
Partitioning Spatially Located Load with Rectangles:
Algorithms and Simulations

Erik Saule, Erdeniz Ozgun Bas, Umit V. Catalyurek

Department of Biomedical Informatics, The Ohio State University
{esaule,erdeniz,umit}@bmi.osu.edu

Frejus 2010

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

:: 1 / 32

http://bmi.osu.edu/hpc

A load distribution problem

Load matrix

In parallel computing, the load can be
spatially located. The computation
should be distributed accordingly.

Applications

Particles in Cell (stencil).

Sparse Matrices.

Direct Volume Rendering.

Metrics

Load balance.

Communication.

Stability.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 2 / 32

http://bmi.osu.edu/hpc

Outline

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
PxQ jagged partitioning
m-way Jagged Partitioning

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up
Conclusion and Perspective

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 3 / 32

http://bmi.osu.edu/hpc

The Rectangular Partitioning Problem

Definition

Let A be a n1 × n2 matrix of non-negative values. The problem is to
partition the [1, 1]× [n1, n2] rectangle into a set S of m rectangles. The
load of rectangle r = [x , y]× [x ′, y ′] is L(r) =

∑
x≤i≤x ′,y≤j≤y ′ A[i][j]. The

problem is to minimize Lmax = maxr∈S L(r).

Prefix Sum

Algorithms are rarely interested in the value of a particular element but
rather interested in the load of a rectangle. The matrix is given as a 2D
prefix sum array Pr such as Pr [i][j] =

∑
i ′≤i ,j ′≤j A[i ′][j ′]. By convention

Pr [0][j] = Pr [i][0] = 0.
We can now compute the load of rectangle r = [x , y]× [x ′, y ′] as
L(r) = Pr [x ′][y ′] + Pr [x − 1][y − 1]− Pr [x ′][y − 1]− Pr [x − 1][y ′].

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Preliminaries::Notation 4 / 32

http://bmi.osu.edu/hpc

In One Dimension

Heuristic : Direct Cut [MP97]

Greedily set the first interval at the first i such as
∑

i ′≤i A[i ′] ≥
P

i′ A[i ′]
m .

Complexity: O(m log n
m). Guarantees : Lmax(DC) ≤

P
i′ A[i ′]
m + maxi A[i].

Optimal : Nicol’s algorithm [Nic94] (improved by [PA04])

Use Probe(B) which tries to build a solution of value less than B. It loads
greedily the processors up with the largest interval of load less than B.
It exploits the property that there exists a solution so that the first interval
[1, i] is either the smallest such that Probe(L([1, i])) is true or the largest
such that Probe(L([1, i])) is false.
Complexity: O((m log n

m)2).
Note: it works on more than load matrices, as long as the load of intervals
are non-decreasing (by inclusion).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Preliminaries::In One Dimension 5 / 32

http://bmi.osu.edu/hpc

Simulation Setting

Classes (Some inspired by [MS96])

Processors

Simulation are perform with different number of processors: most squared
numbers up to 10,000.

Metric

Load imbalance is the presented metric : LmaxP
i,j A[i][j]

m

− 1.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Preliminaries::Simulation Setting 6 / 32

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
PxQ jagged partitioning
m-way Jagged Partitioning

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up
Conclusion and Perspective

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning:: 7 / 32

http://bmi.osu.edu/hpc

Rectilinear Partitioning

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning:: 8 / 32

http://bmi.osu.edu/hpc

Known results on rectilinear partitioning

NP Complete [GM96] and there is no (2− ε)-approximation algorithm
(unless P = NP).

[Nic94]: a θ(m)-approximation algorithm based on iterative
refinement. O(n1n2) iterations in O(Q(P log n1

P)2 + P(Q log n2
Q)2).

[AHM01](refinement of [Nic94]): a θ(m1/4)-approximation algorithm
for squared matrices.

[KMS97]: a 120-approximation algorithm of complexity O(n1n2).

