhu07]

— ranks the graph k times
 turns the highest-ranked vertex into a sink node at each iteration

* DivRank [Mei10]
— based on vertex-reinforced random walks (VRRW)

 adjusts the transition matrix based on the number of visits to the
vertices (rich-gets-richer mechanism)

* Dragon [Tong11]
— based on optimizing the goodness measure

* punishes the score when two neighbors are included in the
results
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Measuring diversity

Relevance measures Diversity measures
 Normalized relevance < /-step graph density

Z’UEST‘- ZU,UES,U;&U dé(u7v)

1”6](5) = v dGHSg(S) —
S S| < (|S5]—1)
 Difference ratio * [-expansion ratio
. sSnsS
diff(S,5) =1 — ‘ | o0(S) = [N (5))
S| n
where
e NDCG Ni(S)=SUfve(V—S5):Tues duv) <)
sy + 1=2 log, 1
nDCGk — Z ’ 1 g2

7T1 + ZZ 2 log2z
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Bicriteria optimization measures

aggregate a relevance and a diversity measure

[Carbonell98]
fvumr(S) = (1 — )\)Z Ty — A max sim(u,v)

. [L|11] veES uesS Ziﬁ
fu(8) =2 m+2 |N£S)|
veS
* [Vieira11]
fausp(S) = (k—1)(1=X)> m +23> Y div(u,v)
veS ueS veS
UFEV

max-sum diversification, max-min diversification,
k-similar diversification set, etc. [Gollapudi09]
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Bicriteria optimization is not the answer

GOUgle bicriteria optimization

[PS] 25.1 Introduction 25.2 Bicriteria Problems - School of Computer ...
www.cs.cmu.edu/afs/cs/academic/class/15854-f05/wwwi/.../llec25.ps ~

Dec 7, 2005 — 25.1 Introduction. In this lecture we will consider bicriteria
problems - problems in which there are. two optimization functions.

Bicriteria Optimization Problem of Designing an Index Fund - JStor
www.jstor.org/stable/3009912 ~

by Y Tabata - 1995 - Cited by 32 - Related articles

Key words: bicriterion optimization, index fund, market portfolio ... So, the
problem can be regarded as a bicriteria optimization problem: (1) to minimize the

Bicriteria Optimization of a Queue with a Controlled Input Stream
dl.acm.org/citation.cfm?id=1017053 ~

by AB Piunovskiy - 2004 - Cited by 12 - Related articles

Bicriteria Optimization of a Queue with a Controlled Input Stream, 2004 Article.
Bibliometrics Data Bibliometrics. - Downloads (6 Weeks): 0 - Downloads (12 ...

[PDF] The Smoothed Number of Pareto Optimal Solutions in Bicriteria ...
www.roeglin.org/publications/IPCOO07.pdf ~

by R Beier - Cited by 16 - Related articles

of Pareto optimal solutions for general bicriteria integer optimization problems in
the framework of smoothed analysis. Our analysis is based on a semi-random ...

[PS] Finding Representative Systems for Discrete Bicriteria Optimiza...
kluedo.ub.uni-kl.de/files/1655/hamacher_nr85.ps ~

by HW Hamacher - 2005 - Cited by 1 - Related articles

Finding Representative Systems for Discrete. Bicriteria Optimization Problems by
Box. Algorithms. Horst W. Hamacher., Christian Roed Pedersent, Stefan ...

Bi-criteria optimization of structures liable to instability - Springer
link.springer.com/content/pdf/10.1007/BF01742506 ~

by J Pietrzak - 1994 - Cited by 3 - Related articles

Bi-criteria optimization of structures liable to instability. J. Pietrzak*. Civil
Engineering Department, The University of Beira Interior, P-6200 Covilhg, Portugal

[PDF] A Bicriteria-Optimization-Approach-Based Dimensionality-Red...
www.iro.umontreal.ca/~mignotte/Publications/|IEEE_GRS11_.pdf ~

by M Mignotte - Related articles

reduction model based on a bicriteria global optimization ap- proach for the color
display of hyperspectral images. The proposed fusion model is derived from ...

rCon's.tructing robust crew schedules with bicriteria optimization
onlinelibrary.wiley.com/doi/10.1002/mcda.321/pdf ~
by M Ehrgott - 2002 - Cited by 121 - Related articles
We develop a bicriteria optimization framework to generate Pareto optimal
schedules for the domestic airine. A Pareto optimal schedule is one which does
not ...

