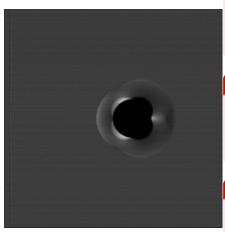
Partitioning Spatially Located Load with Rectangles: Algorithms and Simulations

Erik Saule, Erdeniz Ozgun Bas, Umit V. Catalyurek

Department of Biomedical Informatics, The Ohio State University {esaule,erdeniz,umit}@bmi.osu.edu

Frejus 2010

A load distribution problem



Load matrix

In parallel computing, the load can be spatially located. The computation should be distributed accordingly.

Applications

- Particles in Cell (stencil).
- Sparse Matrices.
- Direct Volume Rendering.

Metrics

- Load balance.
- Communication.
- Stability.

Outline

- Introduction
- Preliminaries
 - Notation
 - In One Dimension
 - Simulation Setting
- Rectilinear Partitioning
 - Nicol's Algorithm
- 4 Jagged Partitioning
 - PxQ jagged partitioning
 - m-way Jagged Partitioning
- 6 Hierarchical Bisection
 - Recursive Bisection
 - Dynamic Programming
- 6 Final thoughts
 - Summing up
 - Conclusion and Perspective

The Rectangular Partitioning Problem

Definition

Let A be a $n_1 \times n_2$ matrix of non-negative values. The problem is to partition the $[1,1] \times [n_1,n_2]$ rectangle into a set S of m rectangles. The load of rectangle $r = [x,y] \times [x',y']$ is $L(r) = \sum_{x \leq i \leq x', y \leq j \leq y'} A[i][j]$. The problem is to minimize $L_{max} = \max_{r \in S} L(r)$.

Prefix Sum

Algorithms are rarely interested in the value of a particular element but rather interested in the load of a rectangle. The matrix is given as a 2D prefix sum array Pr such as $Pr[i][j] = \sum_{i' \le i, j' \le j} A[i'][j']$. By convention Pr[0][j] = Pr[i][0] = 0.

We can now compute the load of rectangle $r = [x, y] \times [x', y']$ as L(r) = Pr[x'][y'] + Pr[x-1][y-1] - Pr[x'][y-1] - Pr[x-1][y'].

In One Dimension

Heuristic: Direct Cut [MP97]

Greedily set the first interval at the first i such as $\sum_{i' \leq i} A[i'] \geq \frac{\sum_{i'} A[i']}{m}$.

Complexity: $O(m \log \frac{n}{m})$. Guarantees : $L_{max}(DC) \leq \frac{\sum_{i'} A[i']}{m} + \max_i A[i]$.

Optimal: Nicol's algorithm [Nic94] (improved by [PA04])

Use Probe(B) which tries to build a solution of value less than B. It loads greedily the processors up with the largest interval of load less than B. It exploits the property that there exists a solution so that the first interval [1,i] is either the smallest such that Probe(L([1,i])) is true or the largest such that Probe(L([1,i])) is false.

Complexity: $O((m \log \frac{n}{m})^2)$.

Note: it works on more than load matrices, as long as the load of intervals are non-decreasing (by inclusion).

Simulation Setting

Processors

Simulation are perform with different number of processors: most squared numbers up to 10,000.

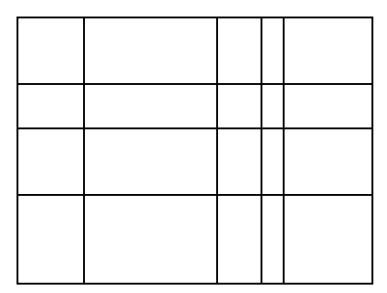
Metric

Load imbalance is the presented metric :

Outline of the Talk

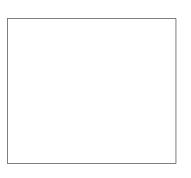
- Introduction
- Preliminaries
 - Notation
 - In One Dimension
 - Simulation Setting
- Rectilinear Partitioning
 - Nicol's Algorithm
- 4 Jagged Partitioning
 - PxQ jagged partitioning
 - m-way Jagged Partitioning
- 6 Hierarchical Bisection
 - Recursive Bisection
 - Dynamic Programming
- 6 Final thoughts
 - Summing up
 - Conclusion and Perspective