[GIK02]: 4-approximation algorithm (from rectangle stabbing) of
complexity O(log(

∑
i ,j A[i][j])n10

1 n10
2) (heavy linear programming).

[MS05]: (4 + ε)-approximation algorithm that runs in
O((n1 + n2 + PQ)P log(n1n2)).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning:: 9 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

∑ ∑ ∑ ∑ ∑ ∑ ∑

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

∑ ∑ ∑ ∑ ∑ ∑ ∑

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

∑ ∑ ∑ ∑ ∑ ∑ ∑

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Partition it in P parts.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

max

∑

∑

∑

∑

∑

∑ ∑

∑

∑

∑

∑

∑ ∑

∑

∑

∑

∑

∑

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

∑

∑

∑

∑

∑

∑ ∑

∑

∑

∑

∑

∑ ∑

∑

∑

∑

∑

∑

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Partition it in Q.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

∑

∑

∑

∑

∑

∑ ∑

∑

∑

∑

∑

∑ ∑

∑

∑

∑

∑

∑

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Partition it in Q.

Get a PxQ rectilinear
partitioning.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Partition it in Q.

Get a PxQ rectilinear
partitioning.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑∑∑∑∑∑∑

∑ ∑ ∑ ∑ ∑ ∑ ∑

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Partition it in Q.

Get a PxQ rectilinear
partitioning.

Ignore the row partition.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑∑∑∑∑∑∑

∑ ∑ ∑ ∑ ∑ ∑ ∑

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Partition it in Q.

Get a PxQ rectilinear
partitioning.

Ignore the row partition.

Iterate if improve.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Partition it in Q.

Get a PxQ rectilinear
partitioning.

Ignore the row partition.

Iterate if improve.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Nicol’s Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

Complexity:

O(n1n2) iterations (around 10 in
practice)

1 iteration :
O(Q(P log n1

P)2 + P(Q log n2
Q)2).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning::Nicol’s Algorithm 10 / 32

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
PxQ jagged partitioning
m-way Jagged Partitioning

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up
Conclusion and Perspective

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning:: 11 / 32

http://bmi.osu.edu/hpc

PxQ Jagged Partitioning

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 12 / 32

http://bmi.osu.edu/hpc

PxQ heuristic

PxQ Jagged Partitioning

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 13 / 32

http://bmi.osu.edu/hpc

PxQ heuristic

∑ ∑ ∑ ∑ ∑ ∑ ∑

PxQ Jagged Partitioning

Sum on columns to generate a
1D problem.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 13 / 32

http://bmi.osu.edu/hpc

PxQ heuristic

∑ ∑ ∑ ∑ ∑ ∑ ∑

PxQ Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 13 / 32

http://bmi.osu.edu/hpc

PxQ heuristic

∑

∑

∑

∑

∑

∑

PxQ Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 13 / 32

http://bmi.osu.edu/hpc

PxQ heuristic

∑

∑

∑

∑

∑

∑

PxQ Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 13 / 32

http://bmi.osu.edu/hpc

PxQ heuristic

PxQ Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.

Treat all stripes.

Complexity :
O((P log n1

P)2 + P × (Q log n2
Q)2).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 13 / 32

http://bmi.osu.edu/hpc

How good is that ?

Theorem

If there are no zero in the array, the heuristic P × Q-way partitioning is a
(1 + ∆ P

n1
)(1 + ∆ Q

n2
)-approximation algorithm where ∆ = max A

min A , P < n1,
Q < n2.

Proof.

One dimension guarantee (upper bound) Lmax(DC) ≤
P

i′ A[i ′]
m + maxi A[i]

can be rewritten as Lmax(DC) ≤
P

A[i]
m (1 + ∆m

n).
It allows to bound the imbalance of a stripe :
Loadstripe ≤

P
A[i][j]
P (1 + ∆ P

n1
).

And finally of a processor : Lmax ≤ (1 + ∆ P
n1

)(1 + ∆ Q
n2

).

