
STREAMER:	 a	 Distributed	 Framework	 for	
Incremental	 Closeness	 Centrality	 Computa@on	 	

A.	 Erdem	 Sarıyüce	 1,2,	 Erik	 Saule	 4,	 Kamer	 Kaya	 1,	 Ümit	 V.	 Çatalyürek	 1,3	

1	 Department	 of	 Biomedical	 InformaBcs	
2	 Department	 of	 Computer	 Science	 &	 Engineering	 	
3	 Department	 of	 Electrical	 &	 Computer	 Engineering	

The	 Ohio	 State	 University	
4	 Department	 of	 Computer	 Science	

University	 of	 North	 Carolina	 CharloMe	
	
	

IEEE	 Cluster	 2013,	 Indianapolis,	 IN	
	
	

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 2 IEEE
Cluster’13

Massive	 Graphs	 are	 everywhere	

Topic 1

Topic 3

Topic 4

Topic 2

Topic 5

Topic 6

citation graphs

•  Facebook has a billion users and a trillion connections
•  Twitter has more than 200 million users

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 3 IEEE
Cluster’13

Large(r)	 Networks	 and	 Centrality	

III. SHATTERING AND COMPRESSING NETWORKS

A. Principle

Let us start with a simple example: Let G = (V,E)

be a binary tree with n vertices hence m = n � 1. If
Brandes’ algorithm is used the complexity of computing
the BC scores is O(n2

). However, by using a structural
property of G, one can do much better: there is exactly
one path between each vertex pair in V . Hence for a
vertex v 2 V , bc[v] is the number of (ordered) pairs
communicating via v, i.e.,

bc[v] = 2⇥ ((lvrv) + (n� lv � rv � 1)(lv + rv))

where lv and rv are the number of vertices in the left
and the right subtrees of v, respectively. Since lv and
rv can be computed in linear time for all v 2 V , this
approach, which can be easily extended to an arbitrary
tree, takes only O(n) time.

As mentioned in Section I, computing BC scores
is an expensive task. However, as the above example
shows, some structural properties of the networks can be
effectively used to reduce the complexity. Unfortunately,
an n-fold improvement on the execution time is usually
not possible since real-life networks rarely have a tree-
like from. However, as we will show, it is still possible
to reduce the execution time by using a set of special
vertices and edges.

Consider the toy graph G of a social network given in
Figure 1.(a). Since Arthur is the only articulation vertex
in G, he is responsible from all inter-communications
among three (biconnected) components as shown in
Figure 1.(b). Let s and t be two vertices which lie
in different components. For all such s, t pairs, the
pair dependency of Arthur is 1. Since shattering the
graph at Arthur removes all s t paths, one needs
to keep some information to correctly update the BC
scores of the vertices inside each component, and this
can be achieved creating local copies of Arthur in each
component.

In addition to shattering a graph G into pieces, we
investigated three compression techniques using degree-
1 vertices, side vertices, and identical vertices. These
vertices have special properties: All degree-1 and side
vertices always have a zero BC score since they can-
not be on a shortest path unless they are one of the
endpoints. Furthermore, bc[u] is equal to bc[v] for two
identical vertices u and v. By using these observations,
we will formally analyze the proposed shattering and
compression techniques and provide formulas to com-
pute the BC scores correctly.

We apply our techniques in a preprocessing phase as
follows: Let G = G0 be the initial graph, and G` be

(a) A toy social network with various types of vertices:
Arthur is an articulation vertex, Diana is a side vertex,
Jack and Martin are degree-1 vertices, and Amy and May
are identical vertices.

(b) The network shattered at Arthur to three components.

Figure 1. A toy social network and its shattered form due to an
articulation vertex.

the graph after the `th shattering/compression operation.
Without loss of generality, we assume that the initial
graph G is connected. The ` + 1th operation modifies
a single connected component of G` and generates
G`+1. The preprocessing phase then checks if G`+1 is
amenable to further modification, and if this is the case,
it continues. Otherwise, it terminates and the final BC
computation begins.

B. Shattering Graphs

To correctly compute the BC scores after shattering
a graph, we assign a reach attribute to each vertex.
Let G = (V,E). Let v0 be a vertex in the shattered
graph G0 and C 0 be its component. Then reach[v0

] is
the number of vertices of G which are represented by
v0 in C 0. For instance in Figure 1.(b), reach[Arthur3]

is 6 since Amy, John, May, Sue, Jack, and Arthur have
the same shortest path graphs in the right component.
At the beginning, we set reach[v] = 1 for all v 2 V .

1) Shattering with articulation vertices: Let u0 be an
articulation vertex detected in a connected component
C ✓ G` after the `th operation of the preprocessing
phase. We first shatter C into k (connected) components
Ci for 1 i k by removing u0 from G` and adding a

3

•  Who	 is	 more	 important	 in	 a	
network?	 Who	 controls	 the	
flow	 between	 nodes?	
•  Centrality	 metrics	 answer	 these	
quesBons	

•  Closeness	 Centrality	 (CC)	 is	 an	
intriguing	 metric	

	

•  How	 to	 handle	 changes?	
•  Incremental	 algorithms	 are	 good	
but	 not	 enough	 in	 pracBce	

•  Parallelism	 is	 essenBal	

Closeness	 Centrality	
•  Let	 G=(V,	 E)	 be	 a	 graph	 with	 vertex	 set	 V	 and	 edge	 set	 E	

•  Farness	 (far)	 of	 a	 vertex	 is	 the	 sum	 of	 shortest	 distances	 to	 each	
vertex	

•  Closeness	 centrality	 (cc)	 of	 a	 vertex	 :	 	

•  Best	 algorithm:	 All-‐pairs	 shortest	 paths	
•  	 O(|V|.|E|)	 complexity	 for	 unweighted	 networks	

•  For	 large	 and	 dynamic	 networks	
•  From	 scratch	 computaBon	 is	 infeasible	 	
•  Faster	 soluBons	 are	 essenBal	

	
	

IEEE
Cluster’13 STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	

there is a path between u and v. If all vertex pairs in G
are connected we say that G is connected. Otherwise, it is
disconnected and each maximal connected subgraph of G
is a connected component, or a component, of G. We use
dG(u, v) to denote the length of the shortest path between
two vertices u, v in a graph G. If u = v then dG(u, v) = 0.
If u and v are disconnected, then dG(u, v) = 1.

Given a graph G = (V,E), a vertex v 2 V is called an
articulation vertex if the graph G�v (obtained by removing
v) has more connected components than G. Similarly, an
edge e 2 E is called a bridge if G�e (obtained by removing
e from E) has more connected components than G. G is
biconnected if it is connected and it does not contain an
articulation vertex. A maximal biconnected subgraph of G
is a biconnected component.

A. Closeness Centrality

Given a graph G, the farness of a vertex u is defined as

far[u] =
X

v2V

dG(u,v) 6=1

dG(u, v).

And the closeness centrality of u is defined as

cc[u] =
1

far[u]
. (1)

If u cannot reach any vertex in the graph cc[u] = 0.
For a sparse unweighted graph G = (V,E) the

complexity of cc computation is O(n(m + n)) [2]. For
each vertex s 2 V , Algorithm 1 executes a Single-Source
Shortest Paths (SSSP), i.e., it initiates a breadth-first
search (BFS) from s, computes the distances to the other
vertices and far[s], the sum of the distances which are
different than 1. As the last step, it computes cc[s]. Since
a BFS takes O(m + n) time, and n SSSPs are required in
total, the complexity follows.

Algorithm 1: CC: Basic centrality computation
Data: G = (V,E)
Output: cc[.]

1 for each s 2 V do
.SSSP(G, s) with centrality computation
Q empty queue
d[v] 1, 8v 2 V \ {s}
Q.push(s), d[s] 0
far[s] 0
while Q is not empty do

v Q.pop()
for all w 2 �G(v) do

if d[w] =1 then
Q.push(w)
d[w] d[v] + 1
far[s] far[s] + d[w]

cc[s] = 1
far[s]

return cc[.]

III. MAINTAINING CENTRALITY

Many real-life networks are scale free. The diameters of
these networks grow proportional to the logarithm of the
number of nodes. That is, even with hundreds of millions
of vertices, the diameter is small, and when the graph
is modified with minor updates, it tends to stay small.
Combining this with the power-law degree distribution of
scale-free networks, we obtain the spike-shaped shortest-
distance distribution as shown in Figure 2. We use work
filtering with level differences and utilization of special
vertices to exploit these observations and reduce the
centrality computation time. In addition, we apply SSSP
hybridization to speedup each SSSP computation.