Rectilinear Partitioning

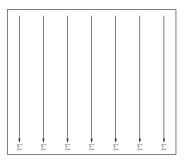


Known results on rectilinear partitioning

- NP Complete [GM96] and there is no (2ϵ) -approximation algorithm (unless P = NP).
- [Nic94]: a $\theta(m)$ -approximation algorithm based on iterative refinement. $O(n_1 n_2)$ iterations in $O(Q(P \log \frac{n_1}{P})^2 + P(Q \log \frac{n_2}{Q})^2)$.
- [AHM01](refinement of [Nic94]): a $\theta(m^{1/4})$ -approximation algorithm for squared matrices.
- [KMS97]: a 120-approximation algorithm of complexity $O(n_1n_2)$.
- [GIK02]: 4-approximation algorithm (from rectangle stabbing) of complexity $O(\log(\sum_{i,j}A[i][j])n_1^{10}n_2^{10})$ (heavy linear programming).
- [MS05]: $(4 + \epsilon)$ -approximation algorithm that runs in $O((n_1 + n_2 + PQ)P \log(n_1 n_2))$.

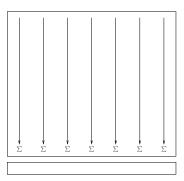


PxQ rectilinear partitioning



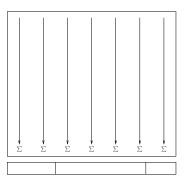
PxQ rectilinear partitioning

• Sum the columns to make a 1d instance.



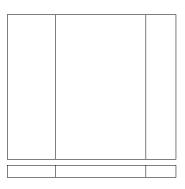
PxQ rectilinear partitioning

• Sum the columns to make a 1d instance.



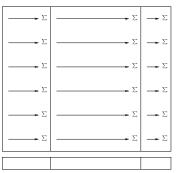
PxQ rectilinear partitioning

- Sum the columns to make a 1d instance.
- Partition it in P parts.



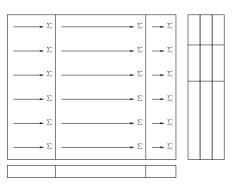
PxQ rectilinear partitioning

- Sum the columns to make a 1d instance.
- Partition it in P parts.
- Get a Px1 rectilinear partitioning.



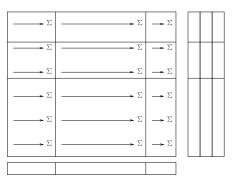
PxQ rectilinear partitioning

- Sum the columns to make a 1d instance.
- Partition it in P parts.
- Get a Px1 rectilinear partitioning.
- Sum the rows in each part.
- Build a 1d instance by taking the maximum for each interval.



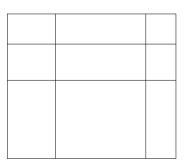
PxQ rectilinear partitioning

- Sum the columns to make a 1d instance.
- Partition it in P parts.
- Get a Px1 rectilinear partitioning.
- Sum the rows in each part.
- Build a 1d instance by taking the maximum for each interval.
- Partition it in Q.



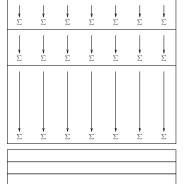
PxQ rectilinear partitioning

- Sum the columns to make a 1d instance.
- Partition it in P parts.
- Get a Px1 rectilinear partitioning.
- Sum the rows in each part.
- Build a 1d instance by taking the maximum for each interval.
- Partition it in Q.
- Get a PxQ rectilinear partitioning.



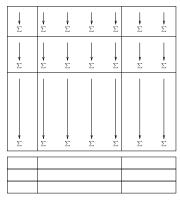
PxQ rectilinear partitioning

- Sum the columns to make a 1d instance.
- Partition it in P parts.
- Get a Px1 rectilinear partitioning.
- Sum the rows in each part.
- Build a 1d instance by taking the maximum for each interval.
- Partition it in Q.
- Get a PxQ rectilinear partitioning.



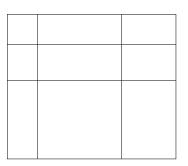
PxQ rectilinear partitioning

- Sum the columns to make a 1d instance.
- Partition it in P parts.
- Get a Px1 rectilinear partitioning.
 - Sum the rows in each part.
- Build a 1d instance by taking the maximum for each interval.
 - Partition it in Q.
 - Get a PxQ rectilinear partitioning.
 - Ignore the row partition.



