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A load distribution problem

Load matrix

In parallel computing, the load can be
spatially located. The computation
should be distributed accordingly.

Applications

Particles in Cell (stencil).

Sparse Matrices.

Direct Volume Rendering.

Metrics

Load balance.

Communication.

Stability.
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The Rectangular Partitioning Problem

Definition

Let A be a n1 × n2 matrix of non-negative values. The problem is to
partition the [1, 1]× [n1, n2] rectangle into a set S of m rectangles. The
load of rectangle r = [x , y ]× [x ′, y ′] is L(r) =

∑
x≤i≤x ′,y≤j≤y ′ A[i ][j ]. The

problem is to minimize Lmax = maxr∈S L(r).

Prefix Sum

Algorithms are rarely interested in the value of a particular element but
rather interested in the load of a rectangle. The matrix is given as a 2D
prefix sum array Pr such as Pr [i ][j ] =

∑
i ′≤i ,j ′≤j A[i ′][j ′]. By convention

Pr [0][j ] = Pr [i ][0] = 0.
We can now compute the load of rectangle r = [x , y ]× [x ′, y ′] as
L(r) = Pr [x ′][y ′] + Pr [x − 1][y − 1]− Pr [x ′][y − 1]− Pr [x − 1][y ′].
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In One Dimension

Heuristic : Direct Cut [MP97]

Greedily set the first interval at the first i such as
∑

i ′≤i A[i ′] ≥
P

i′ A[i ′]
m .

Complexity: O(m log n
m ). Guarantees : Lmax(DC ) ≤

P
i′ A[i ′]
m + maxi A[i ].

Optimal : Nicol’s algorithm [Nic94] (improved by [PA04])

Use Probe(B) which tries to build a solution of value less than B. It loads
greedily the processors up with the largest interval of load less than B.
It exploits the property that there exists a solution so that the first interval
[1, i ] is either the smallest such that Probe(L([1, i ])) is true or the largest
such that Probe(L([1, i ])) is false.
Complexity: O((m log n

m )2).
Note: it works on more than load matrices, as long as the load of intervals
are non-decreasing (by inclusion).
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Simulation Setting

Classes (Some inspired by [MS96])

Processors

Simulation are perform with different number of processors: most squared
numbers up to 10,000.

Metric

Load imbalance is the presented metric : LmaxP
i,j A[i ][j]

m

− 1.
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Rectilinear Partitioning
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Known results on rectilinear partitioning

NP Complete [GM96] and there is no (2− ε)-approximation algorithm
(unless P = NP).

[Nic94]: a θ(m)-approximation algorithm based on iterative
refinement. O(n1n2) iterations in O(Q(P log n1

P )2 + P(Q log n2
Q )2).

[AHM01](refinement of [Nic94]): a θ(m1/4)-approximation algorithm
for squared matrices.

[KMS97]: a 120-approximation algorithm of complexity O(n1n2).

[GIK02]: 4-approximation algorithm (from rectangle stabbing) of
complexity O(log(

∑
i ,j A[i ][j ])n10

1 n10
2 ) (heavy linear programming).

[MS05]: (4 + ε)-approximation algorithm that runs in
O((n1 + n2 + PQ)P log(n1n2)).
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Nicol’s Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning
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Nicol’s Rectilinear Algorithm [Nic94]

∑ ∑ ∑ ∑ ∑ ∑ ∑

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.
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Nicol’s Rectilinear Algorithm [Nic94]
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instance.

Partition it in P parts.
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Nicol’s Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.
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Nicol’s Rectilinear Algorithm [Nic94]
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Sum the rows in each part.
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maximum for each interval.
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Nicol’s Rectilinear Algorithm [Nic94]
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Nicol’s Rectilinear Algorithm [Nic94]
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Get a PxQ rectilinear
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Nicol’s Rectilinear Algorithm [Nic94]
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maximum for each interval.
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Get a PxQ rectilinear
partitioning.

Ignore the row partition.

Iterate if improve.
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Nicol’s Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

Complexity:

O(n1n2) iterations (around 10 in
practice)

1 iteration :
O(Q(P log n1

P )2 + P(Q log n2
Q )2).
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PxQ Jagged Partitioning
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PxQ heuristic

PxQ Jagged Partitioning
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PxQ heuristic

∑ ∑ ∑ ∑ ∑ ∑ ∑

PxQ Jagged Partitioning

Sum on columns to generate a
1D problem.
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PxQ heuristic

∑ ∑ ∑ ∑ ∑ ∑ ∑

PxQ Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.
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PxQ heuristic

∑

∑

∑

∑
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∑

PxQ Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.
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PxQ heuristic

∑

∑
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PxQ Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.
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PxQ heuristic

PxQ Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.

Treat all stripes.

Complexity :
O((P log n1

P )2 + P × (Q log n2
Q )2).
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How good is that ?

Theorem

If there are no zero in the array, the heuristic P × Q-way partitioning is a
(1 + ∆ P

n1
)(1 + ∆ Q

n2
)-approximation algorithm where ∆ = max A

min A , P < n1,
Q < n2.

Proof.

One dimension guarantee (upper bound) Lmax(DC ) ≤
P

i′ A[i ′]
m + maxi A[i ]

can be rewritten as Lmax(DC ) ≤
P

A[i ]
m (1 + ∆m

n ).
It allows to bound the imbalance of a stripe :
Loadstripe ≤

P
A[i ][j]
P (1 + ∆ P

n1
).

And finally of a processor : Lmax ≤ (1 + ∆ P
n1

)(1 + ∆ Q
n2

).