0.00#
0.10#
0.20#
0.30#
0.40#
0.50#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#11#12#13#14#15#16#17#18#19#20#

Pr
(d
(u
,v
))=

)x
))

Shortest)path)distance)

amazon0601#
soc4sign4epinions#
web4Google#
web4NotreDame#

Figure 2. The probability of the distance between two (connected)
vertices is equal to x for four social and web networks.

A. Work Filtering with Level Differences

For efficient maintenance of the closeness centrality val-
ues in case of an edge insertion/deletion, we propose a work
filter which reduces the number of SSSPs in Algorithm 1 and
the cost of each SSSP by utilizing the level differences.

Level-based filtering detects the unnecessary updates and
filter them out. Let G = (V,E) be the current graph and uv
be an edge to be inserted to G. Let G0 = (V,E [uv) be
the updated graph. The centrality definition in (1) implies
that for a vertex s 2 V , if dG(s, t) = dG0(s, t) for all t 2 V
then cc[s] = cc0[s]. The following theorem is used to detect
such vertices and filter their SSSPs.

Theorem 1: Let G = (V,E) be a graph and u and v be
two vertices in V s.t. uv /2 E. Let G0 = (V,E [uv). Then
cc[s] = cc0[s] if and only if |dG(s, u)� dG(s, v)| 1.

Proof: If s is disconnected from u and v, uv’s insertion
will not change cc[s]. Hence, cc[s] = cc0[s]. If s is only
connected to one of u and v in G the difference |dG(s, u)�
dG(s, v)| is 1, and cc[s] needs to be updated by using the
new, larger connected component containing s. When s is
connected to both u and v in G, we investigate the edge
insertion in three cases as shown in Figure 3:

Case 1: dG(s, u) = dG(s, v): Assume that the path s
P

u–v P 0

 t is a shortest s t path in G0 containing uv. Since
dG(s, u) = dG(s, v), there exists a shorter path s

P 00

 v
P 0

 t
with one less edge. Hence, 8t 2 V , dG(s, t) = dG0(s, t).

Case 2: |dG(s, u) � dG(s, v)| = 1: Let
dG(s, u) < dG(s, v). Assume that s P u–v P 0

 t is a shortest
path in G0 containing uv. Since dG(s, v) = dG(s, u) + 1,

4

there is a path between u and v. If all vertex pairs in G
are connected we say that G is connected. Otherwise, it is
disconnected and each maximal connected subgraph of G
is a connected component, or a component, of G. We use
dG(u, v) to denote the length of the shortest path between
two vertices u, v in a graph G. If u = v then dG(u, v) = 0.
If u and v are disconnected, then dG(u, v) = 1.

Given a graph G = (V,E), a vertex v 2 V is called an
articulation vertex if the graph G�v (obtained by removing
v) has more connected components than G. Similarly, an
edge e 2 E is called a bridge if G�e (obtained by removing
e from E) has more connected components than G. G is
biconnected if it is connected and it does not contain an
articulation vertex. A maximal biconnected subgraph of G
is a biconnected component.

A. Closeness Centrality

Given a graph G, the farness of a vertex u is defined as

far[u] =
X

v2V

dG(u,v) 6=1

dG(u, v).

And the closeness centrality of u is defined as

cc[u] =
1

far[u]
. (1)

If u cannot reach any vertex in the graph cc[u] = 0.
For a sparse unweighted graph G = (V,E) the

complexity of cc computation is O(n(m + n)) [2]. For
each vertex s 2 V , Algorithm 1 executes a Single-Source
Shortest Paths (SSSP), i.e., it initiates a breadth-first
search (BFS) from s, computes the distances to the other
vertices and far[s], the sum of the distances which are
different than 1. As the last step, it computes cc[s]. Since
a BFS takes O(m + n) time, and n SSSPs are required in
total, the complexity follows.

Algorithm 1: CC: Basic centrality computation
Data: G = (V,E)
Output: cc[.]

1 for each s 2 V do
.SSSP(G, s) with centrality computation
Q empty queue
d[v] 1, 8v 2 V \ {s}
Q.push(s), d[s] 0
far[s] 0
while Q is not empty do

v Q.pop()
for all w 2 �G(v) do

if d[w] =1 then
Q.push(w)
d[w] d[v] + 1
far[s] far[s] + d[w]

cc[s] = 1
far[s]

return cc[.]

III. MAINTAINING CENTRALITY

Many real-life networks are scale free. The diameters of
these networks grow proportional to the logarithm of the
number of nodes. That is, even with hundreds of millions
of vertices, the diameter is small, and when the graph
is modified with minor updates, it tends to stay small.
Combining this with the power-law degree distribution of
scale-free networks, we obtain the spike-shaped shortest-
distance distribution as shown in Figure 2. We use work
filtering with level differences and utilization of special
vertices to exploit these observations and reduce the
centrality computation time. In addition, we apply SSSP
hybridization to speedup each SSSP computation.

0.00#
0.10#
0.20#
0.30#
0.40#
0.50#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#11#12#13#14#15#16#17#18#19#20#

Pr
(d
(u
,v
))=

)x
))

Shortest)path)distance)

amazon0601#
soc4sign4epinions#
web4Google#
web4NotreDame#

Figure 2. The probability of the distance between two (connected)
vertices is equal to x for four social and web networks.

A. Work Filtering with Level Differences

For efficient maintenance of the closeness centrality val-
ues in case of an edge insertion/deletion, we propose a work
filter which reduces the number of SSSPs in Algorithm 1 and
the cost of each SSSP by utilizing the level differences.

Level-based filtering detects the unnecessary updates and
filter them out. Let G = (V,E) be the current graph and uv
be an edge to be inserted to G. Let G0 = (V,E [uv) be
the updated graph. The centrality definition in (1) implies
that for a vertex s 2 V , if dG(s, t) = dG0(s, t) for all t 2 V
then cc[s] = cc0[s]. The following theorem is used to detect
such vertices and filter their SSSPs.

Theorem 1: Let G = (V,E) be a graph and u and v be
two vertices in V s.t. uv /2 E. Let G0 = (V,E [uv). Then
cc[s] = cc0[s] if and only if |dG(s, u)� dG(s, v)| 1.

Proof: If s is disconnected from u and v, uv’s insertion
will not change cc[s]. Hence, cc[s] = cc0[s]. If s is only
connected to one of u and v in G the difference |dG(s, u)�
dG(s, v)| is 1, and cc[s] needs to be updated by using the
new, larger connected component containing s. When s is
connected to both u and v in G, we investigate the edge
insertion in three cases as shown in Figure 3:

Case 1: dG(s, u) = dG(s, v): Assume that the path s
P

u–v P 0

 t is a shortest s t path in G0 containing uv. Since
dG(s, u) = dG(s, v), there exists a shorter path s

P 00

 v
P 0

 t
with one less edge. Hence, 8t 2 V , dG(s, t) = dG0(s, t).

Case 2: |dG(s, u) � dG(s, v)| = 1: Let
dG(s, u) < dG(s, v). Assume that s P u–v P 0

 t is a shortest
path in G0 containing uv. Since dG(s, v) = dG(s, u) + 1,

there is a path between u and v. If all vertex pairs in G
are connected we say that G is connected. Otherwise, it is
disconnected and each maximal connected subgraph of G
is a connected component, or a component, of G. We use
dG(u, v) to denote the length of the shortest path between
two vertices u, v in a graph G. If u = v then dG(u, v) = 0.
If u and v are disconnected, then dG(u, v) = 1.

Given a graph G = (V,E), a vertex v 2 V is called an
articulation vertex if the graph G�v (obtained by removing
v) has more connected components than G. Similarly, an
edge e 2 E is called a bridge if G�e (obtained by removing
e from E) has more connected components than G. G is
biconnected if it is connected and it does not contain an
articulation vertex. A maximal biconnected subgraph of G
is a biconnected component.

A. Closeness Centrality

Given a graph G, the farness of a vertex u is defined as

far[u] =
X

v2V

dG(u,v) 6=1

dG(u, v).