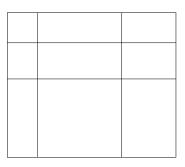
PxQ rectilinear partitioning

- Sum the columns to make a 1d instance.
- Partition it in P parts.
- Get a Px1 rectilinear partitioning.
- Sum the rows in each part.
- Build a 1d instance by taking the maximum for each interval.
- Partition it in Q.
- Get a PxQ rectilinear partitioning.
- Ignore the row partition.
- Iterate if improve.



PxQ rectilinear partitioning

- Sum the columns to make a 1d. instance.
- Partition it in P parts.
- Get a Px1 rectilinear partitioning.
- Sum the rows in each part.
- Build a 1d instance by taking the maximum for each interval.
- Partition it in Q.
- Get a PxQ rectilinear partitioning.
- Ignore the row partition.
- Iterate if improve.



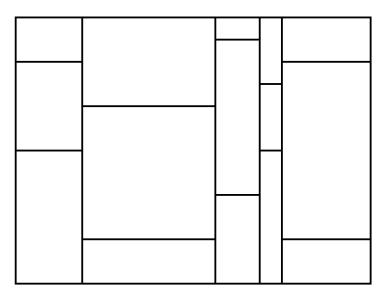
PxQ rectilinear partitioning

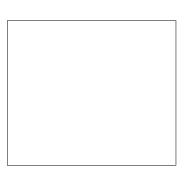
Complexity:

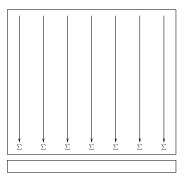
- $O(n_1n_2)$ iterations (around 10 in practice)
- 1 iteration : $O(Q(P\log\frac{n_1}{P})^2 + P(Q\log\frac{n_2}{Q})^2).$

Outline of the Talk

- Introduction
- 2 Preliminaries
 - Notation
 - In One Dimension
 - Simulation Setting
- Rectilinear Partitioning
 - Nicol's Algorithm
- 4 Jagged Partitioning
 - PxQ jagged partitioning
 - m-way Jagged Partitioning
- 6 Hierarchical Bisection
 - Recursive Bisection
 - Dynamic Programming
- 6 Final thoughts
 - Summing up
 - Conclusion and Perspective

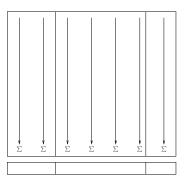




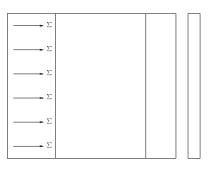


PxQ Jagged Partitioning

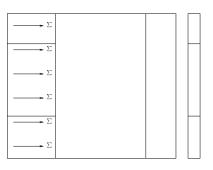
 Sum on columns to generate a 1D problem.



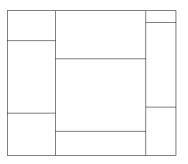
- Sum on columns to generate a 1D problem.
- Partition it in P parts.



- Sum on columns to generate a 1D problem.
- Partition it in P parts.
- For the first stripe, sum on rows.



- Sum on columns to generate a 1D problem.
- Partition it in P parts.
- For the first stripe, sum on rows.
- Partition it in Q parts.



PxQ Jagged Partitioning

- Sum on columns to generate a 1D problem.
- Partition it in P parts.
- For the first stripe, sum on rows.
- Partition it in Q parts.
- Treat all stripes.

Complexity: $O((P \log \frac{n_1}{P})^2 + P \times (Q \log \frac{n_2}{Q})^2).$

How good is that ?

Theorem

If there are no zero in the array, the heuristic $P \times Q$ -way partitioning is a $(1 + \Delta \frac{P}{n_1})(1 + \Delta \frac{Q}{n_2})$ -approximation algorithm where $\Delta = \frac{\max A}{\min A}$, $P < n_1$, $Q < n_2$.

How good is that ?

Theorem

If there are no zero in the array, the heuristic $P \times Q$ -way partitioning is a $(1 + \Delta \frac{P}{n_1})(1 + \Delta \frac{Q}{n_2})$ -approximation algorithm where $\Delta = \frac{\max A}{\min A}$, $P < n_1$, $Q < n_2$.

Proof.

One dimension guarantee (upper bound) $L_{max}(DC) \leq \frac{\sum_{i'} A[i']}{m} + \max_i A[i]$ can be rewritten as $L_{max}(DC) \leq \frac{\sum_{i'} A[i']}{m} (1 + \Delta \frac{m}{n})$.