Theorem

The approximation ratio is minimized by P =
√

m n1
n2

.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 14 / 32

http://bmi.osu.edu/hpc

How good is that ?

Theorem

If there are no zero in the array, the heuristic P × Q-way partitioning is a
(1 + ∆ P

n1
)(1 + ∆ Q

n2
)-approximation algorithm where ∆ = max A

min A , P < n1,
Q < n2.

Proof.

One dimension guarantee (upper bound) Lmax(DC) ≤
P

i′ A[i ′]
m + maxi A[i]

can be rewritten as Lmax(DC) ≤
P

A[i]
m (1 + ∆m

n).
It allows to bound the imbalance of a stripe :
Loadstripe ≤

P
A[i][j]
P (1 + ∆ P

n1
).

And finally of a processor : Lmax ≤ (1 + ∆ P
n1

)(1 + ∆ Q
n2

).

Theorem

The approximation ratio is minimized by P =
√

m n1
n2

.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 14 / 32

http://bmi.osu.edu/hpc

How good is that ?

Theorem

If there are no zero in the array, the heuristic P × Q-way partitioning is a
(1 + ∆ P

n1
)(1 + ∆ Q

n2
)-approximation algorithm where ∆ = max A

min A , P < n1,
Q < n2.

Proof.

One dimension guarantee (upper bound) Lmax(DC) ≤
P

i′ A[i ′]
m + maxi A[i]

can be rewritten as Lmax(DC) ≤
P

A[i]
m (1 + ∆m

n).
It allows to bound the imbalance of a stripe :
Loadstripe ≤

P
A[i][j]
P (1 + ∆ P

n1
).

And finally of a processor : Lmax ≤ (1 + ∆ P
n1

)(1 + ∆ Q
n2

).

Theorem

The approximation ratio is minimized by P =
√

m n1
n2

.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 14 / 32

http://bmi.osu.edu/hpc

An optimal PxQ jagged partitioning

A Dynamic Programming Formulation


Lmax(n1,P) = min1≤k<n1 max Lmax(k − 1,P − 1), 1D(k, n1,Q)
Lmax(0,P) = 0
Lmax(n1, 0) = +∞, ∀n1 ≥ 1

O(n1m) Lmax functions.

O(n2
1) 1D functions.

For a 512x512 matrix and 1000 processors, that’s 512,000+262,144
values. On 64-bit values, that’s 6MB.

Not all values need to be stored

Binary search on k .

Lower bound/Upper bound on Lmax and 1D.

Tree pruning.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 15 / 32

http://bmi.osu.edu/hpc

An optimal PxQ jagged partitioning

A Dynamic Programming Formulation


Lmax(n1,P) = min1≤k<n1 max Lmax(k − 1,P − 1), 1D(k, n1,Q)
Lmax(0,P) = 0
Lmax(n1, 0) = +∞, ∀n1 ≥ 1

O(n1m) Lmax functions.

O(n2
1) 1D functions.

For a 512x512 matrix and 1000 processors, that’s 512,000+262,144
values. On 64-bit values, that’s 6MB.

Not all values need to be stored

Binary search on k .

Lower bound/Upper bound on Lmax and 1D.

Tree pruning.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 15 / 32

http://bmi.osu.edu/hpc

Performance of PxQ jagged Partitioning

 0.0001

 0.001

 0.01

 0.1

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

lo
ad

 im
ba

la
nc

e

nb proc

iteration 30000

Nicol
Heuristic PxQ Jagged
Optimal PxQ Jagged

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::PxQ jagged partitioning 16 / 32

http://bmi.osu.edu/hpc

m-way Jagged Partitioning

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged Partitioning 17 / 32

http://bmi.osu.edu/hpc

m-way jagged partitioning heuristic

Algorithm

Cut in P stripes. Distribute processors in each stripe proportionally to the

stripe’s load : allocj =
⌈P

i,j A[i][j]

loadj
(m − P)

⌉
.