And the closeness centrality of u is defined as

cc[u] =
1

far[u]
. (1)

If u cannot reach any vertex in the graph cc[u] = 0.
For a sparse unweighted graph G = (V,E) the

complexity of cc computation is O(n(m + n)) [2]. For
each vertex s 2 V , Algorithm 1 executes a Single-Source
Shortest Paths (SSSP), i.e., it initiates a breadth-first
search (BFS) from s, computes the distances to the other
vertices and far[s], the sum of the distances which are
different than 1. As the last step, it computes cc[s]. Since
a BFS takes O(m + n) time, and n SSSPs are required in
total, the complexity follows.

Algorithm 1: CC: Basic centrality computation
Data: G = (V,E)
Output: cc[.]

1 for each s 2 V do
.SSSP(G, s) with centrality computation
Q empty queue
d[v] 1, 8v 2 V \ {s}
Q.push(s), d[s] 0
far[s] 0
while Q is not empty do

v Q.pop()
for all w 2 �G(v) do

if d[w] =1 then
Q.push(w)
d[w] d[v] + 1
far[s] far[s] + d[w]

cc[s] = 1
far[s]

return cc[.]

III. MAINTAINING CENTRALITY

Many real-life networks are scale free. The diameters of
these networks grow proportional to the logarithm of the
number of nodes. That is, even with hundreds of millions
of vertices, the diameter is small, and when the graph
is modified with minor updates, it tends to stay small.
Combining this with the power-law degree distribution of
scale-free networks, we obtain the spike-shaped shortest-
distance distribution as shown in Figure 2. We use work
filtering with level differences and utilization of special
vertices to exploit these observations and reduce the
centrality computation time. In addition, we apply SSSP
hybridization to speedup each SSSP computation.

0.00#
0.10#
0.20#
0.30#
0.40#
0.50#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#11#12#13#14#15#16#17#18#19#20#

Pr
(d
(u
,v
))=

)x
))

Shortest)path)distance)

amazon0601#
soc4sign4epinions#
web4Google#
web4NotreDame#

Figure 2. The probability of the distance between two (connected)
vertices is equal to x for four social and web networks.

A. Work Filtering with Level Differences

For efficient maintenance of the closeness centrality val-
ues in case of an edge insertion/deletion, we propose a work
filter which reduces the number of SSSPs in Algorithm 1 and
the cost of each SSSP by utilizing the level differences.

Level-based filtering detects the unnecessary updates and
filter them out. Let G = (V,E) be the current graph and uv
be an edge to be inserted to G. Let G0 = (V,E [uv) be
the updated graph. The centrality definition in (1) implies
that for a vertex s 2 V , if dG(s, t) = dG0(s, t) for all t 2 V
then cc[s] = cc0[s]. The following theorem is used to detect
such vertices and filter their SSSPs.

Theorem 1: Let G = (V,E) be a graph and u and v be
two vertices in V s.t. uv /2 E. Let G0 = (V,E [uv). Then
cc[s] = cc0[s] if and only if |dG(s, u)� dG(s, v)| 1.

Proof: If s is disconnected from u and v, uv’s insertion
will not change cc[s]. Hence, cc[s] = cc0[s]. If s is only
connected to one of u and v in G the difference |dG(s, u)�
dG(s, v)| is 1, and cc[s] needs to be updated by using the
new, larger connected component containing s. When s is
connected to both u and v in G, we investigate the edge
insertion in three cases as shown in Figure 3:

Case 1: dG(s, u) = dG(s, v): Assume that the path s
P

u–v P 0

 t is a shortest s t path in G0 containing uv. Since
dG(s, u) = dG(s, v), there exists a shorter path s

P 00

 v
P 0

 t
with one less edge. Hence, 8t 2 V , dG(s, t) = dG0(s, t).

Case 2: |dG(s, u) � dG(s, v)| = 1: Let
dG(s, u) < dG(s, v). Assume that s P u–v P 0

 t is a shortest
path in G0 containing uv. Since dG(s, v) = dG(s, u) + 1,

CC	 Algorithm	

Single Source Shortest Path
(SSSP) is computed for each

vertex

Breadth-
First

Search with
farness

computation cc value is
assigned

IEEE
Cluster’13 STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 5

Incremental	 Closeness	 Centrality 	 	

•  CompuBng	 cc	 values	 from	 scratch	 a`er	 each	 edge	 change	
is	 very	 costly	
•  Incremental	 algorithms	 are	 used	 to	 handle	 changes	
•  Main	 idea	 is	 to	 reduce	 number	 of	 SSSPs	 to	 be	 executed	

•  Three	 filtering	 techniques	 are	 proposed	
•  Filtering	 with	 level	 differences	
•  Filtering	 with	 biconnected	 components	
•  Filtering	 with	 idenBcal	 verBces	

•  Details	 can	 be	 found	 at	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
“A.	 E.	 Sarıyuce,	 K.	 Kaya,	 E.	 Saule,	 and	 Umit	 V.	 Catalyurek.	 Incremental	 algorithms	
for	 Closeness	 Centrality.	 IEEE	 BigData	 Conference,	 2013”	

	 IEEE
Cluster’13 STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 6

Filtering	 with	 level	 differences	

•  Upon	 edge	 inserBon,	 breadth-‐first	 search	 tree	 of	
each	 vertex	 will	 change.	 Three	 possibiliBes:	

•  Case	 1	 and	 2	 will	 not	 change	 cc	 of	 s!	
•  No	 need	 to	 apply	 SSSP	 from	 them	

•  Just	 Case	 3	
•  BFSs	 are	 executed	 from	 u	 and	 v	 and	 level	 diff	 is	 checked	

	
	

IEEE
Cluster’13 STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 7

•  What	 if	 the	 graph	 have	 arBculaBon	 points?	

•  Change	 in	 A	 can	 change	 cc	 of	 any	 vertex	 in	 A	 and	 B	
•  CompuBng	 the	 change	 for	 u	 is	 enough	 for	 finding	
changes	 for	 any	 vertex	 v	 in	 B	 (constant	 factor	 is	 added)	

Filtering	 with	 biconnected	 components	

A B u
v

IEEE
Cluster’13 STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 8

Filtering	 with	 iden@cal	 ver@ces	

•  Two	 types	 of	 idenBcal	 verBces:	
•  Type	 I:	 u	 and	 v	 are	 idenBcal	 verBces	 if	 	 N(u)	 =	 N(v),	 i.e.,	 their	
neighbor	 lists	 are	 same	

•  Type	 II:	 u	 and	 v	 are	 idenBcal	 verBces	 if	 {u}	 U	 N(u)	 =	 {v}	 U	 N(v),	
i.e.,	 they	 are	 also	 connected	

•  If	 u	 and	 v	 are	 idenBcal	 verBces,	 their	 cc	 are	 the	 same	
•  Same	 breadth-‐first	 search	 trees!	

u

v

u

v

IEEE
Cluster’13 STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 9

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 10 IEEE
Cluster’13

Is	 it	 enough?	

	
•  Too	 slow	 for	 real-‐Bme	 processing	
•  The	 problem	 is	 mostly	 parallel	 and	 graphs	 are	 relaBvely	
small.	
•  Source-‐level	 parallelism	 can	 be	 used	 to	 fill	 up	 a	 cluster	

simply compare the number of edges need to be processed
for each variant and choose the cheaper one.

IV. RELATED WORK

To the best of our knowledge, there are only two works
on maintaining centrality in dynamic networks. Yet, both
are interested in betweenness centrality. Lee et al. proposed
the QUBE framework which uses a BCD and updates the
betweenness centrality values in case of edge insertions and
deletions in the network [10]. Unfortunately, the perfor-
mance of QUBE is only reported on small graphs (less than
100K edges) with very low edge density. In other words, it
only performs significantly well on small graphs with a tree-
like structure having many small biconnected components.

Green et al. proposed a technique to update the be-
tweenness centrality scores rather than recomputing them
from scratch upon edge insertions (can be extended to edge
deletions) [5]. The idea is to store the whole data structure
used by the previous computation. However, as the authors
stated, it takes O(n2 + nm) space to store all the required
values. Compared to their work, our algorithms are much
more practical since the memory footprint of linear.

V. EXPERIMENTAL RESULTS

We implemented the algorithms in C and compiled
with gcc v4.6.2 with the optimization flags -O2
-DNDEBUG. The graphs are kept in the compressed row
storage (CRS) format. The experiments are run in sequential
on a computer with two Intel Xeon E5520 CPU clocked at
2.27GHz and equipped with 48GB of main memory.

