



### Diversified Recommendation on Graphs: Pitfalls, Measures, and Algorithms

Onur Küçüktunç<sup>1,2</sup> Erik Saule<sup>1</sup> Kamer Kaya<sup>1</sup> Ümit V. Çatalyürek<sup>1,3</sup>

<sup>1</sup>Dept. Biomedical Informatics <sup>2</sup>Dept. of Computer Science and Engineering <sup>3</sup>Dept. of Electrical and Computer Engineering **The Ohio State University** 

WWW 2013, May 13-17, 2013, Rio de Janeiro, Brazil.

# Outline

- Problem definition
  - Motivation
  - Result diversification algorithms
- How to measure diversity
  - Classical relevance and diversity measures
  - Bicriteria optimization?!
  - Combined measures
- Best Coverage method
  - Complexity, submodularity
  - A greedy solution, relaxation
- Experiments

# **Problem definition**

Let G = (V, E) be an undirected graph. Given a set of m seed nodes  $\mathcal{Q} = \{q_1, \ldots, q_m\}$  s.t.  $\mathcal{Q} \subseteq V$ , and a parameter k, return top-k items which are relevant to the ones in  $\mathcal{Q}$ , but diverse among themselves, covering different aspects of the query.



|               | Online shopping                                                                     | Academic                                                                                                   | Social                                                       |
|---------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| = (V, E)      | product<br>co-purchasing                                                            | paper-to-paper collaboration<br>citations network                                                          | friendship<br>network                                        |
| $\subseteq V$ | <ul><li>one product</li><li>previous purchases</li><li>page visit history</li></ul> | <ul> <li>paper/field of interest</li> <li>set of references</li> <li>researcher himself/herself</li> </ul> | <ul><li>user himself/herself</li><li>set of people</li></ul> |
| $C \subset V$ | product recommendations<br>"you might also like…"                                   | references for related work new collaborators                                                              | friend recommendations<br>"you might also know…"             |

G

0

 $\mathcal{R}$ 

# **Problem definition**

Let G = (V, E) be an undirected graph. Given a set of m seed nodes  $\mathcal{Q} = \{q_1, \ldots, q_m\}$  s.t.  $\mathcal{Q} \subseteq V$ , and a parameter k, return top-k items which are relevant to the ones in  $\mathcal{Q}$ , but diverse among themselves, covering different aspects of the query.



- We assume that the graph itself is the only information we have, and **no categories or intents are available** 
  - no comparisons to intent-aware algorithms [Agrawal09,Welch11,etc.]
  - but we will compare against intent-aware measures
- Relevance scores are obtained with **Personalized PageRank (PPR)** [Haveliwala02]  $p^*(v) = \begin{cases} 1/m, & \text{if } v \in Q\\ 0, & \text{otherwise.} \end{cases}$

# **Result diversification algorithms**

- GrassHopper [Zhu07]
  - ranks the graph k times
    - turns the highest-ranked vertex into a sink node at each iteration



# Result diversification algorithms

- GrassHopper [Zhu07]
  - ranks the graph k times
    - turns the highest-ranked vertex into a sink node at each iteration
- DivRank [Mei10]
  - based on vertex-reinforced random walks (VRRW)
    - adjusts the transition matrix based on the number of visits to the vertices (*rich-gets-richer* mechanism)



# Result diversification algorithms

- GrassHopper [Zhu07]
  - ranks the graph k times
    - turns the highest-ranked vertex into a sink node at each iteration
- DivRank [Mei10]
  - based on vertex-reinforced random walks (VRRW)
    - adjusts the transition matrix based on the number of visits to the vertices (*rich-gets-richer* mechanism)
- Dragon [Tong11]
  - based on optimizing the goodness measure
    - punishes the score when two neighbors are included in the results

# Measuring diversity

Relevance measures

• Normalized relevance • *l*-step graph density

$$rel(S) = \frac{\sum_{v \in S} \pi_v}{\sum_{i=1}^k \hat{\pi}_i}$$

Difference ratio

$$diff(S, \hat{S}) = 1 - \frac{|S \cap \hat{S}|}{|S|}$$

nDCG

nDCG<sub>k</sub> = 
$$\frac{\pi_{s_1} + \sum_{i=2}^{k} \frac{\pi_{s_i}}{\log_2 i}}{\hat{\pi}_1 + \sum_{i=2}^{k} \frac{\hat{\pi}_i}{\log_2 i}}$$