Ned Dimitrov - Probabilistic Bicriteria Optimization

neddimitrov.org/research/probabilistic-bicriteria-optimization.html ~

Probabilistic Bicriteria Optimization. We consider a multiperiod system operation
meblem with two conflicting objectives, mini-mizing cost and risk. Risk stems ...

-

— top-% + random
BE- B |

www.jtben.com/document/358582 ~ Translate this page
Nov 13, 2010 - HE—T, {RBAE. TERMHUNA. K. BR. FEER, REEK
IEFIWAPERINEE, ERBIDURIARIRMT. www.baidu.com/ - FITRIRE ...

Simple Spiderman Cookies - The Sweet Adventures of Sugar Belle
www.sweetsugarbelle.com/2012/08/simple-spider-man-cookies/ ~
Aug 18, 2012 — Not too long ago | took the kiddos to see The Amazing Spider-Man.

Once upon a time | would have told you that | am NOT an action movie kind ... 4

— top-% + greedy-0,

CNN.com - Breaking News, U.S., World, Weather, Entertainment ... h

www.cnn.com/ v
CNN.com delivers the latest breaking news and information on the latest top stories,
weather, business, entertainment, politics, and more. For in-depth coverage, ...

Wikipedia

www.wikipedia.org/ ~

Wikipedia, the free encyclopedia that anyone can edit.
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* Obijective: diversify top-10 results
* Two query-oblivious algorithms:
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Bicriteria optimization is not the answer

 normalized relevance and 2-step graph density

1 T | | 0.3 | | !
top-90%+random —- - -- top-90%+greedy-o, - - - --
top-75%-+random -- -- top-75%+greedy-o, -- -- better
top-50%+random -—--— 0.2 top-50%-+greedy-o, -—--—
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rel rel

« evaluating result diversification as a bicriteria optimization problem with
— arelevance measure that ignores diversity, and
— a diversity measure that ignores relevancy.
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A better measure? Combine both

* We need a combined measure that tightly
iIntegrates both relevance and diversity aspects
of the result set

« goodness [Tong11]

penalize the score when two results share

_. an edge
fa(S) =2 mi|-{d > A(j, i)
1€S 1,]€S
max-sum relevance (1—d) Z m; Zp* (Z)
jeS €S

— downside: highly dominated by relevance
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Proposed measure: /-step expanded relevance

« a combined measure of
— [-step expansion ratio (0,)

— relevance scores (1) exprely(S) = Z Ty
vEN,(S)

(-step expanded relevance:

. quantifies: relevance of where Ny(S) is the ¢-step expansion

the covered region set of the result set S, and 7 is the
PPR scores of the items in the graph.
of the graph

1

L ! top-90%-+random — - — - -

top-75%-+random -- --
top-50%-+random -—--—
top-25%-+random

» do some sanity check Al andom — - -
. . 0.6 |- 4 top-90%-+greedy-o, — - - -
with this new measure

08 |-

top-75%+greedy-o, -- --
top-50%-+greedy-c, -—--—
top-25%+greedy-o,

All greedy-o, — — —

exprel,

04 |-

0.2

510 20 50 100
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Correlations of the measures

rel nDCG diff dens; dens; [P goodness exprel, exprel,
) I
O
PE
> g
g =
(b}
[ -
£ -0.95 -0.80 - |-
\.
( @
5 074 072 -0.76
> | s
i) é 0.76 0.67 -0.76
o <
O s -0.25 -0.19 0.29 -0.30 -0.01 - f
\e: -0.25 -0.19 0.29 -0.31 -0.03 0.99 -
tgi‘loeogquszrlli;?nrglansalj?:Sby £ 096 0.86 -0.90 070 067 -021 -0.21
T 034 059 -028 037 044 001 -003 032 - | P
exprel has no high correlations with = B
e releE e ordiversity R 0.20 (0153 r7am= ()51 3 R ()8l v 0.33 0.26 0.23 0.21 0.86

Kucuktunc et al. “Diversified Recommendation on Graphs: Pitfalls, Measures, and Algorithms”, WWW'13 14/25



Proposed algorithm: Best Coverage

Can we use /-step expanded
relevance as an objective function?