For the experiments, we used 10 networks from the UFL
Sparse Matrix Collection1 and also extracted the coauthor
network from the current set of DBLP papers. Properties
of the graphs are summarized in Table II. They are from
different application areas, such as social (hep-th, PGPgiant-
compo, astro-ph, cond-mat-2005, soc-sign-epinions, loc-
gowalla, amazon0601, wiki-Talk, DBLP-coauthor), and web
networks (web-NotreDame, web-Google). The graphs are
listed by increasing number of edges and a distinction is
made between small graphs (with less than 500K edges)
and the large graphs (with more than 500K) edges.

Although the filtering techniques can reduce the update
cost significantly in theory, their practical effectiveness de-
pends on the underlying structure of G. Since the diameter
of the social networks are small, the range of the shortest
distances is small. Furthermore, the distribution of these dis-
tances is unimodal. When the distance with the peak (mode)
is combined with the ones on its right and left, they cover
a significant amount of the pairs (56% for web-NotreDame,
65% for web-Google, 79% for amazon0601, and 91% for
soc-sign-epinions). We expect the filtering procedure to have
a significant impact on social networks because of their

1http://www.cise.ufl.edu/research/sparse/matrices/

Graph Time (in sec.)
name |V | |E| Org. Best Speedup
hep-th 8.3K 15.7K 1.41 0.05 29.4
PGPgiantcompo 10.6K 24.3K 4.96 0.04 111.2
astro-ph 16.7K 121.2K 14.56 0.36 40.5
cond-mat-2005 40.4K 175.6K 77.90 2.87 27.2

geometric mean 43.5
soc-sign-epinions 131K 711K 778 6.25 124.5
loc-gowalla 196K 950K 2,267 53.18 42.6
web-NotreDame 325K 1,090K 2,845 53.06 53.6
amazon0601 403K 2,443K 14,903 298 50.0
web-Google 875K 4,322K 65,306 824 79.2
wiki-Talk 2,394K 4,659K 175,450 922 190.1
DBLP-coauthor 1,236K 9,081K 115,919 251 460.8

geometric mean 99.8
Table I

THE GRAPHS USED IN THE EXPERIMENTS. COLUMN Org.
SHOWS THE INITIAL CLOSENESS COMPUTATION TIME OF CC
AND Best IS THE BEST UPDATE TIME WE OBTAIN IN CASE OF

STREAMING DATA.

name |V | |E| Time (in sec.)
web-NotreDame 325K 1,090K 53.0
amazon0601 403K 2,443K 298.1
web-Google 875K 4,322K 824.4

Table II
THE GRAPHS USED IN THE EXPERIMENTS. COLUMN Org.

SHOWS THE INITIAL CLOSENESS COMPUTATION TIME OF CC
AND Best IS THE BEST UPDATE TIME WE OBTAIN IN CASE OF

STREAMING DATA.

structure. Besides, that specific structure is also important
for the SSSP hybridization.

A. Handling topology modifications

To assess the effectiveness of our algorithms, we need
to know when each edge is inserted to/deleted from the
graph. Our datasets from the UFL collection do not have this
information. To conduct our experiments on these datasets,
we delete 1,000 edges from a graph chosen randomly in
the following way: A vertex u 2 V is selected ran-
domly (uniformly), and a vertex v 2 �G(u) is selected
randomly (uniformly). Since we do not want to change the
connectivity in the graph (having disconnected components
can make our algorithms much faster and it will not be fair to
CC), we discard uv if it is a bridge. If this is not the case we
delete it from G and continue. We construct the initial graph
by deleting these 1,000 edges. Each edge is then re-inserted
one by one, and our algorithms are used to recompute the
closeness centrality scores after each insertion.

In addition to the random insertion experiments, we also
evaluated our algorithms on a real temporal dataset of the
DBLP coauthor graph2. In this graph, there is an edge
between two authors if they published a paper together. We
used the publication dates as timestamps and constructed
the initial graph with the papers published before January 1,
2013. We used the coauthorship edges of the later papers
for edge insertions. Although we used insertions in our
experiments, a deletion is a very similar process which
should give comparable results.

2http://www.informatik.uni-trier.de/⇠ley/db/

•  Component-‐based	 middleware	 tool	
•  Supports	 filter-‐stream	 programming	
•  Implements	 the	 computaBons	 as	 a	 set	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
of	 components	 (filters)	 that	 exchange	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
data	 through	 logical	 streams	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(unidirecBonal	 data	 flows)	

•  Layout	 is	 a	 filter	 ontology	
•  Describes	 the	 set	 of	 tasks,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
streams	 and	 the	 connecBons	

•  All	 replicable	

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 11 IEEE
Cluster’13

DataCuNer	

Fig. 5. Layout of STREAMER.

network for topology modifications; but in our experiments,
all the necessary information is read from a file.

StreamingMaster is responsible for the work filtering after
each network modification. Upon inserting uv at time t, it
first computes the shortest distances from u and v to all other
vertices at time t− 1. Then, it adds the edge uv into its local
copy of the graph and updates the identical vertex sets as
described in Section II-D. It partitions the edges of the graph
to its biconnected components by using the algorithm in [9]
and finds the component containing uv. For each vertex
s ∈ V , it decides whether its CC score needs to be recomputed
by checking the following conditions: (1) d(s, u) and d(s, v)
differ by at least 2 units at time t− 1, (2) s is adjacent to an
edge which is also in uv’s biconnected component, (3) s is
the representative of its identical vertex set. StreamingMaster

then informs the Aggregator about the number of updates
it will receive for time t. Finally, it sends the list of SSSP
requests to the ComputeCC filter, i.e., the corresponding
source vertex ids whose CC scores need to be updated.

ComputeCC performs the real work and computes the new
CC scores after each graph modification. It waits for work
from StreamingMaster, and when it receives a CC update re-
quest under the form of a 2-tuple (t, s) (update time and source
vertex id), ComputeCC advances its local graph representation
to time t by using the appropriate updates from InstanceGen-

erator. If there is a change on the local graph, the biconnected
component of uv is extracted, and a concise information of the
graph structure and the set of articulation vertices are updated
(as described in [18]). Finally, the exact CC score cc[s] at
time t is computed and sent to the Aggregator as a 3-tuple
(t, s, cc[s]). ComputeCC can be replicated to fill up the whole
distributed memory machine without any problem: as long as a
replica reads the update requests in the order of non-decreasing
time units, it is able compute the correct CC scores.

The Aggregator filter gets the graph at a time t from
InstanceGenerator. Then, it obtains the number of updates
for that time from StreamingMaster. It computes the identical
vertex sets as well as the BCD. It gets the updated CC scores
from ComputeCC. Due to the pipelined parallelism used in
the system and the replicated parallelism of ComputeCC, it
is possible that updates from a later time can be received;
STREAMER stores them in a backlog for future processing.
When a (t, s, cc[s]) tuple is processed, the CC score of s is
updated. If s is the representative of an identical vertex set,
the CC scores of all the vertices in the same set are updated
as well. If s is an articulation point, then the CC scores of
the vertices which are represented by s (and are not in the
biconnected component of uv) are updated as well, by using

Fig. 6. Placement of STREAMER using 2 worker nodes with 2 quad-core
processors. (The node 2 is hidden). The remaining filters are on node 0.

the difference in the CC score of s between time t and t− 1.
Since Aggregator needs to know the CC scores at time t− 1
to compute the centrality scores at time t, the system must be
bootstrapped: the system computes explicitly all the centrality
scores of the vertices for time t = 0.

B. Exploiting the shared memory architecture

The main portion of the execution time is spent by the
ComputeCC filter. Therefore, it is important to replicate this
filter as much as possible. Each replica of the filter will end
up maintaining its own graph structure and computing its
own BCD. Modern clusters are hierarchical and composed of
distributed memory nodes where each node contains multiple
processors featuring multiple cores that share the same mem-
ory space. For instance, the nodes used in our experiments are
equipped with two processors, each having 4 cores.

It is a waste of computational power to recompute the data
structure on each core. But it is also a waste of memory.
Indeed, the cores of a processor typically share a common
last level of cache and using the same memory space for all
the cores in a processor might improve the cache utilization.
We propose to split the ComputeCC filter in two separate
filters which is transparent to the rest of the system thanks
to DataCutter being component-based. The Preparator filter
constructs the decomposed graph for each Streaming Event it
is responsible for. The Executor filter performs the real work
on the decomposed graph. In DataCutter, the filters running
on the same physical node act run in separate pthreads within
the same MPI process making sharing the memory as easy
as communicating pointers. The release of the memory asso-
ciated with the decomposed graph is handled by atomically
decreasing a counter by the Executor.