Theorem

The approximation ratio is minimized by P =
√

m n1
n2

.
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An optimal PxQ jagged partitioning

A Dynamic Programming Formulation


Lmax(n1,P) = min1≤k<n1 max Lmax(k − 1,P − 1), 1D(k, n1,Q)
Lmax(0,P) = 0
Lmax(n1, 0) = +∞, ∀n1 ≥ 1

O(n1m) Lmax functions.

O(n2
1) 1D functions.

For a 512x512 matrix and 1000 processors, that’s 512,000+262,144
values. On 64-bit values, that’s 6MB.

Not all values need to be stored

Binary search on k .

Lower bound/Upper bound on Lmax and 1D.

Tree pruning.
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Performance of PxQ jagged Partitioning
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m-way Jagged Partitioning
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m-way jagged partitioning heuristic

Algorithm

Cut in P stripes. Distribute processors in each stripe proportionally to the

stripe’s load : allocj =
⌈P

i,j A[i ][j]

loadj
(m − P)

⌉
.

Theorem

If there are no zero in A, the approximation ratio of the described
algorithm is m

m−P (1 + ∆
n2

) + m∆
Pn2

(1 + ∆P
n1

).

Proof.

Same kind of proof than for heuristic PxQ jagged partitioning.

Recall that the guarantee of heuristic PxQ jagged partitioning was:
(1 + ∆ P

n1
)(1 + ∆ Q

n2
). m-way is better for large m values.
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An optimal m-way partitioning

A Dynamic Programming Formulation


Lmax(n1,m) = min1≤k<n1,1≤x≤m max Lmax(k − 1,m − x), 1D(k , n1, x)
Lmax(0,m) = 0
Lmax(n1, 0) = +∞, ∀n1 ≥ 1

O(n1m) Lmax functions.

O(n2
1m) 1D functions.

The same kind of optimizations apply.
For a 512x512 matrix on 1,000 processors. That’s 512,000 + 262,144,000
values, if they are 64-bits, about 2GB (and takes 30 minutes).
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Performance of m-way
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Hierarchical Bisection Partitioning
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Recursive Bisection [BB87]

m = 8 Algorithm

m processors to partition a
rectangle.

Complexity: O(m log max n1, n2).
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Recursive Bisection [BB87]

m = 8

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Complexity: O(m log max n1, n2).
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Recursive Bisection [BB87]

m = 4m = 4

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Allocate half the processors to
each side.

Complexity: O(m log max n1, n2).
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Recursive Bisection [BB87]

m = 2

m = 2

m = 4

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Allocate half the processors to
each side.

Complexity: O(m log max n1, n2).
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Recursive Bisection [BB87]

m = 1

m = 1

m = 2

m = 4

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Allocate half the processors to
each side.

Cut the dimension that
balances the load best.

Complexity: O(m log max n1, n2).
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Performance of Recursive Bisection

 0.0001

 0.001

 0.01

 0.1

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

lo
ad

 im
ba

la
nc

e

nb proc

iteration 30000

Nicol
Heuristic PxQ Jagged

Heuristic m-way Jagged
Recursive Bisection

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 24 / 32

http://bmi.osu.edu/hpc


An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation


Lmax(x1, x2, y1, y2,m) = minj min

(minx max Lmax(x1, x , y1, y2, j), Lmax(x + 1, x2, y1, y2,m − j))
, (miny max Lmax(x1, x2, y1, y , j), Lmax(x1, x2, y + 1, y2,m − j))

O(n2
1n

2
2m) Lmax functions.

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000
values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic

Build the solution according to
Lmax(x1, x2, y1, y2,m) = minj min

(minx max L(x1,x ,y1,y2)
j , L(x+1,x2,y1,y2)

m−j )

, (miny max L(x1,x2,y1,y)
j , L(x1,x2,y+1,y2)

m−j )
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Performance of Relaxed Hierarchical
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More General ?

Recursively Defined Partitioning

Most of them are polynomial by Dynamic Programming

Arbitrary Rectangles

NP-Complete with a 5
4 non-approximability result [KMP98].

There is a known 2-approximation of complexity O(n1n2 + m log n1n2)
which heavily relies on linear programming [Pal06].

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts:: 28 / 32

http://bmi.osu.edu/hpc


More General ?

Recursively Defined Partitioning

Most of them are polynomial by Dynamic Programming

Arbitrary Rectangles

NP-Complete with a 5
4 non-approximability result [KMP98].

There is a known 2-approximation of complexity O(n1n2 + m log n1n2)
which heavily relies on linear programming [Pal06].

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts:: 28 / 32

http://bmi.osu.edu/hpc


Performance Over the Execution
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Relaxed Hierarchical Might Be Unstable
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Conclusion and Perspective

Conclusion

Proposed new classes of partitioning.

Proved that most recursively defined classes are polynomial:

.

Proposed two new well-founded heuristics which outperform
state-of-the-art algorithm.

Theoretically analyzed two heuristics.

Perspective

Better m-way jagged partitioning algorithm.

Integration into real physic simulation codes.

Include communication models.
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Thank you

Collaborators

Thanks to H. Karimabadi, A. Majumdar, Y.A. Omelchenko and K.B.
Quest, collaborators of the Petaapps NSF OCI-0904802 grant, for
providing the particle-in-cell dataset.

More information

contact : esaule@bmi.osu.edu
visit: http://bmi.osu.edu/hpc/

Research at HPC lab is funded by
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