Define: exprel,-diversified top-k ranking (DTRY)
S = argmax exprel,(S’)
S'CVv
1S =k

ALGORITHM 1: BestCoverage

Input: £, G, 7,/

Output: a list of recommendations S

S=10

while |S| < k do
v* < argmax, g(v, S)
S+ Su{v'}

return S

Complexity: generalization of weighted maximum coverage problem

— NP-hard!

ALGORITHM 2: BestCoverage (relaxed)

— but exprel, is a submodular function (Lemma 4.2)

— a greedy solution (Algorithm 1) that selects the item
with the highest marginal utility

g(v,S) = ZU’GNK({’U})—Ng(S) T
at each step is the best possible polynomial time
approximation (proof based on [Nemhauser78])

Relaxation: computes BestCoverage on
highest ranked vertices to improve runtime

Input: k,G, 7, £

Output: a list of recommendations S

S=10

SORT(V') w.r.t m; non-increasing

S1 + V[1..K'], i.e., top-k’ vertices where k' = ké*

Vv € S1,g(v) < g(v,0)

Vv € 51, ¢(v) < UNCOVERED

while |S| < k do

v* 4= argmax,c g, 9(v)

S« SuU{v'}

S2 + Ny({v*})

for each v’ € S2 do

{ if ¢(v") = UNCOVERED then

L S3 «— Ne({’ul})

¢(v") + COVERED

return S

Yu € 53, g(u) < g(u) — myr
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Experiments

« 5 target application areas, 5 graphs from SNAP

Dataset V]| | F| 0| D | Dgyy | CC
AMAZON(O601 403.3K 3.3M | 16.8 | 21 7.6 | 0.42
CA-ASTROPH 18.7K | 396.1K | 42.2 | 14 5.110.63
CIT-PATENTS 3.7TM | 16.5M | 8.7 |22 9.4 1 0.09
SOC-LIVEJOURNAL1 4.8M | 68.9M | 284 | 18 6.5 | 0.31
WEB-(GOOGLE 875.7TK 5. 1M | 11.6 | 22 8.1 0.60

* Queries generated based on 3 scenario types
— one random vertex

— random vertices from one area of interest
— multiple vertices from multiple areas of interest
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Results — relevance

AMAZONO0O601, combined SOC-LIVEJOURNAL1, combined

I e e —— 1§ M S I $ <
Q A\ Y
-
Q \
\\ Q
0.8 ‘b = 0.8 \\ =1
=N \ “o.
AN _—
X\ 8T~ N AN
0.6 - \g:\_‘_\.\ -3 4 06| W O--—_ . =
_ \\"‘ﬂ._\_‘*‘: “X———-—::::::=V \\El- ~~~~~~ )
" —_ © - . ¥ -~
GLJ .. A —. . Tl —_
= — A ABD— A T e A
0.4 | T o0al BLSIIITITT -
S i
—+— PPR(top-k) ~ TTeaiooo - : ¥ ¥ = X— === Koo oo
— % — GrassHopper GSparse i —+— PPR (top-k)
0.2 - --%-- Dragon -—a-— BCH 1 021 — x — GrassHopper --&-- k-RLM 7]
---z--- PDivRank BC2 - -%-- Dragon GSparse
CDivRank — = — BC1 (relaxed) ---3--- PDivRank -—a-— BCA1
--6 -+ k-RLM BC2 (relaxed) CDivRank BC1 (relaxed)
0 1 1 | | 0 1 1 | |
510 20 50 100 510 20 50 100

« Methods should trade-off relevance for better diversity
* Normalized relevance of top-k set is always 1

 DRAGON always return results having 70% similar items
to top-k, with more than 80% rel score
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Results — coverage

4
AMAZON0601, combined
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oej]
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0.3
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0
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GSparse
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— % — GrassHopper —2-— BC1
% - - Dragon BC2
- ---&--- PDivRank — v — BC1 (relaxed)

CDivRank

BC2 (relaxed)

510 20 50

100

 [-step expansion ratio (0,) gives the graph coverage of
the result set: better coverage = better diversity

+ BesitCoverage and DivRank variants, especially
BC, and PDivRank, have the highest coverage
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Results — expanded relevance