The decoupling of the graph management and the CC
score computation allows to either creating a single graph
representation on each distributed memory node or having a
copy of the graph on each NUMA domain of the architecture.
This is shown in Fig. 6.

IV. EXPERIMENTS

STREAMER runs on the Owens cluster in the Department of
Biomedical Informatics at The Ohio State University. For the
experiments, we used all the 64 computational nodes, each

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 12 IEEE
Cluster’13

STREAMER	 Framework	

Sends	 the	 updates	 on	
the	 graph	 to	 everyone	

Filters	 the	 work	
using	 level	 difference,	 BCD	 and	
idenBcal	 verBces	
•  List	 of	 verBces	 needing	 SSSP	

update	 are	 sent	 to	
ComputeCC	

•  #	 of	 updates	 are	 sent	 to	
Aggregator	

Computes	 the	 farness	 of	
the	 vertex	
•  Most	 expensive	 part	
•  Most	 replicated	 part	

Stores	 the	 farness	 values	
of	 all	 verBces	 and	 does	
adjustments	 to	 idenBcal	
verBces	 and	 biconnected	
components	

Mul@core	 architecture	 and	 NUMA	 effects	

•  Preparator	 makes	 the	 actual	 graph	
•  Pointers	 are	 shared	 between	 Executors	

ComputeCC

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 13 IEEE
Cluster’13

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 14 IEEE
Cluster’13

Experiments	

•  Dataset	

•  64	 node	 cluster	
•  Each	 with	 dual	 Intel	 Xeon	 E5520	 Quad-‐Core	 processor	
•  8MB	 L3	 cache	 per	 processor	
•  48GB	 main	 memory,	 20Gbps	 Infiniband	 ConnecBon	
•  Compiled	 with	 GCC	 4.5.2	 with	 –O3	 flag	

TABLE I
GRAPH PROPERTIES. # UPDATES IS THE NUMBER OF UPDATES INDUCED

BY THE 50 ADDED EDGES. THE RUNTIMES ARE OBTAINED BY USING THE
WHOLE CLUSTER TO PROCESS THE UPDATES.

Name |V | |E| % of computation saved
web-NotreDame 325,729 1,090,008 97.5
amazon0601 403,394 2,443,308 92.3
web-Google 916,428 4,321,958 94.4
soc-pokec 1,632,804 30,622,464 93.9

Name |V | |E| # updates time(s)
web-NotreDame 325,729 1,090,008 399,420 8.16
amazon0601 403,394 2,443,308 1,548,288 140.19
web-Google 916,428 4,321,958 2,527,088 226.20
soc-pokec 1,632,804 30,622,464 4,924,759 6,366.14

with dual Intel Xeon E5520 Quad-core CPUs (with 2-way
Simultaneous Multithreading, and 8MB of L3 cache per pro-
cessor), 48 GB of main memory. The nodes are interconnected
with 20 Gbps InfiniBand. The algorithms were run on CentOS
6, and compiled with GCC 4.5.2 using the -O3 optimization
flag. DataCutter uses an InfiniBand-aware MPI to leverage the
high performance interconnect: here we used MVAPICH 1.1.

For testing purposes, we picked 4 large social network
graphs from the SNAP dataset to perform the test at scale.
The properties of the graphs are summarized in Table I. For
simulating the addition of the edges, we removed 50 edges
from the graphs and added them back one by one. The
streamed edges were selected randomly and uniformly. For
comparability purposes, all the runs performed on the same
graph use the same set of edges. The number of updates
induced by that set of edges when applying filtering using
identical vertices, biconnected component decomposition, and
level filtering is given in Table I. In the experiments, the data
comes from a file, and the Streaming Events are pushed to the
system as quickly as possible so as to stress the system.

All the results presented in this section are extracted from
a single run of STREAMER with proper parameters. The
regularity in the plots indicates there would be a small variance
on the runtimes, which induces a reasonable confidence in
the significance of the quoted numbers. In the experiments,
StreamingMaster and Aggregator run on the same node, apart
from all the computational filters. Therefore, we report the
number of worker nodes, but an extra node is always used.

To give an idea of the actual amount of computation, in the
last column of Table I, we report the time STREAMER spends
to update the CC scores upon 50 edge insertions by using all
63 worker nodes. We present the parallel time and not the
sequential time for two reasons: (1) Our framework is never
really sequential, even using a single ComputeCC filter would
not actually be sequential. (2) The sequential runtime on the
biggest tested graph (soc-pokec) is prohibitive (estimated
at about a month). As all the execution times given in this
section, the times in Table I do not contain the initialization
time. That is the time measurement starts once STREAMER is
idle, waiting to receive Streaming Events.

TABLE II
THE PERFORMANCE OF STREAMER WITH 31 WORKER NODES AND

DIFFERENT NODE-LEVEL CONFIGURATIONS NORMALIZED TO 1 THREAD
CASE (PERFORMANCE ON soc-pokec IS NORMALIZED TO 8 THREADS, 1

GRAPH/THREAD). THE LAST COLUMN IS THE ADVANTAGE OF SHARED
MEMORY AWARENESS (RATIO OF COLUMNS 5 AND 3).

Name 4 threads 8 threads, 1 graph per Shared Mem.
thread node NUMA awareness

web-NotreDame 3.69 6.46 7.13 6.99 1.08
amazon0601 3.26 6.75 6.81 7.45 1.10
web-Google 3.69 7.77 7.55 8.06 1.03
soc-pokec - 1.00 0.92 1.01 1.01

A. Performance results

Figure 7 shows the performance and scalability of the
system in different configurations. The performance is
expressed in number of updates per second. The framework
obtains up to 11, 000 updates/sec on amazon0601 and
web-Google, 49, 000 updates/sec on web-NotreDame,
and more than 750 updates/sec on the largest tested
graph soc-pokec. It appears to scale linearly on the graphs
amazon0601 and web-Google, soc-pokec. For the first
two graphs, it reaches a speedup of 456 and 497, respectively,
with 63 nodes and 8 threads/node compared to the single
node-single thread configuration. (The incremental centrality
computation on soc-pokec with a single node was too long
to run the experiment, but the system is clearly scaling well
on this graph.) The last graph, web-NotreDame, does not
exhibit a linear scaling and obtains a speedup of only 316.

Let us first evaluate the performance obtained under dif-
ferent node-level configurations. Table II presents the relative
performance of the system using 31 worker nodes while using
1, 4, or 8 threads per node. When compared with the single
thread configuration, using 4 threads (the second column) is
more than 3 times faster, while using 8 threads (columns 3–5)
per node usually gives 6.5 speedup or more. Overall, having
multiple cores is fairly well exploited. Properly taking the
shared-memory aspect of the architecture into account (column
5) brings a performance improvement between 1% to 10% (the
last column). In one instance (web-Google with a graph for
each NUMA domain), we observed that the normalized perfor-
mance is more than the number of cores. This can be explained
by the difference in the amount of work due to the distribution
of the updates from different Streaming Events to the threads.

B. Execution-log analysis

Here we discuss the impact of pipelined parallelism and
the sub-linear speedup achieved on web-NotreDame. In
Figure 8, we present the execution logs for that graph obtained
while using 3, 15, and 63 worker nodes. Each log plot shows
three data series: the times at which StreamingMaster starts
to process the Streaming Events, the total number of updates
sent by StreamingMaster, and the number of updates processed
by the Executors collectively. The three different logs show
what happens when the ratio of update produced and update
consumed per second changes.

The first execution-log plot with 3 worker nodes (Fig. 8(a))
shows the amount of the updates emitted and processed as two

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 IEEE
Cluster’13

Performance	 Results	

0

2,000

4,000

6,000

8,000

10,000

12,000

 0 10 20 30 40 50 60

U
pd

at
es

 p
er

 s
ec

on
d

Working nodes

8 threads, 1 graph/NUMA
8 threads, 1 graph
8 threads, 1 graph/thread
4 threads, 1 graph
1 thread

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

 0 10 20 30 40 50 60

U
pd

at
es

 p
er

 s
ec

on
d

Working nodes

8 threads, 1 graph/NUMA
8 threads, 1 graph
8 threads, 1 graph/thread
4 threads, 1 graph
1 thread

0

2,000

4,000

6,000

8,000

10,000

12,000

 0 10 20 30 40 50 60

U
pd

at
es

 p
er

 s
ec

on
d

Working nodes

8 threads, 1 graph/NUMA
8 threads, 1 graph
8 threads, 1 graph/thread
4 threads, 1 graph
1 thread

100

200

300

400

500

600

700

800

 0 10 20 30 40 50 60

U
pd

at
es

 p
er

 s
ec

on
d

Working nodes

8 threads, 1 graph/NUMA
8 threads, 1 graph
8 threads, 1 graph/thread

456x
speedup

497x
speedup

316x
speedup

linear scaling sublinear scaling
(will be explained)

(a) amazon0601

(c) web-Google (d) soc-pokec

(b) web-NotreDame

15

TABLE I
GRAPH PROPERTIES. # UPDATES IS THE NUMBER OF UPDATES INDUCED

BY THE 50 ADDED EDGES. THE RUNTIMES ARE OBTAINED BY USING THE

WHOLE CLUSTER TO PROCESS THE UPDATES.