### **Diversity measures**

$$\operatorname{dens}_{\ell}(S) = \frac{\sum_{u,v \in S, u \neq v} d_{\ell}(u,v)}{|S| \times (|S| - 1)}$$

*l*-expansion ratio

$$\sigma_{\ell}(S) = \frac{|N_{\ell}(S)|}{n}$$

where

 $N_{\ell}(S) = S \cup \{v \in (V - S) : \exists u \in S, d(u, v) \le \ell\}$ 

Kucuktunc et al. "Diversified Recommendation on Graphs: Pitfalls, Measures, and Algorithms", WWW 13

# **Bicriteria optimization measures**

- aggregate a relevance and a diversity measure
- [Carbonell98]

$$f_{MMR}(S) = (1 - \lambda) \sum_{v \in S} \pi_v - \lambda \sum_{u \in S} \max_{\substack{v \in S \\ u \neq v}} sim(u, v)$$
  
[Li11]  
$$f_L(S) = \sum \pi_v + \lambda \frac{|N(S)|}{n}$$

 $v \in S$ 

• [Vieira11]

$$f_{MSD}(S) = (k-1)(1-\lambda)\sum_{v \in S} \pi_v + 2\lambda \sum_{u \in S} \sum_{\substack{v \in S \\ u \neq v}} div(u,v)$$

 max-sum diversification, max-min diversification, k-similar diversification set, etc. [Gollapudi09]

# Bicriteria optimization is not the answer

Google bicrite

#### bicriteria optimization

[PS] 25.1 Introduction 25.2 Bicriteria Problems - School of Computer ... www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/.../lec25.ps \* Dec 7, 2005 - 25.1 Introduction. In this lecture we will consider bicriteria optimization problems - problems in which there are. two optimization functions.

#### Bicriteria Optimization Problem of Designing an Index Fund - JStor www.istor.org/stable/3009912 \*

by Y Tabata - 1995 - Cited by 32 - Related articles Key words: bicriterion optimization, index fund, market portfolio ... So, the problem can be regarded as a bicriteria optimization problem: (1) to minimize the

#### Bicriteria Optimization of a Queue with a Controlled Input Stream dl.acm.org/citation.cfm?id=1017053 ~

by AB Plunovskiy - 2004 - Cited by 12 - Related articles Bicriteria Optimization of a Queue with a Controlled Input Stream, 2004 Article. Bibliometrics Data Bibliometrics. · Downloads (6 Weeks): 0 · Downloads (12 ...

#### [PDF] The Smoothed Number of Pareto Optimal Solutions in Bicriteria ..

www.roeglin.org/publications/IPCO07.pdf by R Beier - Cited by 16 - Related articles

of Pareto optimal solutions for general **bicriteria** integer **optimization** problems in the framework of smoothed analysis. Our analysis is based on a semi-random ...

#### [PS] Finding Representative Systems for Discrete Bicriteria Optimiza...

kluedo.ub.uni-kl.de/files/1655/hamacher\_nr95.ps ▼ by HW Hamacher - 2005 - Cited by 1 - Related articles Finding Representative Systems for Discrete. Bicriteria Optimization Problems by Box. Algorithms. Horst W. Hamacher, Christian Roed Pedersen†, Stefan ...

#### Bi-criteria optimization of structures liable to instability - Springer

Ink.springer.com/content/pdf/10.1007/BF01742506 ▼ by J Pietrzak - 1994 - Cited by 3 - Related articles BI-criteria optimization of structures liable to instability. J. Pietrzak\*. Civil Engineering Department, The University of Beira Interior, P-6200 Covilhg, Portugal

#### [PDF] A Bicriteria-Optimization-Approach-Based Dimensionality-Red...

www.iro.umontreal.ca/~mignotte/Publications/IEEE\_GRS11\_.pdf <br/>
by M Mignotte - Related articles

reduction model based on a bicriteria global optimization ap- proach for the color display of hyperspectral images. The proposed fusion model is derived from ...

#### Constructing robust crew schedules with bicriteria optimization onlinelibrary.wiley.com/doi/10.1002/mcda.321/pdf -

by M Ehrgott - 2002 - Cited by 121 - Related articles We develop a bicriteria optimization framework to generate Pareto optimal schedules for the domestic airline. A Pareto optimal schedule is one which does not ...

#### Ned Dimitrov - Probabilistic Bicriteria Optimization

neddimitrov.org/research/probabilistic-bicriteria-optimization.html Probabilistic Bicriteria Optimization. We consider a multiperiod system operation problem with two conficting objectives, mini-mizing cost and risk. Risk stems ...

