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Massive Graphs are everywhere PR | e

 Facebook has a billion users and a trillion connections
* Twitter has more than 200 million users
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 Who is more important in
a hetwork? Who controls
the flow between nodes?

e Centrality metrics answer
these questions

Amy Wayne
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e Closeness Centrality (CC) is
an intriguing metric

John W\?—\}/ Diana |
* How to handle changes? May Jack Henry
* Incremental algorithms are
essential
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* Let G=(V, E) be a graph with vertex set V and edge set E
e Farness (far) of a vertex is the sum of shortest distances to each

vertex far(u| = Z da(u,v)
veV
da (u,v)#o0
* Closeness centrality (cc) of a vertex :
1
cclu] =
far|ul

* Best algorithm: All-pairs shortest paths
* O(|V].|E|) complexity for unweighted networks

* For large and dynamic networks
* From scratch computation is infeasible
* Faster solutions are essential
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Algorithm 1: CC: Basic centrality computation

Data: G = (V, F) Single Source Shortest Path
Output: cc|.] (SSSP) is computed for each
1 for each s € V do vertex

>SSSP (G, s) with centrality computation
() < empty queue

d|v] < co,Vv € V' \ {s}

Q.push(s), d[s] < 0

far(s| <+ 0
while () is not empty do
Breadth [ v Qpop)
Search wit or all w € I'c(v) do

if djw| = oo then

farness_(\ Q.push(w)
computation ~ dw] <+ d[v] + 1
far(s] < far(s] + d[w]
1
C

cls] =
return cc|.

cc value is
assigned

far[s] >

—_
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* Problem definition: Given a graph G=(V, E), closeness
centrality values of vertices cc and an inserted (or
removed) edge u-v; find the closeness centrality values
cc’ of the graph G’ =(V, EU {u,v}) (or G’ = (V, E\ {u,v}) )

* Computing cc values from scratch after each edge change

is very costly
* Need a faster algorithm
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e We aim to reduce number of SSSPs to be executed

* Three filtering techniques are proposed
* Filtering with level differences
* Filtering with biconnected components
* Filtering with identical vertices

* And an additional SSSP hybridization technique
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* Upon edge insertion, breadth-first search tree of each
vertex will change. Three possibilities:

Case 1 Case 2
e Case 1 and 2 will not change cc of s!
* No need to apply SSSP from them

 Just Case 3
* How to find such vertices?
* BFSs are executed from u and v and level diff is checked
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Algorithm 2: Simple work filtering

Data: G = (V, E), cc|.], uv

Output: cc'[.]

G« (V, EU{uv})

du|.] < SSSP(G, u) > distances from u in G
dv|.] < SSSP(G, v) > distances from v in G
for each s € V do

if |du|s] — dv[s]| < 1 then > Case 1 and 2
cc'[s] = ccls]
else > Case3
> use the computation 1n Algorithm 1
with G’
return cc'|.]
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 What if the graph have articulation points?

* Change in A can change cc of any vertex in Aand B

* Computing the change for u is enough for finding
changes for any vertex v in B (constant factor is added)

o han
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* Maintain the biconnected decomposition

:
a® 4@ @ 56 @
S @ G
o’ DS DD O
(a) G (b) TI (c) IT

edge b-d added
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 Two types of identical vertices:

 Type |: uand v are identical vertices if their neighbor lists are
same, i.e., I'(u) =I'(v

* Type ll: u and v are identical vertices if their neighbor lists are
same and they are also connected, i.e., {u} U I(u) ={v} UI'(v)

* |fuand v are identical vertices, their cc are the same
* Same breadth-first search trees!
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Let V,; be a subset of V and it’s a vertex class containing
type-|l or type-ll identical vertices. Then cc values of all

the vertices in V; are equal
* Applying SSSP from only one of them is enough!