Name |V | |E| # updates time(s)
web-NotreDame 325,729 1,090,008 399,420 8.16
amazon0601 403,394 2,443,308 1,548,288 140.19
web-Google 916,428 4,321,958 2,527,088 226.20
soc-pokec 1,632,804 30,622,464 4,924,759 6,366.14

with dual Intel Xeon E5520 Quad-core CPUs (with 2-way
Simultaneous Multithreading, and 8MB of L3 cache per pro-
cessor), 48 GB of main memory. The nodes are interconnected
with 20 Gbps InfiniBand. The algorithms were run on CentOS
6, and compiled with GCC 4.5.2 using the -O3 optimization
flag. DataCutter uses an InfiniBand-aware MPI to leverage the
high performance interconnect: here we used MVAPICH 1.1.

For testing purposes, we picked 4 large social network
graphs from the SNAP dataset to perform the test at scale.
The properties of the graphs are summarized in Table I. For
simulating the addition of the edges, we removed 50 edges
from the graphs and added them back one by one. The
streamed edges were selected randomly and uniformly. For
comparability purposes, all the runs performed on the same
graph use the same set of edges. The number of updates
induced by that set of edges when applying filtering using
identical vertices, biconnected component decomposition, and
level filtering is given in Table I. In the experiments, the data
comes from a file, and the Streaming Events are pushed to the
system as quickly as possible so as to stress the system.

All the results presented in this section are extracted from
a single run of STREAMER with proper parameters. The
regularity in the plots indicates there would be a small variance
on the runtimes, which induces a reasonable confidence in
the significance of the quoted numbers. In the experiments,
StreamingMaster and Aggregator run on the same node, apart
from all the computational filters. Therefore, we report the
number of worker nodes, but an extra node is always used.

To give an idea of the actual amount of computation, in the
last column of Table I, we report the time STREAMER spends
to update the CC scores upon 50 edge insertions by using all
63 worker nodes. We present the parallel time and not the
sequential time for two reasons: (1) Our framework is never
really sequential, even using a single ComputeCC filter would
not actually be sequential. (2) The sequential runtime on the
biggest tested graph (soc-pokec) is prohibitive (estimated
at about a month). As all the execution times given in this
section, the times in Table I do not contain the initialization
time. That is the time measurement starts once STREAMER is
idle, waiting to receive Streaming Events.

A. Performance results

Figure 7 shows the performance and scalability of the
system in different configurations. The performance is
expressed in number of updates per second. The framework
obtains up to 11, 000 updates/sec on amazon0601 and
web-Google, 49, 000 updates/sec on web-NotreDame,
and more than 750 updates/sec on the largest tested

TABLE II
THE PERFORMANCE OF STREAMER WITH 31 WORKER NODES AND

DIFFERENT NODE-LEVEL CONFIGURATIONS NORMALIZED TO 1 THREAD

CASE (PERFORMANCE ON soc-pokec IS NORMALIZED TO 8 THREADS, 1
GRAPH/THREAD). THE LAST COLUMN IS THE ADVANTAGE OF SHARED

MEMORY AWARENESS (RATIO OF COLUMNS 5 AND 3).

Name 4 threads 8 threads, 1 graph per Shared Mem.
thread node NUMA awareness

web-NotreDame 3.69 6.46 7.13 6.99 1.08
amazon0601 3.26 6.75 6.81 7.45 1.10
web-Google 3.69 7.77 7.55 8.06 1.03
soc-pokec - 1.00 0.92 1.01 1.01

graph soc-pokec. It appears to scale linearly on the graphs
amazon0601 and web-Google, soc-pokec. For the first
two graphs, it reaches a speedup of 456 and 497, respectively,
with 63 nodes and 8 threads/node compared to the single
node-single thread configuration. (The incremental centrality
computation on soc-pokec with a single node was too long
to run the experiment, but the system is clearly scaling well
on this graph.) The last graph, web-NotreDame, does not
exhibit a linear scaling and obtains a speedup of only 316.

Let us first evaluate the performance obtained under dif-
ferent node-level configurations. Table II presents the relative
performance of the system using 31 worker nodes while using
1, 4, or 8 threads per node. When compared with the single
thread configuration, using 4 threads (the second column) is
more than 3 times faster, while using 8 threads (columns 3–5)
per node usually gives 6.5 speedup or more. Overall, having
multiple cores is fairly well exploited. Properly taking the
shared-memory aspect of the architecture into account (column
5) brings a performance improvement between 1% to 10% (the
last column). In one instance (web-Google with a graph for
each NUMA domain), we observed that the normalized perfor-
mance is more than the number of cores. This can be explained
by the difference in the amount of work due to the distribution
of the updates from different Streaming Events to the threads.

B. Execution-log analysis

Here we discuss the impact of pipelined parallelism and
the sub-linear speedup achieved on web-NotreDame. In
Figure 8, we present the execution logs for that graph obtained
while using 3, 15, and 63 worker nodes. Each log plot shows
three data series: the times at which StreamingMaster starts
to process the Streaming Events, the total number of updates
sent by StreamingMaster, and the number of updates processed
by the Executors collectively. The three different logs show
what happens when the ratio of update produced and update
consumed per second changes.

The first execution-log plot with 3 worker nodes (Fig. 8(a))
shows the amount of the updates emitted and processed as two
perfectly parallel almost straight lines. This indicates that the
runtime of the application is dominated by processing the up-
dates. As the figure shows, the times at which the master starts
processing the Streaming Events are not evenly distributed.
As mentioned before, StreamingMaster starts filtering for the
next Streaming Event as soon as it sends all the updates for the
current one. In other words, the amount of updates emitted for
a given Streaming Event can be read from the execution log as

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 16 IEEE
Cluster’13

NUMA	 awareness	

•  ExploiBng	 mulBple	 cores	 and	 properly	 taking	 the	
shared-‐memory	 aspect	 brings	 significant	 improvement	

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

Up
da

te

St
re

am
in

g
Ev

en
t

Walltime (in seconds)

Update emitted
Update processed
SE start

up
da

te
s

of
 o

ne
ev

en
t

(a) 3 worker nodes

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 5 10 15 20
0

10

20

30

40

50

Up
da

te

St
re

am
in

g
Ev

en
t

Walltime (in seconds)

Update emitted
Update processed
SE start

Pla
tea

u 1

Pla
tea

u 2

Pla
tea

u 3

overlapped

not overlapped

(b) 15 worker nodes

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

 0 1 2 3 4 5 6 7 8
 0

 10

 20

 30

 40

 50

Up
da

te

St
re

am
in

g
Ev

en
t

Walltime (in seconds)

Update emitted
Update processed
SE start

(c) 63 worker nodes

Fig. 8. Execution logs for web-NotreDame on different number of nodes.
Each plot shows the total number of updates sent by StreamingMaster and
processed by the Executors, respectively (the two lines), and the times at
which StreamingMaster starts to process Streaming Events (the set of ticks).

experimental cluster. By taking the hierarchical composition
of the architecture into account (64 nodes, 2 processors per
node, 4 cores per processor) and not considering it as a
regular distributed machine (a 512 processor MPI cluster),
we obtained 10% additional improvement. Furthermore, the
pipelined parallelism proved to be extremely necessary while
using a large amount of nodes in a concurrent fashion.

V. CONCLUSION

Maintaining the correctness of a graph analysis is impor-
tant in today’s dynamic networks. Computing the closeness
centrality scores from scratch after each graph modification is

prohibitive, and even sequential incremental algorithms are too
expensive for networks of practical relevance. In this paper, we
proposed STREAMER, a distributed memory framework which
guarantees the correctness of the CC scores, exploits replicated
and pipelined parallelism, and takes the hierarchical architec-
ture of modern clusters into account. Using STREAMER on a
64 nodes, 8 cores/node cluster, we reached a speedup of 497.

