

Incremental Algorithms for Closeness Centrality

A. Erdem Sarıyüce ^{1,2}, Kamer Kaya ¹, Erik Saule ^{1*}, **Ümit V. Çatalyürek** ^{1,3}

¹ Department of Biomedical Informatics

² Department of Computer Science & Engineering

³ Department of Electrical & Computer Engineering
The Ohio State University

* Department of Computer Science University of North Carolina Charlotte

IEEE BigData 2013, Santa Clara, CA

Massive Graphs are everywhere

- Facebook has a billion users and a trillion connections
- Twitter has more than 200 million users

Large(r) Networks and Centrality

- Who is more important in a network? Who controls the flow between nodes?
 - Centrality metrics answer these questions
 - Closeness Centrality (CC) is an intriguing metric
- How to handle changes?
 - Incremental algorithms are essential

Closeness Centrality (CC)

- Let G=(V, E) be a graph with vertex set V and edge set E
 - Farness (far) of a vertex is the sum of shortest distances to each vertex

$$\mathtt{far}[u] = \sum_{\substack{v \in V \\ d_G(u,v) \neq \infty}} d_G(u,v)$$

Closeness centrality (cc) of a vertex :

$$cc[u] = \frac{1}{far[u]}$$

- Best algorithm: All-pairs shortest paths
 - O(|V|.|E|) complexity for unweighted networks
- For large and dynamic networks
 - From scratch computation is infeasible
 - Faster solutions are essential

CC Algorithm

Algorithm 1: CC: Basic centrality computation

Incremental Closeness Centrality

Problem definition: Given a graph G=(V, E), closeness centrality values of vertices <u>cc</u> and an inserted (or removed) edge <u>u-v</u>; find the closeness centrality values <u>cc'</u> of the graph <u>G'</u> = (V, E U {u,v}) (or G' = (V, E \ {u,v}))

- Computing cc values from scratch after each edge change is very costly
 - Need a <u>faster</u> algorithm

Filtering Techniques

We aim to <u>reduce number of SSSPs</u> to be executed

- Three filtering techniques are proposed
 - Filtering with level differences
 - Filtering with biconnected components
 - Filtering with identical vertices

And an additional SSSP hybridization technique

Filtering with level differences

 Upon edge insertion, breadth-first search tree of each vertex will change. Three possibilities:

- Case 1 and 2 will not change cc of s!
 - No need to apply SSSP from them
- Just Case 3
 - How to find such vertices?
 - BFSs are executed from u and v and level diff is checked

Filtering with level differences

Algorithm 2: Simple work filtering

```
Data: G = (V, E), cc[.], uv
Output: cc'[.]
G' \leftarrow (V, E \cup \{uv\})
du[.] \leftarrow SSSP(G, u) \triangleright distances from u in G
dv[.] \leftarrow SSSP(G, v) \triangleright distances from v in G
for each s \in V do
    if |du[s] - dv[s]| \le 1 then _____

    — Case 1 and 2

         \operatorname{cc}'[s] = \operatorname{cc}[s]
    else ____
                                             Case 3
         D use the computation in Algorithm 1
          with G^{\prime}
return cc'[.]
```

Filtering with biconnected components

What if the graph have articulation points?

- Change in A can change cc of any vertex in A and B
- Computing the change for u is enough for finding changes for any vertex v in B (constant factor is added)

Filtering with biconnected components

Maintain the biconnected decomposition

IEEE

BigData'13

edge b-d added

Filtering with identical vertices

- Two types of identical vertices:
 - Type I: u and v are identical vertices if their neighbor lists are same, i.e., $\Gamma(u) = \Gamma(v)$

• Type II: u and v are identical vertices if their neighbor lists are same and they are also connected, i.e., $\{u\} \cup \Gamma(u) = \{v\} \cup \Gamma(v)$

- If u and v are identical vertices, their cc are the same
 - Same breadth-first search trees!

Filtering with identical vertices

- Let V_{ID} be a subset of V and it's a vertex class containing type-I or type-II identical vertices. Then cc values of all the vertices in V_{ID} are equal
 - Applying SSSP from only one of them is enough!

