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A load distribution problem

Load matrix

In parallel computing, the load can be
spatially located. The computation
should be distributed accordingly.

Applications

o Particles in Cell (stencil).

@ Sparse Matrices.
@ Direct Volume Rendering.

Metrics
o Load balance.

o Communication.
o Stability.
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The Rectangular Partitioning Problem

Definition

Let A be a n; X ny matrix of non-negative values. The problem is to
partition the [1, 1] x [n1, n2] rectangle into a set S of m rectangles. The
load of rectangle r =[x, y] x [x/,y'] is L(r) =>_ CAli[J]- The
problem is to minimize Lpyax = max,cs L(r).

x<isSx',y<j<y

Prefix Sum

| \

Algorithms are rarely interested in the value of a particular element but
rather interested in the load of a rectangle. The matrix is given as a 2D
prefix sum array Pr such as Pr[i][j] = >, <; »<; Al'l[;']. By convention
Pr[0][j] = Prl[i][0] = O.

We can now compute the load of rectangle r = [x, y] x [, y'] as

L(r) = Pr{x'lly'] + Pr[x — 1][y — 1] — Pr[x'][y — 1] — Prlx — 1][y'].

Ohio State University, Biomedical Informatics 2D partitioning

Erik Saule HPC Lab http://bmi.osu.edu/hpc Preliminaries::Notation 4 / 32


http://bmi.osu.edu/hpc

In One Dimension

Heuristic : Direct Cut [MP97]

Greedily set the first interval at the first / such as >, _; A[i"] > 2y Al

m

Complexity: O(mlog -). Guarantees : Lmax(DC) < 2 Al max; A[i].

m

Optimal : Nicol's algorithm [Nic94] (improved by [PA04])

Use Probe(B) which tries to build a solution of value less than B. It loads
greedily the processors up with the largest interval of load less than B.

It exploits the property that there exists a solution so that the first interval
[1, /] is either the smallest such that Probe(L([1,i])) is true or the largest
such that Probe(L([1,1])) is false.

Complexity: O((mlog £)?).

Note: it works on more than load matrices, as long as the load of intervals
are non-decreasing (by inclusion).

v
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Simulation Setting

Classes (Some inspi

Processors

Simulation are perform with different number of processors: most squared
numbers up to 10,000.
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Outline of the Talk

© Rectilinear Partitioning
@ Nicol's Algorithm
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Rectilinear Partitioning
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Known results on rectilinear partitioning

@ NP Complete [GM96] and there is no (2 — €)-approximation algorithm
(unless P = NP).

@ [Nic94]: a 6(m)-approximation algorithm based on iterative
refinement. O(nyny) iterations in O(Q(Plog %)%+ P(Q log ”—5)2)

o [AHMO1](refinement of [Nic94]): a #(m'/#)-approximation algorithm
for squared matrices.

o [KMS97]: a 120-approximation algorithm of complexity O(nyny).

o [GIK02]: 4-approximation algorithm (from rectangle stabbing) of
complexity O(log(3_; ; A[i[]])n1°ni%) (heavy linear programming).

o [MSO05]: (4 + €)-approximation algorithm that runs in
O((n + na + PQ)P log(niny)).
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Nicol's Rectilinear Algorithm [Nic94|

PxQ rectilinear partitioning
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Nicol's Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

@ Sum the columns to make a 1d
instance.

OhioHSPtate University, Biomedical Informatics 2D partitioning

Erik Saule http://bmi.osu.edu/hpc Rectilinear Partitioning Algorithm 10


http://bmi.osu.edu/hpc

Nicol's Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

@ Sum the columns to make a 1d
instance.
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Nicol's Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

@ Sum the columns to make a 1d
instance.

o Partition it in P parts.
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Nicol's Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

@ Sum the columns to make a 1d
instance.

o Partition it in P parts.

@ Get a Px1 rectilinear partitioning.
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Nicol's Rectilinear Algorithm [Nic94]

p) X — X
>3X PxQ rectilinear partitioning
z T — X
@ Sum the columns to make a 1d
z | — X .
Instance.

= o @ Partition it in P parts.
P z| —= o Get a Px1 rectilinear partitioning.
s £ —x @ Sum the rows in each part.

‘ ‘ @ Build a 1d instance by taking the

maximum for each interval.
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Nicol's Rectilinear Algorithm [Nic94]

= = —= PxQ rectilinear partitioning
s D @ Sum the columns to make a 1d
. ol s instance.
o Partition it in P parts.
x T — X
o Get a Px1 rectilinear partitioning.
= X —X
@ Sum the rows in each part.
) | —%
@ Build a 1d instance by taking the

‘ | maximum for each interval.
Partition it in Q.
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Nicol's Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

= o @ Sum the columns to make a 1d

> Dlp— instance.

. sl s o Partition it in P parts.

. sl s @ Get a Px1 rectilinear partitioning.

. N @ Sum the rows in each part.

§ . o Build a 1d instance by taking the
maximum for each interval.