#### 0

- Objective: diversify top-10 results
- Two query-oblivious algorithms:

### – top-% + random

#### 百度-剪贴本

www.jtben.com/document/358582 ▼ Translate this page Nov 13, 2010 – 百度一下, 你就知道. 主要提供网页、音乐、图片、新闻搜索, 同时有帖 吧和WAP搜索功能。显示"BIDU"的股票报价. www.baidu.com/ - 网页快照 ...

#### Simple Spiderman Cookies - The Sweet Adventures of Sugar Belle www.sweetsugarbelle.com/2012/08/simple-spider-man-cookies/ -Aug 18, 2012 – Not too long ago I took the kiddos to see The Amazing Spider-Man. Once upon a time I would have told you that I am NOT an action movie kind ...

### - top-% + greedy- $\sigma_2$

#### CNN.com - Breaking News, U.S., World, Weather, Entertainment ... www.cnn.com/ -

**CNN**.com delivers the latest breaking news and information on the latest top stories, weather, business, entertainment, politics, and more. For in-depth coverage, ...

#### **Wikipedia**

#### www.wikipedia.org/ -

Wikipedia, the free encyclopedia that anyone can edit.

# Bicriteria optimization is not the answer

normalized relevance and 2-step graph density



- evaluating result diversification as a bicriteria optimization problem with
  - a relevance measure that <u>ignores</u> diversity, and
  - a **diversity** measure that <u>ignores</u> **relevancy**.

Kucuktunc et al. "Diversified Recommendation on Graphs: Pitfalls, Measures, and Algorithms", WWW13

# A better measure? Combine both

- We need a combined measure that tightly integrates **both** *relevance* and *diversity* aspects of the result set
- goodness [Tong11]

penalize the score when two results share

an edge

$$f_G(S) = 2\sum_{i \in S} \pi_i - d \sum_{i,j \in S} \mathbf{A}(j,i)\pi_j$$
  
max-sum relevance  
$$- (1-d) \sum_{j \in S} \pi_j \sum_{i \in S} p^*(i)$$

- downside: highly dominated by relevance

### Proposed measure: *l*-step expanded relevance

- a combined measure of
  - *l*-step expansion ratio ( $\sigma_2$ )
  - relevance scores ( $\pi$ )
- quantifies: relevance of the covered region of the graph

 $\ell\text{-step}$  expanded relevance:

$$\operatorname{exprel}_{\ell}(S) = \sum_{v \in N_{\ell}(S)} \pi_{v}$$

where  $N_{\ell}(S)$  is the  $\ell$ -step expansion set of the result set S, and  $\pi$  is the PPR scores of the items in the graph.



 do some sanity check with this new measure

Kucuktunc et al. "Diversified Recommendation on Graphs: Pitfalls, Measures, and Algorithms", WWW 13

### Correlations of the measures



14/25

# Proposed algorithm: Best Coverage

- Can we use *l*-step expanded relevance as an objective function?
- **Define:**  $exprel_{\ell}$ -diversified top-k ranking (DTR $\ell$ )  $S = \underset{\substack{S' \subseteq V \\ |S'| = k}}{\operatorname{argmax}} exprel_{\ell}(S')$

ALGORITHM 1: BestCoverage

Input:  $k, G, \pi, \ell$ Output: a list of recommendations S  $S = \emptyset$ while |S| < k do  $v^* \leftarrow \operatorname{argmax}_v g(v, S)$   $S \leftarrow S \cup \{v^*\}$ return S

- **Complexity:** generalization of *weighted maximum coverage problem* 
  - NP-hard!
  - but  $exprel_l$  is a submodular function (Lemma 4.2)
  - a greedy solution (Algorithm 1) that selects the item with the *highest marginal utility*

 $g(v, S) = \sum_{v' \in N_{\ell}(\{v\}) - N_{\ell}(S)} \pi_{v'}$ at each step is the best possible polynomial time approximation (proof based on [Nemhauser78])

• **Relaxation:** computes BestCoverage on highest ranked vertices to improve runtime

```
ALGORITHM 2: BestCoverage (relaxed)
  Input: k, G, \pi, \ell
  Output: a list of recommendations S
  S = \emptyset
  SORT(V) w.r.t \pi_i non-increasing
  S1 \leftarrow V[1..k'], i.e., top-k' vertices where k' = k\bar{\delta}^{\ell}
  \forall v \in S1, g(v) \leftarrow g(v, \emptyset)
  \forall v \in S1, c(v) \leftarrow \text{UNCOVERED}
  while |S| < k do
       v^* \leftarrow \operatorname{argmax}_{v \in S1} g(v)
       S \leftarrow S \cup \{v^*\}
       S2 \leftarrow N_{\ell}(\{v^*\})
       for each v' \in S2 do
             if c(v') = \text{UNCOVERED} then
                  S3 \leftarrow N_{\ell}(\{v'\})
                  \forall u \in S3, g(u) \leftarrow g(u) - \pi_{v'}
                   c(v') \leftarrow \text{COVERED}
  return S
```