It allows to bound the imbalance of a stripe :

$$Load_{stripe} \leq \frac{\sum A[i][j]}{P} (1 + \Delta \frac{P}{n_1}).$$

And finally of a processor : $\hat{L}_{max} \leq (1 + \Delta \frac{P}{n_1})(1 + \Delta \frac{Q}{n_2})$.

How good is that?

Theorem

If there are no zero in the array, the heuristic $P \times Q$ -way partitioning is a $(1 + \Delta \frac{P}{n_1})(1 + \Delta \frac{Q}{n_2})$ -approximation algorithm where $\Delta = \frac{\max A}{\min A}$, $P < n_1$, $Q < n_2$.

Proof.

One dimension guarantee (upper bound) $L_{max}(DC) \leq \frac{\sum_{i'} A[i']}{m} + \max_{i} A[i]$ can be rewritten as $L_{max}(DC) \leq \frac{\sum A[i]}{m}(1 + \Delta \frac{m}{n})$. It allows to bound the imbalance of a stripe:

 $Load_{stripe} \leq \frac{\sum A[i][j]}{P} (1 + \Delta \frac{P}{P}).$

And finally of a processor : $L_{max} \leq (1 + \Delta \frac{P}{P_1})(1 + \Delta \frac{Q}{P_2})$.

Theorem

The approximation ratio is minimized by $P = \sqrt{m \frac{n_1}{n_2}}$.

An optimal PxQ jagged partitioning

A Dynamic Programming Formulation

$$\left\{ \begin{array}{l} L_{max}(n_1,P) = \min_{1 \leq k < n_1} \max L_{max}(k-1,P-1), 1D(k,n_1,Q) \\ L_{max}(0,P) = 0 \\ L_{max}(n_1,0) = +\infty, \forall n_1 \geq 1 \end{array} \right.$$

- $O(n_1m)$ L_{max} functions.
- $O(n_1^2)$ 1D functions.

For a 512x512 matrix and 1000 processors, that's 512,000+262,144 values. On 64-bit values, that's 6MB.

An optimal PxQ jagged partitioning

A Dynamic Programming Formulation

$$\begin{cases} L_{max}(n_1, P) = \min_{1 \le k < n_1} \max L_{max}(k - 1, P - 1), 1D(k, n_1, Q) \\ L_{max}(0, P) = 0 \\ L_{max}(n_1, 0) = +\infty, \forall n_1 \ge 1 \end{cases}$$

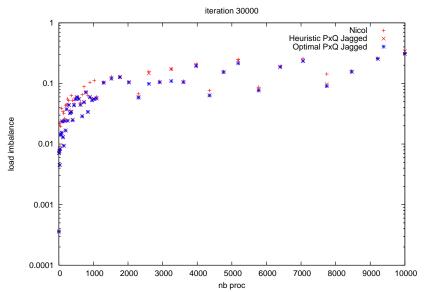
- $O(n_1m)$ L_{max} functions.
- $O(n_1^2)$ 1D functions.

For a 512x512 matrix and 1000 processors, that's 512,000+262,144 values. On 64-bit values, that's 6MB.

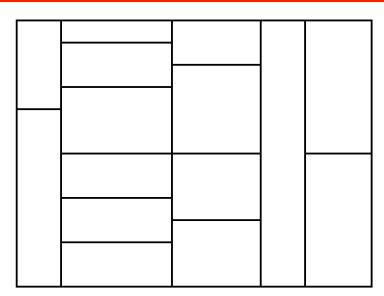
Not all values need to be stored

- Binary search on k.
- Lower bound/Upper bound on L_{max} and 1D.
- Tree pruning.

Performance of PxQ jagged Partitioning



m-way Jagged Partitioning



m-way jagged partitioning heuristic

Algorithm

Cut in P stripes. Distribute processors in each stripe proportionally to the stripe's load : $alloc_j = \left\lceil \frac{\sum_{i,j} A[i][j]}{load_i} (m-P) \right\rceil$.

m-way jagged partitioning heuristic

Algorithm

Cut in P stripes. Distribute processors in each stripe proportionally to the stripe's load : $alloc_j = \left\lceil \frac{\sum_{i,j} A[i][j]}{load_i} (m-P) \right\rceil$.