STREAMER scales well. However, despite we exposed
pipelined parallelism, the system eventually reaches a point
where the SSSPs initiated from each source are no longer
the bottleneck. In the future, we will remedy this problem by
making the StreamingMaster and Aggregator faster. In partic-
ular, the StreamingMaster can use replicated parallelism: each
Streaming Event can be filtered independently. We observed
that the Aggregator cost is dominated by the biconnnected
component decomposition which we plan to parallelize.

ACKNOWLEDGMENTS

This work was supported in parts by the DOE grant DE-FC02-
06ER2775 and by the NSF grants CNS-0643969, OCI-0904809, and
OCI-0904802.

REFERENCES

[1] M. D. Beynon, T. Kurç, Ü. V. Çatalyürek, C. Chang, A. Sussman, and
J. Saltz. Distributed processing of very large datasets with DataCutter.
Parallel Computing, 27(11):1457–1478, Oct. 2001.

[2] U. Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25(2):163–177, 2001.

[3] S. Y. Chan, I. X. Y. Leung, and P. Liò. Fast centrality approximation in
modular networks. In Proc. of CIKM-CNIKM, 2009.

[4] Ö. Şimşek and A. G. Barto. Skill characterization based on betweenness.
In Proc. of NIPS, 2008.

[5] J. B. Dennis. Data flow supercomputers. Computer, 13(11):48–56, 1980.
[6] D. Eppstein and J. Wang. Fast approximation of centrality. In Proc. of

SODA, 2001.
[7] O. Green, R. McColl, and D. A. Bader. A fast algorithm for streaming

betweenness centrality. In Proc. of SocialCom, 2012.
[8] T. D. R. Hartley, E. Saule, and U. V. Catalyurek. Improving performance

of adaptive component-based dataflow middleware. Parallel Computing,
38(6-7):289–309, 2012.

[9] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph
manipulation. Communications of the ACM, 16(6):372–378, June 1973.

[10] S. Jin, Z. Huang, Y. Chen, D. G. Chavarrı́a-Miranda, J. Feo, and P. C.
Wong. A novel application of parallel betweenness centrality to power
grid contingency analysis. In Proc. of IPDPS, 2010.

[11] S. Kintali. Betweenness centrality : Algorithms and lower bounds.
CoRR, abs/0809.1906, 2008.

[12] V. Krebs. Mapping networks of terrorist cells. Connections, 24, 2002.
[13] M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung. QUBE:

a Quick algorithm for Updating BEtweenness centrality. In Proc. of
WWW, 2012.

[14] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G. Chavarrı́a-
Miranda. A faster parallel algorithm and efficient multithreaded imple-
mentations for evaluating betweenness centrality on massive datasets. In
Proc. of IPDPS, 2009.

[15] E. L. Merrer and G. Trédan. Centralities: Capturing the fuzzy notion of
importance in social graphs. In Proc. of SNS, 2009.

[16] K. Okamoto, W. Chen, and X.-Y. Li. Ranking of closeness centrality
for large-scale social networks. In Proc. of FAW, 2008.

[17] S. Porta, V. Latora, F. Wang, E. Strano, A. Cardillo, S. Scellato,
V. Iacoviello, and R. Messora. Street centrality and densities of retail
and services in Bologna, Italy. Environment and Planning B: Planning
and Design, 36(3):450–465, 2009.

[18] A. E. Sarıyüce, K. Kaya, E. Saule, and Ümit V. Çatalyürek. Incremental
algorithms for network management and analysis based on closeness
centrality. CoRR, abs/1303.0422, 2013.

[19] Z. Shi and B. Zhang. Fast network centrality analysis using GPUs. BMC
Bioinformatics, 12:149, 2011.

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 17 IEEE
Cluster’13

Sublinear	 scaling	 case,	 3	 nodes	

Runtime is
dominated by
processing
updates

i.e., # of jobs
submitted

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

Up
da

te

St
re

am
in

g
Ev

en
t

Walltime (in seconds)

Update emitted
Update processed
SE start

up
da

te
s

of
 o

ne
ev

en
t

(a) 3 worker nodes

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 5 10 15 20
0

10

20

30

40

50

Up
da

te

St
re

am
in

g
Ev

en
t

Walltime (in seconds)

Update emitted
Update processed
SE start

Pla
tea

u 1

Pla
tea

u 2

Pla
tea

u 3

overlapped

not overlapped

(b) 15 worker nodes

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

 0 1 2 3 4 5 6 7 8
 0

 10

 20

 30

 40

 50

Up
da

te

St
re

am
in

g
Ev

en
t

Walltime (in seconds)

Update emitted
Update processed
SE start

(c) 63 worker nodes

Fig. 8. Execution logs for web-NotreDame on different number of nodes.
Each plot shows the total number of updates sent by StreamingMaster and
processed by the Executors, respectively (the two lines), and the times at
which StreamingMaster starts to process Streaming Events (the set of ticks).

experimental cluster. By taking the hierarchical composition
of the architecture into account (64 nodes, 2 processors per
node, 4 cores per processor) and not considering it as a
regular distributed machine (a 512 processor MPI cluster),
we obtained 10% additional improvement. Furthermore, the
pipelined parallelism proved to be extremely necessary while
using a large amount of nodes in a concurrent fashion.

V. CONCLUSION

Maintaining the correctness of a graph analysis is impor-
tant in today’s dynamic networks. Computing the closeness
centrality scores from scratch after each graph modification is

prohibitive, and even sequential incremental algorithms are too
expensive for networks of practical relevance. In this paper, we
proposed STREAMER, a distributed memory framework which
guarantees the correctness of the CC scores, exploits replicated
and pipelined parallelism, and takes the hierarchical architec-
ture of modern clusters into account. Using STREAMER on a
64 nodes, 8 cores/node cluster, we reached a speedup of 497.

STREAMER scales well. However, despite we exposed
pipelined parallelism, the system eventually reaches a point
where the SSSPs initiated from each source are no longer
the bottleneck. In the future, we will remedy this problem by
making the StreamingMaster and Aggregator faster. In partic-
ular, the StreamingMaster can use replicated parallelism: each
Streaming Event can be filtered independently. We observed
that the Aggregator cost is dominated by the biconnnected
component decomposition which we plan to parallelize.

ACKNOWLEDGMENTS

This work was supported in parts by the DOE grant DE-FC02-
06ER2775 and by the NSF grants CNS-0643969, OCI-0904809, and
OCI-0904802.

REFERENCES

[1] M. D. Beynon, T. Kurç, Ü. V. Çatalyürek, C. Chang, A. Sussman, and
J. Saltz. Distributed processing of very large datasets with DataCutter.
Parallel Computing, 27(11):1457–1478, Oct. 2001.

[2] U. Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25(2):163–177, 2001.

[3] S. Y. Chan, I. X. Y. Leung, and P. Liò. Fast centrality approximation in
modular networks. In Proc. of CIKM-CNIKM, 2009.

[4] Ö. Şimşek and A. G. Barto. Skill characterization based on betweenness.
In Proc. of NIPS, 2008.

[5] J. B. Dennis. Data flow supercomputers. Computer, 13(11):48–56, 1980.
[6] D. Eppstein and J. Wang. Fast approximation of centrality. In Proc. of

SODA, 2001.
[7] O. Green, R. McColl, and D. A. Bader. A fast algorithm for streaming

betweenness centrality. In Proc. of SocialCom, 2012.
[8] T. D. R. Hartley, E. Saule, and U. V. Catalyurek. Improving performance

of adaptive component-based dataflow middleware. Parallel Computing,
38(6-7):289–309, 2012.

[9] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph
manipulation. Communications of the ACM, 16(6):372–378, June 1973.

[10] S. Jin, Z. Huang, Y. Chen, D. G. Chavarrı́a-Miranda, J. Feo, and P. C.
Wong. A novel application of parallel betweenness centrality to power
grid contingency analysis. In Proc. of IPDPS, 2010.

[11] S. Kintali. Betweenness centrality : Algorithms and lower bounds.
CoRR, abs/0809.1906, 2008.

[12] V. Krebs. Mapping networks of terrorist cells. Connections, 24, 2002.
[13] M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung. QUBE:

a Quick algorithm for Updating BEtweenness centrality. In Proc. of
WWW, 2012.