* Type-l and type-ll identical vertices are found by simply
hashing the neighbor lists
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* BFS can be done in two ways:

 Top-down: Uses the vertices in distance k to find the vertices in
distance k+1

* Bottom-up: After all distance k vertices are found, all other
unprocessed vertices are processed to see if they are neighbor

* Top-down is expected to be better for small k values

* Following the idea of Beamer et al. [SC’'12], we apply hybrid
approach

* Simply compare the # of edges to be processed at level k
* Choose the cheaper option

IEEE
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* The techniques are evaluated on different sizes and types
of large real-world social networks

Graph
name V| | E|
hep-th 8.3K 15.7K
PGPgiantcompo 10.6K 24.3K
astro-ph 16.7K 121.2K
cond-mat-2005 40.4K 175.6K
SOC-Sign-epinions 131K 711K
loc-gowalla 196K 950K
web-NotreDame 325K 1,090K
amazon0601 403K 2,443K
web-Google 875K  4,322K
wiki-Talk 2,394K  4,659K
DBLP-coauthor 1,236K 9,081K
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* Bars show the distribution of random variable of level
differences into three cases when an edge is inserted
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Speedups

 Random insertions for 10 graphs

e Real insertions for DBLP-coauthor graph

~100 times

better

v
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real temporal data

shows larger

) speedups
* Speedups are w.r.t. full cc computation
Time (secs) SpeeNups Filter
Graph CcC CC-B CC-BL CC-BLI CC-BLIH CC-B CC-BL &-BLI CC-BLJH time (secs)
hep-th 1.413 0.317 0.057 0.053 0.048 4.5 24.8 26.6 29.4 0.001
PGPgiantcompo 4.960 0.431 0.059 0.055 0.045 11.5 84.1 9.9 11}.2 0.001
astro-ph 14.567 9.431 0.809 0.645 0.359 1.5 18.0 2.6 4*.5 0.004
cond-mat-2005 77.903 39.049 5.618 4.687 2.865 2.0 13.9 1 21.2 0.010
Geometric mean 9.444 2.663 0.352 0.306 0.217 3.5 26.8 30.'\ 4315 0.003
soc-sign-epinions 778.870 257.410 20.603 19.935 6.254 3.0 37.8 39.1 124.5 0.041
loc-gowalla 2,267.187 1,270.820 132.955 135.015 53.182 1.8 17.1 16.8 416 0.063
web-NotreDame 2,845.367 579.821 118.861 83.817 53.059 4.9 23.9 33.9 536 0.050
amazon0601 14,903.080 11,953.680 540.092 551.867 298.095 1.2 27.6 27.0 5Q0 0.158
web-Google 65,306.600 22,034.460 2,457.660 1,701.249 824.417 3.0 26.6 38.4 7992 0.267
wiki-Talk 175,450.720 25,701.710 2,513.041 2,123.096 922.828 6.8 69.8 82.6 19041 0.491
DBLP-coauthor 115,919.518 18,501.147 288.269 251.557 252.647 6.2 402.1 460.8 58.8 0.530
Geometric mean 13,884.152 4,218.031 315.777 273.036 139.170 32 _~439  50.8 /‘99.7 0.146

biconnected /

decomposition

level differences

brings 3x

1.15x speedup Hybridization
speedup

with identical brings 2x

vertices
S TTOS e nocT™ Incremental Algorithms for Closeness Centrality

filtering provides 14x
speedup
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* First algorithms for incremental closeness centrality
computation

e Update time of a real temporal data is reduced from
1.3 days to 4.2 mins

* Fundamental building block for streaming workloads
and centrality management problem

* Future Work:
e Sampling-based solutions

 Parallelization

 A.E. Sariyuce, E. Saule, K. Kaya, Umit V. Catalyiirek. STREAMER: a
Distributed Framework for Incremental Closeness Centrality
Computation, IEEE Cluster 2013.
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e For more information
e Email umit@bmi.osu.edu
e Visit http://bmi.osu.edu/~umit or http://bmi.osu.edu/hpc
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