$\mathsf{Theorem}$

If there are no zero in A, the approximation ratio of the described algorithm is $\frac{m}{m-P}(1+\frac{\Delta}{p_0})+\frac{m\Delta}{Pp_0}(1+\frac{\Delta P}{p_0})$.

Proof.

Same kind of proof than for heuristic PxQ jagged partitioning.

Recall that the guarantee of heuristic PxQ jagged partitioning was: $(1 + \Delta \frac{P}{r_0})(1 + \Delta \frac{Q}{r_0})$. m-way is better for large m values.

An optimal *m*-way partitioning

A Dynamic Programming Formulation

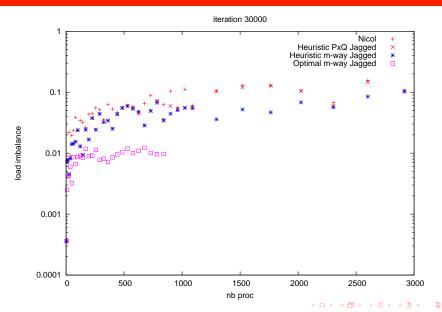
$$\left\{ \begin{array}{l} L_{max}(n_1,m) = \min_{1 \leq k < n_1, 1 \leq x \leq m} \max L_{max}(k-1,m-x), 1D(k,n_1,x) \\ L_{max}(0,m) = 0 \\ L_{max}(n_1,0) = +\infty, \forall n_1 \geq 1 \end{array} \right.$$

- $O(n_1m)$ L_{max} functions.
- $O(n_1^2 m)$ 1D functions.

The same kind of optimizations apply.

For a 512×512 matrix on 1,000 processors. That's 512,000 + 262,144,000values, if they are 64-bits, about 2GB (and takes 30 minutes).

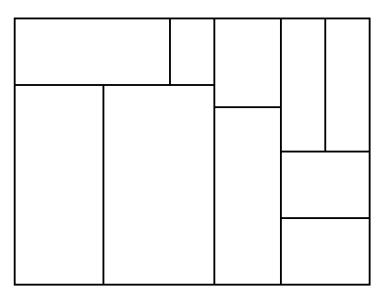
Performance of *m*-way

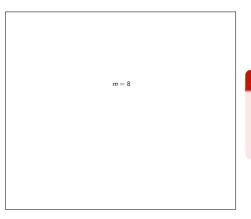


Outline of the Talk

- Introduction
- 2 Preliminaries
 - Notation
 - In One Dimension
 - Simulation Setting
- Rectilinear Partitioning
 - Nicol's Algorithm
- 4 Jagged Partitioning
 - PxQ jagged partitioning
 - m-way Jagged Partitioning
- 6 Hierarchical Bisection
 - Recursive Bisection
 - Dynamic Programming
- 6 Final thoughts
 - Summing up
 - Conclusion and Perspective

Hierarchical Bisection Partitioning

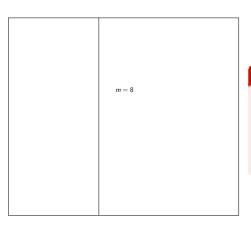




Algorithm

 m processors to partition a rectangle.

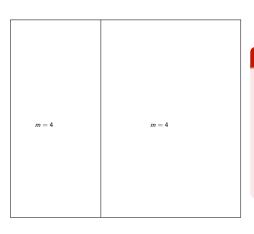
Complexity: $O(m \log \max n_1, n_2)$.



Algorithm

- m processors to partition a rectangle.
- Cut to balance the load evenly.

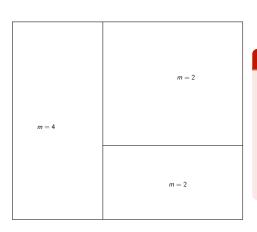
Complexity: $O(m \log \max n_1, n_2)$.



Algorithm

- m processors to partition a rectangle.
- Cut to balance the load evenly.
- Allocate half the processors to each side.

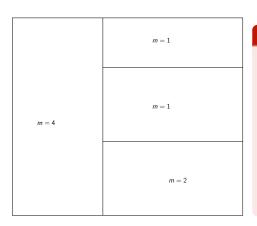
Complexity: $O(m \log \max n_1, n_2)$.



Algorithm

- m processors to partition a rectangle.
- Cut to balance the load evenly.
- Allocate half the processors to each side.