Theorem

If there are no zero in A, the approximation ratio of the described
algorithm is m

m−P (1 + ∆
n2

) + m∆
Pn2

(1 + ∆P
n1

).

Proof.

Same kind of proof than for heuristic PxQ jagged partitioning.

Recall that the guarantee of heuristic PxQ jagged partitioning was:
(1 + ∆ P

n1
)(1 + ∆ Q

n2
). m-way is better for large m values.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged Partitioning 18 / 32

http://bmi.osu.edu/hpc

m-way jagged partitioning heuristic

Algorithm

Cut in P stripes. Distribute processors in each stripe proportionally to the

stripe’s load : allocj =
⌈P

i,j A[i][j]

loadj
(m − P)

⌉
.

Theorem

If there are no zero in A, the approximation ratio of the described
algorithm is m

m−P (1 + ∆
n2

) + m∆
Pn2

(1 + ∆P
n1

).

Proof.

Same kind of proof than for heuristic PxQ jagged partitioning.

Recall that the guarantee of heuristic PxQ jagged partitioning was:
(1 + ∆ P

n1
)(1 + ∆ Q

n2
). m-way is better for large m values.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged Partitioning 18 / 32

http://bmi.osu.edu/hpc

An optimal m-way partitioning

A Dynamic Programming Formulation


Lmax(n1,m) = min1≤k<n1,1≤x≤m max Lmax(k − 1,m − x), 1D(k , n1, x)
Lmax(0,m) = 0
Lmax(n1, 0) = +∞, ∀n1 ≥ 1

O(n1m) Lmax functions.

O(n2
1m) 1D functions.

The same kind of optimizations apply.
For a 512x512 matrix on 1,000 processors. That’s 512,000 + 262,144,000
values, if they are 64-bits, about 2GB (and takes 30 minutes).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged Partitioning 19 / 32

http://bmi.osu.edu/hpc

Performance of m-way

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000

lo
ad

 im
ba

la
nc

e

nb proc

iteration 30000

Nicol
Heuristic PxQ Jagged

Heuristic m-way Jagged
Optimal m-way Jagged

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged Partitioning 20 / 32

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
PxQ jagged partitioning
m-way Jagged Partitioning

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up
Conclusion and Perspective

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection:: 21 / 32

http://bmi.osu.edu/hpc

Hierarchical Bisection Partitioning

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection:: 22 / 32

http://bmi.osu.edu/hpc

Recursive Bisection [BB87]

m = 8 Algorithm

m processors to partition a
rectangle.

Complexity: O(m log max n1, n2).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 23 / 32

http://bmi.osu.edu/hpc

Recursive Bisection [BB87]

m = 8

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Complexity: O(m log max n1, n2).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 23 / 32

http://bmi.osu.edu/hpc

Recursive Bisection [BB87]

m = 4m = 4

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Allocate half the processors to
each side.

Complexity: O(m log max n1, n2).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 23 / 32

http://bmi.osu.edu/hpc

Recursive Bisection [BB87]

m = 2

m = 2

m = 4

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Allocate half the processors to
each side.

Complexity: O(m log max n1, n2).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 23 / 32

http://bmi.osu.edu/hpc

Recursive Bisection [BB87]

m = 1

m = 1

m = 2

m = 4

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Allocate half the processors to
each side.

Cut the dimension that
balances the load best.

Complexity: O(m log max n1, n2).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 23 / 32

http://bmi.osu.edu/hpc

Recursive Bisection [BB87]

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Allocate half the processors to
each side.

Cut the dimension that
balances the load best.

Complexity: O(m log max n1, n2).