[14] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G. Chavarrı́a-
Miranda. A faster parallel algorithm and efficient multithreaded imple-
mentations for evaluating betweenness centrality on massive datasets. In
Proc. of IPDPS, 2009.

[15] E. L. Merrer and G. Trédan. Centralities: Capturing the fuzzy notion of
importance in social graphs. In Proc. of SNS, 2009.

[16] K. Okamoto, W. Chen, and X.-Y. Li. Ranking of closeness centrality
for large-scale social networks. In Proc. of FAW, 2008.

[17] S. Porta, V. Latora, F. Wang, E. Strano, A. Cardillo, S. Scellato,
V. Iacoviello, and R. Messora. Street centrality and densities of retail
and services in Bologna, Italy. Environment and Planning B: Planning
and Design, 36(3):450–465, 2009.

[18] A. E. Sarıyüce, K. Kaya, E. Saule, and Ümit V. Çatalyürek. Incremental
algorithms for network management and analysis based on closeness
centrality. CoRR, abs/1303.0422, 2013.

[19] Z. Shi and B. Zhang. Fast network centrality analysis using GPUs. BMC
Bioinformatics, 12:149, 2011.

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 18 IEEE
Cluster’13

Sublinear	 scaling	 case,	 15	 nodes	

Pipelined
parallelism

Sublinear scaling is
due to the insufficient
number of emitted
updates!

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

Up
da

te

St
re

am
in

g
Ev

en
t

Walltime (in seconds)

Update emitted
Update processed
SE start

up
da

te
s

of
 o

ne
ev

en
t

(a) 3 worker nodes

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 5 10 15 20
0

10

20

30

40

50

Up
da

te

St
re

am
in

g
Ev

en
t

Walltime (in seconds)

Update emitted
Update processed
SE start

Pla
tea

u 1

Pla
tea

u 2

Pla
tea

u 3

overlapped

not overlapped

(b) 15 worker nodes

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

 0 1 2 3 4 5 6 7 8
 0

 10

 20

 30

 40

 50
Up

da
te

St
re

am
in

g
Ev

en
t

Walltime (in seconds)

Update emitted
Update processed
SE start

(c) 63 worker nodes

Fig. 8. Execution logs for web-NotreDame on different number of nodes.
Each plot shows the total number of updates sent by StreamingMaster and
processed by the Executors, respectively (the two lines), and the times at
which StreamingMaster starts to process Streaming Events (the set of ticks).

experimental cluster. By taking the hierarchical composition
of the architecture into account (64 nodes, 2 processors per
node, 4 cores per processor) and not considering it as a
regular distributed machine (a 512 processor MPI cluster),
we obtained 10% additional improvement. Furthermore, the
pipelined parallelism proved to be extremely necessary while
using a large amount of nodes in a concurrent fashion.

V. CONCLUSION

Maintaining the correctness of a graph analysis is impor-
tant in today’s dynamic networks. Computing the closeness
centrality scores from scratch after each graph modification is

prohibitive, and even sequential incremental algorithms are too
expensive for networks of practical relevance. In this paper, we
proposed STREAMER, a distributed memory framework which
guarantees the correctness of the CC scores, exploits replicated
and pipelined parallelism, and takes the hierarchical architec-
ture of modern clusters into account. Using STREAMER on a
64 nodes, 8 cores/node cluster, we reached a speedup of 497.

STREAMER scales well. However, despite we exposed
pipelined parallelism, the system eventually reaches a point
where the SSSPs initiated from each source are no longer
the bottleneck. In the future, we will remedy this problem by
making the StreamingMaster and Aggregator faster. In partic-
ular, the StreamingMaster can use replicated parallelism: each
Streaming Event can be filtered independently. We observed
that the Aggregator cost is dominated by the biconnnected
component decomposition which we plan to parallelize.

ACKNOWLEDGMENTS

This work was supported in parts by the DOE grant DE-FC02-
06ER2775 and by the NSF grants CNS-0643969, OCI-0904809, and
OCI-0904802.

REFERENCES

[1] M. D. Beynon, T. Kurç, Ü. V. Çatalyürek, C. Chang, A. Sussman, and
J. Saltz. Distributed processing of very large datasets with DataCutter.
Parallel Computing, 27(11):1457–1478, Oct. 2001.

[2] U. Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25(2):163–177, 2001.

[3] S. Y. Chan, I. X. Y. Leung, and P. Liò. Fast centrality approximation in
modular networks. In Proc. of CIKM-CNIKM, 2009.

[4] Ö. Şimşek and A. G. Barto. Skill characterization based on betweenness.
In Proc. of NIPS, 2008.

[5] J. B. Dennis. Data flow supercomputers. Computer, 13(11):48–56, 1980.
[6] D. Eppstein and J. Wang. Fast approximation of centrality. In Proc. of

SODA, 2001.
[7] O. Green, R. McColl, and D. A. Bader. A fast algorithm for streaming

betweenness centrality. In Proc. of SocialCom, 2012.
[8] T. D. R. Hartley, E. Saule, and U. V. Catalyurek. Improving performance

of adaptive component-based dataflow middleware. Parallel Computing,
38(6-7):289–309, 2012.

[9] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph
manipulation. Communications of the ACM, 16(6):372–378, June 1973.

[10] S. Jin, Z. Huang, Y. Chen, D. G. Chavarrı́a-Miranda, J. Feo, and P. C.
Wong. A novel application of parallel betweenness centrality to power
grid contingency analysis. In Proc. of IPDPS, 2010.

[11] S. Kintali. Betweenness centrality : Algorithms and lower bounds.
CoRR, abs/0809.1906, 2008.

[12] V. Krebs. Mapping networks of terrorist cells. Connections, 24, 2002.
[13] M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung. QUBE:

a Quick algorithm for Updating BEtweenness centrality. In Proc. of
WWW, 2012.

[14] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G. Chavarrı́a-
Miranda. A faster parallel algorithm and efficient multithreaded imple-
mentations for evaluating betweenness centrality on massive datasets. In
Proc. of IPDPS, 2009.

[15] E. L. Merrer and G. Trédan. Centralities: Capturing the fuzzy notion of
importance in social graphs. In Proc. of SNS, 2009.

[16] K. Okamoto, W. Chen, and X.-Y. Li. Ranking of closeness centrality
for large-scale social networks. In Proc. of FAW, 2008.

[17] S. Porta, V. Latora, F. Wang, E. Strano, A. Cardillo, S. Scellato,
V. Iacoviello, and R. Messora. Street centrality and densities of retail
and services in Bologna, Italy. Environment and Planning B: Planning
and Design, 36(3):450–465, 2009.

[18] A. E. Sarıyüce, K. Kaya, E. Saule, and Ümit V. Çatalyürek. Incremental
algorithms for network management and analysis based on closeness
centrality. CoRR, abs/1303.0422, 2013.

[19] Z. Shi and B. Zhang. Fast network centrality analysis using GPUs. BMC
Bioinformatics, 12:149, 2011.

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 19 IEEE
Cluster’13

Sublinear	 scaling	 case,	 63	 nodes	

Pipelined
parallelism StreamingMaster

becomes the
main bottleneck,
i.e., not fast
enough to send
updates to
workers

•  STREAMER,	 a	 distributed-‐memory	 framework,	 proves	 to	
be	 an	 effecBve	 soluBon	 for	 fast	 and	 exact	 incremental	
closeness	 centrality	 computaBon	
•  Exploits	 replicated	 and	 pipelined	 parallelism	
•  Scales	 well	
•  Reaches	 speedup	 of	 497	 with	 64	 nodes	 and	 8	 cores/node	

•  Future	 Work	
•  StreamingMaster	 and	 Aggregator	 can	 be	 replicated	 and	 work	
can	 be	 parBBoned	

•  Biconnected	 DecomposiBon,	 main	 part	 of	 Aggregator,	 can	 be	
parallelized	 as	 well	

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 20 IEEE
Cluster’13

Conclusion	

•  For	 more	 informaBon	
•  Email	 umit@bmi.osu.edu	
•  Visit	 	 hMp://bmi.osu.edu/~umit	 or	 hMp://bmi.osu.edu/hpc	

•  Acknowledgement	 of	 Support	

STREAMER:	 a	 Distributed	 Framework	 for	 Incremental	 Closeness	 Centrality	 Computa@on	 21 IEEE
Cluster’13

Thanks	