4
AMAZONOG601, com bined SOC-LIVEJOURNALL, com bined
0.8 LI [ [ 0.8 LI [ [ ///?s
0.75 |- BC2 0.75 - //CﬁGféss“re """""""""" .
/;//-.’ /./-//—/ =
07 | _/-ﬁeﬁB{;"r - 071 P 1
/ég\e@‘) o 0.65 /
2 - 09 = 7]
oo A P ;/ g7 R
_« St GRANS- L oep [ e
st 7 oHNRe /
S AP 0.55 -5 7 o
X 0.55 . - A
o o 05F —+— PPR (top-k) -
@ A — % — GrassHopper
05 &/ / D
18" 045 | “ %o Dragon
ey ---#--- PDivRan
0.45 —g' /2~ PPR (top-K) CBigﬁmrse R CDvRank |
i Sl grassHOPper'—A'— BG2 ' . --@-- k-RLM
| @, - -% - - Dragon i g GSparse
04 ¥ ------ PDivRank — = — BC1 (relaxed) 0.35 - & -—a-— BC1 7
0.35 L1 | CDivRank BC2 (relaxed) 03 L1 1 | | BC1 (relaxed)
510 20 50 100 510 20 50 100
K k

« combined measure for relevance and diversity
« BestCoverage variants and GrassHopper perform better

« Although PDivRank gives the highest coverage on
amazon graph, it fails to cover the relevant parts!
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time (sec)

time (sec)

Results — efficiency

CA-ASTROPH, combined
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BC, always performs
better, with a running
time less than, DivRank
and GrassHopper

BC, (relaxed) offers
reasonable diversity,
with a very little
overhead on top of the
PPR computation
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Results — intent aware experiments

 evaluation of intent-oblivious algorithms against
Intent-aware measures

* two measures
— group coverage [Li11]
— S-recall [Zhai03]

 cit-Patent dataset has the categorical
information

— 426 class labels, belong to 36 subtopics
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Results — intent aware experiments

e group coverage [Li11]
— How many different groups are covered by the results?
— omits the actual intent of the query

70 30
—+—'PPR (top-k) | — IBPR ool PR
| — % — Dragon Y — » — Dragon \ -
v S @ T o covman ande” 1
D 5| B CDivRank 8) KRLM P 'aQYS" -
% k-RLM ‘a(\* ¥ 5 20+ --6-- BC1 /// O‘\Q%—”BC -
Dol BC; \l?\ 2 BC, . ? 2
> BC, 0\ BGCy 1 § | = BC, (relaxed) _—
8 | —=- BC (relaxed), ? | ot BC, (refaxed) - P
n 0 BC (relaxed) '_/,:»_/___./,.—n ol V- A/"Ra”dofn — s
8 |-=- AIIRandOm ¥ _/// 210 :
6 20 |- =TT == .g
S w
10 | 5
0 0

1 1 1 1 1
5 10 20 50 100 5 10 20 50 100

* top-k results are not diverse enough
« AllIRandom results cover the most number of groups
- PDivRank and BC, follows
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Results — intent aware experiments

S-recall [Zhai03], Intent-coverage [Zhu11]
— percentage of relevant subtopics covered by the result set
— the intent is given with the classes of the seed nodes

&) @

0.6

] msmmm PPR (top-k)
1 s Dragon

1 msssm PDivRank

1 ==ssm CDivRank

] k-RLM

] mmm BC,

BC,

|1 mmmm BC, (relaxed)
BC, (relaxed)
] msssm AllIRandom

o
o
T

o
o

DivRank |

I
~

DivRank
S-recall (subtopic)
DivRank

©
=

<
(o8
©]
-—

« AlIRandom brings irrelevant items from the search space

» top-k results do not have the necessary diversity

- BC, variants and BC, perform better than DivRank

- BC, (relaxed) and DivRank scores similar, but BC,r much faster
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Conclusions

Result diversification should not be evaluated as a
bicriteria optimization problem with

— arelevance measure that ignores diversity, and
— a diversity measure that ignores relevancy

« [-step expanded relevance is a simple measure that
combines both relevance and diversity

, a greedy solution that maximizes
exprel, is a (1-1/e)-approximation of the optimal solution

variants perform better than others, its
relaxation is extremely efficient

* goodness in DRAGON is dominated by relevancy
» DivRank variants implicitly optimize expansion ratio
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Wexner
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* For more information visit
* http://bmi.osu.edu/hpc

* Research at the HPC Lab is funded by

Graduate Studies Instiute
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