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 23 / 32

http://bmi.osu.edu/hpc

Performance of Recursive Bisection

 0.0001

 0.001

 0.01

 0.1

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

lo
ad

 im
ba

la
nc

e

nb proc

iteration 30000

Nicol
Heuristic PxQ Jagged

Heuristic m-way Jagged
Recursive Bisection

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 24 / 32

http://bmi.osu.edu/hpc

An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation


Lmax(x1, x2, y1, y2,m) = minj min

(minx max Lmax(x1, x , y1, y2, j), Lmax(x + 1, x2, y1, y2,m − j))
, (miny max Lmax(x1, x2, y1, y , j), Lmax(x1, x2, y + 1, y2,m − j))

O(n2
1n

2
2m) Lmax functions.

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000
values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic

Build the solution according to
Lmax(x1, x2, y1, y2,m) = minj min

(minx max L(x1,x ,y1,y2)
j , L(x+1,x2,y1,y2)

m−j)

, (miny max L(x1,x2,y1,y)
j , L(x1,x2,y+1,y2)

m−j)

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Dynamic Programming 25 / 32

http://bmi.osu.edu/hpc

An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation


Lmax(x1, x2, y1, y2,m) = minj min

(minx max Lmax(x1, x , y1, y2, j), Lmax(x + 1, x2, y1, y2,m − j))
, (miny max Lmax(x1, x2, y1, y , j), Lmax(x1, x2, y + 1, y2,m − j))

O(n2
1n

2
2m) Lmax functions.

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000
values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic

Build the solution according to
Lmax(x1, x2, y1, y2,m) = minj min

(minx max L(x1,x ,y1,y2)
j , L(x+1,x2,y1,y2)

m−j)

, (miny max L(x1,x2,y1,y)
j , L(x1,x2,y+1,y2)

m−j)

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Dynamic Programming 25 / 32

http://bmi.osu.edu/hpc

Performance of Relaxed Hierarchical

 0.0001

 0.001

 0.01

 0.1

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

lo
ad

 im
ba

la
nc

e

nb proc

iteration 30000

Nicol
Heuristic PxQ Jagged

Heuristic m-way Jagged
Recursive Bisection

Relaxed Hierarchical

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Dynamic Programming 26 / 32

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
PxQ jagged partitioning
m-way Jagged Partitioning

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up
Conclusion and Perspective

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts:: 27 / 32

http://bmi.osu.edu/hpc

More General ?

Recursively Defined Partitioning

Most of them are polynomial by Dynamic Programming

Arbitrary Rectangles

NP-Complete with a 5
4 non-approximability result [KMP98].

There is a known 2-approximation of complexity O(n1n2 + m log n1n2)
which heavily relies on linear programming [Pal06].

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts:: 28 / 32

http://bmi.osu.edu/hpc

More General ?

Recursively Defined Partitioning

Most of them are polynomial by Dynamic Programming

Arbitrary Rectangles

NP-Complete with a 5
4 non-approximability result [KMP98].

There is a known 2-approximation of complexity O(n1n2 + m log n1n2)
which heavily relies on linear programming [Pal06].

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts:: 28 / 32

http://bmi.osu.edu/hpc

Performance Over the Execution

 0.01

 0.1

 1

 0 5000 10000 15000 20000 25000 30000 35000

lo
ad

 im
ba

la
nc

e

iteration

6400 processors

Nicol
Heuristic PxQ Jagged

Heuristic m-way Jagged
Recursive Bisection

Relaxed Hierarchical

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 29 / 32

http://bmi.osu.edu/hpc

Relaxed Hierarchical Might Be Unstable

 0.01

 0.1

 0 5000 10000 15000 20000 25000 30000 35000

lo
ad

 im
ba

la
nc

e

iteration

400 processors

Nicol
Heuristic PxQ Jagged

Heuristic m-way Jagged
Recursive Bisection

Relaxed Hierarchical

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 30 / 32

http://bmi.osu.edu/hpc

Conclusion and Perspective

Conclusion

Proposed new classes of partitioning.

Proved that most recursively defined classes are polynomial:

.

Proposed two new well-founded heuristics which outperform
state-of-the-art algorithm.

Theoretically analyzed two heuristics.