# Experiments

• 5 target application areas, 5 graphs from SNAP

| Dataset          | V                 | E                  | $\overline{\delta}$ | D  | $D_{90\%}$ | CC   |
|------------------|-------------------|--------------------|---------------------|----|------------|------|
| AMAZON0601       | 403.3K            | $3.3\mathrm{M}$    | 16.8                | 21 | 7.6        | 0.42 |
| CA-ASTROPH       | $18.7\mathrm{K}$  | $396.1 \mathrm{K}$ | 42.2                | 14 | 5.1        | 0.63 |
| CIT-PATENTS      | $3.7\mathrm{M}$   | $16.5\mathrm{M}$   | 8.7                 | 22 | 9.4        | 0.09 |
| soc-LiveJournal1 | $4.8\mathrm{M}$   | $68.9\mathrm{M}$   | 28.4                | 18 | 6.5        | 0.31 |
| WEB-GOOGLE       | $875.7\mathrm{K}$ | $5.1\mathrm{M}$    | 11.6                | 22 | 8.1        | 0.60 |

- Queries generated based on 3 scenario types
  - one random vertex
  - random vertices from one area of interest
  - multiple vertices from multiple areas of interest

## Results – relevance



- Methods should trade-off relevance for better diversity
- Normalized relevance of top-k set is always 1
- DRAGON always return results having 70% similar items to top-k, with more than 80% rel score



- *l*-step expansion ratio (σ<sub>2</sub>) gives the graph coverage of the result set: <u>better coverage = better diversity</u>
- BestCoverage and DivRank variants, especially
   BC<sub>2</sub> and PDivRank, have the highest coverage

## Results – expanded relevance



- combined measure for relevance and diversity
- BestCoverage variants and GrassHopper perform better
- Although PDivRank gives the highest coverage on amazon graph, it fails to cover the relevant parts!

# Results – efficiency



- BC<sub>1</sub> always performs better, with a running time less than, DivRank and GrassHopper
- BC<sub>1</sub> (relaxed) offers reasonable diversity, with a very little overhead on top of the PPR computation

## Results – intent aware experiments

- evaluation of *intent-oblivious* algorithms against *intent-aware* measures
- two measures
  - group coverage [Li11]
  - S-recall [Zhai03]
- cit-Patent dataset has the categorical information
  - 426 class labels, belong to 36 subtopics

# Results – intent aware experiments

- group coverage [Li11]
  - How many different groups are covered by the results?
  - omits the actual intent of the query



- top-k results are not diverse enough
- AllRandom results cover the most number of groups
- PDivRank and BC<sub>2</sub> follows

# Results – intent aware experiments

- S-recall [Zhai03], Intent-coverage [Zhu11]
  - percentage of relevant subtopics covered by the result set
  - the intent is given with the classes of the seed nodes



- AllRandom brings irrelevant items from the search space
- top-k results do not have the necessary diversity
- BC<sub>2</sub> variants and BC<sub>1</sub> perform better than DivRank
- BC<sub>1</sub> (relaxed) and DivRank scores similar, but BC<sub>1</sub>r much faster

Kucuktunc et al. "Diversified Recommendation on Graphs: Pitfalls, Measures, and Algorithms", WWW13

# Conclusions

- Result diversification should not be evaluated as a bicriteria optimization problem with
  - a **relevance** measure that <u>ignores</u> **diversity**, and
  - a diversity measure that ignores relevancy
- *I*-step expanded relevance is a simple measure that combines both relevance and diversity
- BestCoverage, a greedy solution that maximizes exprel<sub>l</sub> is a (1-1/e)-approximation of the optimal solution
- BestCoverage variants perform better than others, its relaxation is extremely efficient
- *goodness* in **DRAGON** is dominated by relevancy
- DivRank variants implicitly optimize expansion ratio



Wexner Medical Center

# Thank you

- For more information visit
  - <u>http://bmi.osu.edu/hpc</u>
- Research at the HPC Lab is funded by