‘ ‘ o Partition it in Q.

o Get a PxQ rectilinear
partitioning.
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Nicol's Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

@ Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Partition it in Q.

o Get a PxQ rectilinear
partitioning.
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Nicol's Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

@ Sum the columns to make a 1d
instance.

Partition it in P parts.

M= | =
M— | =
M— |
M=— | =
M= | =

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Partition it in Q.

o Get a PxQ rectilinear
partitioning.

o}
[}
[}
1
1
[}
1

@ Ignore the row partition.
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Nicol's Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

@ Sum the columns to make a 1d
instance.

Partition it in P parts.

M— | =
M— | —
M— | —
M— | =
M| =

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Partition it in Q.

™
™
™
™
™
™
™
()

o Get a PxQ rectilinear
partitioning.

@ Ignore the row partition.

o lterate if improve.
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Nicol's Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

@ Sum the columns to make a 1d
instance.

Partition it in P parts.

Get a Px1 rectilinear partitioning.

Sum the rows in each part.

Build a 1d instance by taking the
maximum for each interval.

Partition it in Q.

o Get a PxQ rectilinear
partitioning.
@ Ignore the row partition.

o lterate if improve.
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Nicol's Rectilinear Algorithm [Nic94]

PxQ rectilinear partitioning

Complexity:

@ O(nyny) iterations (around 10 in
practice)

o 1 iteration :
O(Q(Plog ) + P(Qlog 3)?).

Ohio State University, Biomedical Informatics 2D partitic?ning

Erik Saule HPC Lab http://bmi.osu.edu/hpc Rectilinear Partitiol I's Algorithm 10 ,


http://bmi.osu.edu/hpc

utline of the Talk

@ Jagged Partitioning
@ PxQ jagged partitioning
@ m-way Jagged Partitioning
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PxQ heuristic

PxQ Jagged Partitioning
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PxQ heuristic

PxQ Jagged Partitioning

@ Sum on columns to generate a
1D problem.
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PxQ heuristic

PxQ Jagged Partitioning

@ Sum on columns to generate a
1D problem.

o Partition it in P parts.
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PxQ heuristic

- _
z

: @ Sum on columns to generate a

= 1D problem.

= o Partition it in P parts.

= @ For the first stripe, sum on rows.

Ohio State University, Biomedical Informatics 2D partitioning
HPC http://]

‘bmi edu/hp Jagged Partition PxQ jagged partit


http://bmi.osu.edu/hpc

PxQ heuristic

; PxQ Jagged Partitioning

- @ Sum on columns to generate a

b 1D problem.

s W @ Partition it in P parts.

- @ For the first stripe, sum on rows.

o Partition it in Q parts.
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PxQ Jagged Partitioning

@ Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.

Treat all stripes.

Complexity :
O((Plog )* + P x (Qlog %)?).
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How good is that *

If there are no zero in the array, the heuristic P x Q-way partitioning is a
1+ An—Pl)(l + An—(‘;)—approximation algorithm where A = M4 'p < p;

min A’

Q<n2.
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How good is that 7

Theorem

If there are no zero in the array, the heuristic P x Q-way partitioning is a
1+ An—Pl)(l + An%)—approximation algorithm where A = ™4 P < p,
Q < no.

Proof.

| \

One dimension guarantee (upper bound) Lpyax(DC) < w + max; A[i]
can be rewritten as Ly, (DC) < %(1 + A7),

It allows to bound the imbalance of a stripe :

Loadstripe < w(l + An—Pl).

And finally of a processor : Lmax < (1 + An—F;)(l + A%) O
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How good is that 7

Theorem

If there are no zero in the array, the heuristic P x Q-way partitioning is a
1+ An—Pl)(l + An%)—approximation algorithm where A = ™4 P < p,
Q < no.

Proof.

| A\

One dimension guarantee (upper bound) Lpyax(DC) < w + max; A[i]
can be rewritten as Ly, (DC) < %(1 + A7),

It allows to bound the imbalance of a stripe :

Loadsripe < =441 + A L),

And finally of a processor : Lmax < (1 + An—F;)(l + A%) O

Theorem

| A\

. C . _ n
The approximation ratio is minimized by P = | /mn—;.
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An optimal PxQ jagged partitioning

A Dynamic Programming Formulation

For a 512x512 matrix and 1000 processors, that's 512,0004-262,144
values. On 64-bit values, that's 6MB.
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An optimal PxQ jagged partitioning

A Dynamic Programming Formulation

For a 512x512 matrix and 1000 processors, that's 512,0004-262,144
values. On 64-bit values, that's 6MB.

Not all values need to be stored

@ Binary search on k.
@ Lower bound/Upper bound on L,y and 1D.

@ Tree pruning.
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Performance of PxQ jagged Partitioning

iteration 30000
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nb proc
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m-way Jagged Partitioning
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m-way jagged partitioning heuristic

Algorithm

Cut in P stripes. Distribute processors in each stripe proportionally to the
_ - AT
stripe’s load : alloc; = {M(m - P)-|

load;
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m-way jagged partitioning heuristic

Algorithm

Cut in P stripes. Distribute processors in each stripe proportionally to the
_ - AT

stripe’s load : alloc; = {M(m - P)-|

load;

Theorem

| N\

If there are no zero in A, the approximation ratio of the described
; 3 A A AP
algorithm is —™5(1 + n_z) + ’I;'—nz(l + '7_1)

Same kind of proof than for heuristic PxQ jagged partitioning.