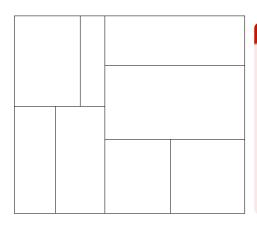
Complexity: $O(m \log \max n_1, n_2)$.



Algorithm

- m processors to partition a rectangle.
- Cut to balance the load evenly.
- Allocate half the processors to each side.
- Cut the dimension that balances the load best.

Complexity: $O(m \log \max n_1, n_2)$.



Algorithm

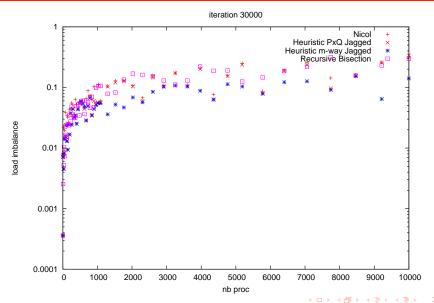
rectangle.

m processors to partition a

- Cut to balance the load evenly.
- Allocate half the processors to each side.
- Cut the dimension that balances the load best.

Complexity: $O(m \log \max n_1, n_2)$.

Performance of Recursive Bisection



An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

```
\begin{split} L_{max}(x_1, x_2, y_1, y_2, m) &= \min_{j} \min \\ & \left( \min_{x} \max L_{max}(x_1, x, y_1, y_2, j), L_{max}(x + 1, x_2, y_1, y_2, m - j) \right) \\ & \cdot \left( \min_{y} \max L_{max}(x_1, x_2, y_1, y, j), L_{max}(x_1, x_2, y + 1, y_2, m - j) \right) \end{split}
• O(n_1^2 n_2^2 m) L_{max} functions.
```

For a 512x512 matrix and 1000 processors, that's 68,719,476,736,000 values. On 64-bit values, that's 544TB.

An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

$$\begin{cases} L_{max}(x_1, x_2, y_1, y_2, m) = \min_j \min_j \\ (\min_x \max_j L_{max}(x_1, x, y_1, y_2, j), L_{max}(x+1, x_2, y_1, y_2, m-j)) \\ , (\min_y \max_j L_{max}(x_1, x_2, y_1, y, j), L_{max}(x_1, x_2, y+1, y_2, m-j)) \end{cases}$$

$$\bullet O(n_1^2 n_2^2 m) L_{max} \text{ functions.}$$

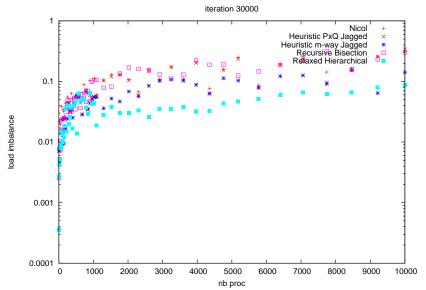
For a 512x512 matrix and 1000 processors, that's 68,719,476,736,000 values. On 64-bit values, that's 544TB.

The Relaxed Hierarchical Heuristic

Build the solution according to

$$\left\{ \begin{array}{l} L_{max}(x_1, x_2, y_1, y_2, m) = \min_{j} \min_{j} \\ \left(\min_{x} \max \frac{L(x_1, x, y_1, y_2)}{j}, \frac{L(x+1, x_2, y_1, y_2)}{m-j} \right) \\ , \left(\min_{y} \max \frac{L(x_1, x_2, y_1, y)}{j}, \frac{L(x_1, x_2, y+1, y_2)}{m-j} \right) \end{array} \right.$$

Performance of Relaxed Hierarchical



Outline of the Talk

- Introduction
- 2 Preliminaries
 - Notation
 - In One Dimension
 - Simulation Setting
- Rectilinear Partitioning
 - Nicol's Algorithm
- 4 Jagged Partitioning
 - PxQ jagged partitioning
 - m-way Jagged Partitioning
- 6 Hierarchical Bisection
 - Recursive Bisection
 - Dynamic Programming
- 6 Final thoughts
 - Summing up
 - Conclusion and Perspective

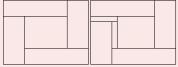
More General?

Recursively Defined Partitioning Most of them are polynomial by Dynamic Programming

More General?