 Type-I and type-II identical vertices are found by simply hashing the neighbor lists

SSSP Hybridization

- BFS can be done in two ways:
 - Top-down: Uses the vertices in distance k to find the vertices in distance k+1
 - Bottom-up: After all distance k vertices are found, all other unprocessed vertices are processed to see if they are neighbor
 - Top-down is expected to be better for small k values
 - Following the idea of Beamer et al. [SC'12], we apply hybrid approach
 - Simply compare the # of edges to be processed at level k
 - Choose the cheaper option

Experiments

 The techniques are evaluated on different sizes and types of large real-world social networks

Graph									
name	V	E							
hep-th	8.3K	15.7K							
PGPgiantcompo	10.6K	24.3K							
astro-ph	16.7K	121.2K							
cond-mat-2005	40.4K	175.6K							
soc-sign-epinions	131K	711K							
loc-gowalla	196 K	950K							
web-NotreDame	325K	1,090K							
amazon0601	403K	2,443K							
web-Google	875K	4,322K							
wiki-Talk	2,394K	4,659K							
DBLP-coauthor	1,236K	9,081K							
	•								

Probability Distribution

 Bars show the distribution of random variable of level differences into three cases when an edge is inserted

Speedups

Random insertions for 10 graphs

~100 times better

Real insertions for DBLP-coauthor graph

real temporal data shows larger speedups

Speedups are w.r.t. full cc computation

					•			1			
	Time (secs)				Speedups				Filter		
Graph	CC	CC-B	CC-BL	CC-BLI	CC-BLIH	CC-B	CC-BL	C C -BLI	CC-BL	IH [time (secs)
hep-th	1.413	0.317	0.057	0.053	0.048	4.5	24.8	26.6	2	9.4	0.001
PGPgiantcompo	4.960	0.431	0.059	0.055	0.045	11.5	84.1	89.9	11	.2	0.001
astro-ph	14.567	9.431	0.809	0.645	0.359	1.5	18.0	2k .6	4().5	0.004
cond-mat-2005	77.903	39.049	5.618	4.687	2.865	2.0	13.9	16.6	27	.2	0.010
Geometric mean	9.444	2.663	0.352	0.306	0.217	3.5	26.8	30.7	43	.5	0.003
soc-sign-epinions	778.870	257.410	20.603	19.935	6.254	3.0	37.8	39.1	124	.5	0.041
loc-gowalla	2,267.187	1,270.820	132.955	135.015	53.182	1.8	17.1	16.8	42	.6	0.063
web-NotreDame	2,845.367	579.821	118.861	83.817	53.059	4.9	23.9	33.9	53	.6	0.050
amazon0601	14,903.080	11,953.680	540.092	551.867	298.095	1.2	27.6	27.0	50	10	0.158
web-Google	65,306.600	22,034.460	2,457.660	1,701.249	824.417	3.0	26.6	38.4	79	2	0.267
wiki-Talk	175,450.720	25,701.710	2,513.041	2,123.096	922.828	6.8	69.8	82.6	190	1	0.491
DBLP-coauthor	115,919.518	18,501.147	288.269	251.557	252.647	6.2	402.1	460.8	458	3.8	0.530
Geometric mean	13,884.152	4,218.031	315.777	273.036	139.170	3.2	43.9	50.8	199	9.7	0.146

biconnected decomposition brings 3x

speedup

level differences

filtering provides 14x

speedup

1.15x speedup with identical

Hybridization brings 2x

HPC Lab bmi.osu.edu/hpc

Conclusion

- First algorithms for incremental closeness centrality computation
- Update time of a real temporal data is reduced from 1.3 days to 4.2 mins
- Fundamental building block for streaming workloads and centrality management problem
- Future Work:
 - Sampling-based solutions
 - Parallelization
 - A.E. Sarıyuce, E. Saule, K. Kaya, Ümit V. Çatalyürek. STREAMER: a
 Distributed Framework for Incremental Closeness Centrality
 Computation, IEEE Cluster 2013.

Thanks

- For more information
 - Email <u>umit@bmi.osu.edu</u>
 - Visit http://bmi.osu.edu/hpc
- Acknowledgement of Support

Member of Qatar Foundation