Perspective

Better m-way jagged partitioning algorithm.

Integration into real physic simulation codes.

Include communication models.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Conclusion and Perspective 31 / 32

http://bmi.osu.edu/hpc

Thank you

Collaborators

Thanks to H. Karimabadi, A. Majumdar, Y.A. Omelchenko and K.B.
Quest, collaborators of the Petaapps NSF OCI-0904802 grant, for
providing the particle-in-cell dataset.

More information

contact : esaule@bmi.osu.edu
visit: http://bmi.osu.edu/hpc/

Research at HPC lab is funded by

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Conclusion and Perspective 32 / 32

http://bmi.osu.edu/hpc

Bengt Aspvall, Magnús M. Halldórsson, and Fredrick Manne.
Approximations for the general block distribution of a matrix.
Theor. Comput. Sci., 262(1-2):145–160, 2001.

Marsha Berger and Shahid Bokhari.
A partitioning strategy for nonuniform problems on multiprocessors.
IEEE Transaction on Computers, C36(5):570–580, 1987.

Daya Ram Gaur, Toshihide Ibaraki, and Ramesh Krishnamurti.
Constant ratio approximation algorithms for the rectangle stabbing
problem and the rectilinear partitioning problem.
J. Algorithms, 43(1):138–152, 2002.

Michelangelo Grigni and Fredrik Manne.
On the complexity of the generalized block distribution.
In IRREGULAR ’96: Proceedings of the Third International Workshop
on Parallel Algorithms for Irregularly Structured Problems, pages
319–326, London, UK, 1996. Springer-Verlag.

S. Khanna, S. Muthukrishnan, and M. Paterson.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Conclusion and Perspective 32 / 32

http://bmi.osu.edu/hpc

On approximating rectangle tiling and packaging.
In proceedings of the 19th SODA, pages 384–393, 1998.

Sanjeev Khanna, S. Muthukrishnan, and Steven Skiena.
Efficient array partitioning.
In ICALP ’97: Proceedings of the 24th International Colloquium on
Automata, Languages and Programming, pages 616–626, London,
UK, 1997. Springer-Verlag.

Serge Miguet and Jean-Marc Pierson.
Heuristics for 1d rectilinear partitioning as a low cost and high quality
answer to dynamic load balancing.
In HPCN Europe ’97: Proceedings of the International Conference and
Exhibition on High-Performance Computing and Networking, pages
550–564, London, UK, 1997. Springer-Verlag.

Fredrik Manne and Tor Sørevik.
Partitioning an array onto a mesh of processors.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Conclusion and Perspective 32 / 32

http://bmi.osu.edu/hpc

In PARA ’96: Proceedings of the Third International Workshop on
Applied Parallel Computing, Industrial Computation and Optimization,
pages 467–477, London, UK, 1996. Springer-Verlag.

S. Muthukrishnan and Torsten Suel.
Approximation algorithms for array partitioning problems.
Journal of Algorithms, 54:85–104, 2005.

David Nicol.
Rectilinear partitioning of irregular data parallel computations.
Journal of Parallel and Distributed Computing, 23:119–134, 1994.

Ali Pinar and Cevdet Aykanat.
Fast optimal load balancing algorithms for 1d partitioning.
Journal of Parallel and Distributed Computing, 64:974–996, 2004.

K. Paluch.
A new approximation algorithm for multidimensional rectangle tiling.
In Proceedings of ISAAC, 2006.

Erik Saule
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Conclusion and Perspective 32 / 32

http://bmi.osu.edu/hpc

	Introduction
	Preliminaries
	Notation
	In One Dimension
	Simulation Setting

	Rectilinear Partitioning
	Nicol's Algorithm

	Jagged Partitioning
	PxQ jagged partitioning
	m-way Jagged Partitioning

	Hierarchical Bisection
	Recursive Bisection
	Dynamic Programming

	Final thoughts
	Summing up
	Conclusion and Perspective

