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Massive Graphs are everywhere PR | e

 Facebook has a billion users and a trillion connections
* Twitter has more than 200 million users
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Large(r) Networks and Centrality Dt | Conter

* Who is more importantin a
network? Who controls the
flow between nodes?

* Centrality metrics answer these
guestions
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* Closeness Centrality (CC) is an
intriguing metric

* How to handle changes?

* Incremental algorithms are good
but not enough in practice

 Parallelism is essential
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* Let G=(V, E) be a graph with vertex set V and edge set E
e Farness (far) of a vertex is the sum of shortest distances to each

vertex far(u| = Z da(u,v)
veV
da (u,v)#o0
* Closeness centrality (cc) of a vertex :
1
cclu] =
far|ul

* Best algorithm: All-pairs shortest paths
* O(|V].|E|) complexity for unweighted networks

* For large and dynamic networks
* From scratch computation is infeasible
* Faster solutions are essential
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Algorithm 1: CC: Basic centrality computation
Data: G = (V, F) Single Source Shortest Path

Output: cc].] /(SSSP) is computed for each
1 for each s € V do vertex

>SSSP (G, s) with centrality computation
() < empty queue

d|v] < co,Vv € V' \ {s}

Q.push(s), d[s] < 0

far(s| <+ 0
while () is not empty do
Breadth [ v Qpop)
Search wit or all w € I'c(v) do

if djw| = oo then

farness_(\ Q.push(w)
computation)| ™~ dlw]| < d[v] +1 cc value is
far(s] < far[s] + dlw] > assigned
1
C

C[S] — far[s]

—_

return cc|.
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 Computing cc values from scratch after each edge change
is very costly
* Incremental algorithms are used to handle changes
* Main idea is to reduce number of SSSPs to be executed

* Three filtering techniques are proposed
* Filtering with level differences
* Filtering with biconnected components
* Filtering with identical vertices

 Details can be found at

“A. E. Sariyuce, K. Kaya, E. Saule, and Umit V. Catalyurek. Incremental algorithms
for Closeness Centrality. IEEE BigData Conference, 2013”
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 Upon edge insertion, breadth-first search tree of
each vertex will change. Three possibilities:

Case 1 Case 2
* Case 1 and 2 will not change cc of s!
* No need to apply SSSP from them

 Just Case 3
* BFSs are executed from u and v and level diff is checked
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 What if the graph have articulation points?

* Change in A can change cc of any vertex in Aand B

* Computing the change for u is enough for finding
changes for any vertex v in B (constant factor is added)
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 Two types of identical vertices:

 Type l: uandv are identical vertices if N(u) = N(v), i.e., their
neighbor lists are same

* Type ll: uand v are identical vertices if {u} U N(u) = {v} U N(v),
i.e., they are also connected

* |fuand v are identical vertices, their cc are the same
* Same breadth-first search trees!
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name \4 |EZ|  Time (in sec.)
web-NotreDame 325K 1,090K 53.0
amazon0601 403K 2.443K 298.1
web-Google 875K  4,322K 824.4

* Too slow for real-time processing

* The problem is mostly parallel and graphs are relatively
small.

e Source-level parallelism can be used to fill up a cluster
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DataCutter

 Component-based middlew=ra tanl

e Supports filter-stream prog

* Implements the computati
of components (filters) tha
data through logical strean
(unidirectional data flows)

Wexner

CPUs

* Layout is a filter ontology

* Describes the set of tasks,
streams and the connectio

* All replicable
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Placement
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' Sends the updates on |
I the graph to everyone :
I

time, oper, u, v

InstanceGenerator l
- M time, src,
; time, src cc[src]
StreamingMaster ComputeCC Aggregator

: Filters the work |
I using level difference, BCD and : |
: identical vertices ! ; Computes the farness of
e List of vertices needing SSSP : : the vertex
update are sent to l 1 * Most expensive part
I
I
l
I
I

time, #updates
Stores the farness values |

I

: of all vertices and does

: adjustments to identical
I vertices and biconnected
:
|

|
|
|
: ComputeCC
|
|

I .
* _Mostreplicated part ;| components
e #of updates are sent to
e e e e e e e e e e e - - -
| Aggregator
ICEIEEter’13 S TTOS e nocT™ STREAMER: a Distributed Framework for Incremental Closeness Centrality Computation




Wexner
Medical

[ =)
Multicore architecture and NUMA effects PRSI | Ve

time, oper, u, v

InstanceGenerator

I -
time, src I time, graph,
ounter
—)—]
StreamingMaster | ¢ I R >|Executor

time, >Executor|
src =
»Executor]
; Executor

time,
src,
cc[src]

Y

Aggregator

A

> |
1 ZExecutor
: >Executor]
: »Executor I
1 >Executor]

i Proc 1 o

Node 1 N

Node 2 N\
Ny

ComputeCC

Preparator

time, #updates

* Preparator makes the actual graph
 Pointers are shared between Executors
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* Dataset

Name V| |E| | % of computation saved
web—-NotreDame 325,729 1,090,008 97.5
amazon0601 403,394 2,443,308 02.3
web-Google 016,428 4,321,958 04 .4
soc—pokec 1,632,804 30,622,464 93.9

* 64 node cluster
e Each with dual Intel Xeon E5520 Quad-Core processor
 8MB L3 cache per processor

* 48GB main memory, 20Gbps Infiniband Connection
* Compiled with GCC 4.5.2 with —03 flag
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THE PERFORMANCE OF STREAMER WITH 31 WORKER NODES AND
DIFFERENT NODE-LEVEL CONFIGURATIONS NORMALIZED TO 1 THREAD
CASE (PERFORMANCE ON soc—pokec IS NORMALIZED TO 8 THREADS, 1
GRAPH/THREAD). THE LAST COLUMN IS THE ADVANTAGE OF SHARED
MEMORY AWARENESS (RATIO OF COLUMNS 5 AND 3).

Name 4 threads 8 threads, 1 graph per Shared Mem.

thread node NUMA awareness
web-NotreDame 3.69 6.46  7.13 6.99 1.08
amazon0601 3.26 6.75  6.81 7.45 1.10
web-Google 3.69 7777 1.55 8.06 1.03
soc-pokec - 1.00 092 1.01 1.01

e Exploiting multiple cores and properly taking the
shared-memory aspect brings significant improvement
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Sublinear scaling case, 15 nodes PRk |
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Sublinear scaling case, 63 nodes PR | Cov
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 STREAMER, a distributed-memory framework, proves to
be an effective solution for fast and exact incremental
closeness centrality computation
* Exploits replicated and pipelined parallelism
e Scales well
* Reaches speedup of 497 with 64 nodes and 8 cores/node

e Future Work

* StreamingMaster and Aggregator can be replicated and work
can be partitioned

* Biconnected Decomposition, main part of Aggregator, can be
parallelized as well
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e For more information
e Email umit@bmi.osu.edu
e Visit http://bmi.osu.edu/~umit or http://bmi.osu.edu/hpc
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