Recursively Defined Partitioning

Most of them are polynomial by Dynamic Programming

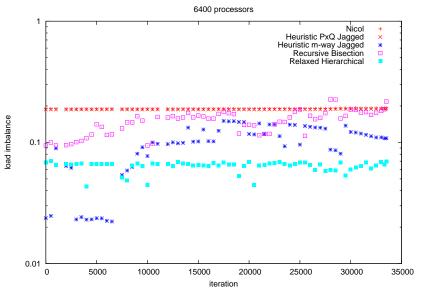


Arbitrary Rectangles

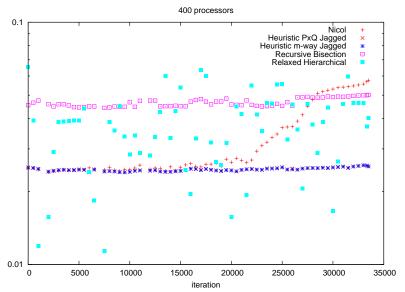
NP-Complete with a $\frac{5}{4}$ non-approximability result [KMP98]. There is a known 2-approximation of complexity $O(n_1n_2 + m \log n_1n_2)$

which heavily relies on linear programming [Pal06].

Performance Over the Execution



Relaxed Hierarchical Might Be Unstable

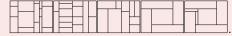


load imbalance

Conclusion and Perspective

Conclusion

- Proposed new classes of partitioning.
- Proved that most recursively defined classes are polynomial:



- Proposed two new well-founded heuristics which outperform state-of-the-art algorithm.
- Theoretically analyzed two heuristics.

Perspective

- Better *m*-way jagged partitioning algorithm.
- Integration into real physic simulation codes.
- Include communication models.

2D partitioning

Final thoughts::Conclusion and Perspective

Thank you

Collaborators

Thanks to H. Karimabadi, A. Majumdar, Y.A. Omelchenko and K.B. Quest, collaborators of the Petaapps NSF OCI-0904802 grant, for providing the particle-in-cell dataset.

More information

contact: esaule@bmi.osu.edu visit: http://bmi.osu.edu/hpc/

Research at HPC lab is funded by

- Bengt Aspvall, Magnús M. Halldórsson, and Fredrick Manne. Approximations for the general block distribution of a matrix. Theor. Comput. Sci., 262(1-2):145–160, 2001.
 - Marsha Berger and Shahid Bokhari. A partitioning strategy for nonuniform problems on multiprocessors. IEEE Transaction on Computers, C36(5):570–580, 1987.
- Daya Ram Gaur, Toshihide Ibaraki, and Ramesh Krishnamurti. Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. J. Algorithms, 43(1):138-152, 2002.
- Michelangelo Grigni and Fredrik Manne. On the complexity of the generalized block distribution. In IRREGULAR '96: Proceedings of the Third International Workshop on Parallel Algorithms for Irregularly Structured Problems, pages 319–326, London, UK, 1996. Springer-Verlag.
- S. Khanna, S. Muthukrishnan, and M. Paterson. 4日 → 4日 → 4 目 → 4 目 → 9 Q (*)

On approximating rectangle tiling and packaging. In proceedings of the 19th SODA, pages 384–393, 1998.

Sanjeev Khanna, S. Muthukrishnan, and Steven Skiena. Efficient array partitioning.

In ICALP '97: Proceedings of the 24th International Colloquium on Automata, Languages and Programming, pages 616-626, London, UK, 1997. Springer-Verlag.

Serge Miguet and Jean-Marc Pierson.

Heuristics for 1d rectilinear partitioning as a low cost and high quality answer to dynamic load balancing.

In HPCN Europe '97: Proceedings of the International Conference and Exhibition on High-Performance Computing and Networking, pages 550-564, London, UK, 1997. Springer-Verlag.

Fredrik Manne and Tor Sørevik. Partitioning an array onto a mesh of processors. In PARA '96: Proceedings of the Third International Workshop on Applied Parallel Computing, Industrial Computation and Optimization, pages 467–477, London, UK, 1996. Springer-Verlag.

Approximation algorithms for array partitioning problems. Journal of Algorithms, 54:85–104, 2005.

David Nicol.

Rectilinear partitioning of irregular data parallel computations. Journal of Parallel and Distributed Computing, 23:119–134, 1994.

Ali Pinar and Cevdet Aykanat.

Fast optimal load balancing algorithms for 1d partitioning. Journal of Parallel and Distributed Computing, 64:974–996, 2004.

K. Paluch.

A new approximation algorithm for multidimensional rectangle tiling. In Proceedings of ISAAC, 2006.