Recall that the guarantee of heuristic PxQ jagged partitioning was:
(1+ An—F;)(l + An%) m-way is better for large m values.
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An optimal m-way partitioning

A Dynamic Programming Formulation

Lmax(n1, m) = mini<x<ny 1<x<m Max Lmax(k — 1, m — x),1D(k, n1, x)
Lmax(oa m) =0
Lmax(nlyo) = +OO,an > 1

@ O(nim) Lpax functions.
e O(n?m) 1D functions.

The same kind of optimizations apply.
For a 512x512 matrix on 1,000 processors. That's 512,000 + 262,144,000
values, if they are 64-bits, about 2GB (and takes 30 minutes).
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Performance of m-way

iteration 30000
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Outline of the Talk

© Hierarchical Bisection
@ Recursive Bisection
@ Dynamic Programming
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Hierarchical Bisection Partitioning
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Recursive Bisection [BB87]

m=s Algorithm

@ m processors to partition a
rectangle.

Complexity: O(mlog max ny, n2).

Ohio State University, Biomedical Informatics partitioning
HPC http://]

bmi edu/hpc Hierarchical Bisec ecursive Bisection 23 / 32


http://bmi.osu.edu/hpc

Recursive Bisection [BB87]

Algorithm

@ m processors to partition a
rectangle.

o Cut to balance the load evenly.

Complexity: O(mlog max ny, ny).
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Recursive Bisection [BB3

Algorithm

@ m processors to partition a
rectangle.

o Cut to balance the load evenly.
@ Allocate half the processors to
each side.

Complexity: O(mlog max ny, ny).
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Recursive Bisection [BB3

Algorithm

@ m processors to partition a
rectangle.

o Cut to balance the load evenly.
@ Allocate half the processors to
each side.

Complexity: O(mlog max ny, ny).
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Recursive Bisection [BB87]

Algorithm

@ m processors to partition a
rectangle.

o Cut to balance the load evenly.

o Allocate half the processors to
each side.

o Cut the dimension that
balances the load best.

Complexity: O(mlog max ny, ny).
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Recursive Bisection [BB87]

Algorithm

@ m processors to partition a
rectangle.

o Cut to balance the load evenly.

o Allocate half the processors to
each side.

o Cut the dimension that
balances the load best.

Complexity: O(mlog max ny, ny).
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Performance of Recursive Bisection

iteration 30000
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An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

Lmax(XI;X2>y17.y27 m) = minj min
(minx max Lmax (X1, X, Y1, ¥2,); Lmax(x + 1, X2, y1, y2, m — j))
s (miny max Lmax(X17X2’y1ay’J.)a Lmax(Xl,X2,y I 1,}/27 m __I))
o O(n?n3m) Lpyax functions.

For a 512x512 matrix and 1000 processors, that's 68,719,476,736,000
values. On 64-bit values, that's 544 TB.

Ohio State University, Biomedical Informatics 2D partitioning

Erik Saule HPC Lab http://bmi.osu.edu/hpc Hierarchical Bisection::Dynamic Programming 25 / 32


http://bmi.osu.edu/hpc

An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

LmaX(X17X27.y17.y27 m) = m|nJ min
(minX maXx LmaX(X17X7.ylay27j)a Lmax(X F 1,X27)/17)/2a m _./))
7(miny max LmaX(X17X2’y1’y’j)7 LmaX(X17X2ay + 1’}/27 m _./))

o O(n?n3m) Lpyax functions. )

For a 512x512 matrix and 1000 processors, that's 68,719,476,736,000
values. On 64-bit values, that's 544TB.

The Relaxed Hierarchical Heuristic
Build the solution according to

Lmax(X17X27YI7}/27 m) = minJ min
(mify max L(xl,xj,yl,yz)’ L(x+1, X2,y1,y2))

: LOa,x2.y1,Y) L(Xl,X2,Y+1,Y2)
, (miny, max 7 , )

2D partitioning
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Performance of Relaxed Hierarchical

iteration 30000
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Outline of the Talk

@ Final thoughts
@ Summing up
@ Conclusion and Perspective
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More General ?

Recursively Defined Partitioning

Most of them are polynomial by Dynamic Programming
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More General ?

Recursively Defined Partitioning
Most of them are polynomial by Dynamic Programming

Arbitrary Rectangles

NP-Complete with a % non-approximability result [KMP98].

There is a known 2-approximation of complexity O(niny + mlog niny)
which heavily relies on linear programming [Pal06].
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Performance Over the Execution

6400 processors
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Relaxed Hierarchical Might Be Unstable

400 processors
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Conclusion and Perspective

Conclusion

@ Proposed new classes of partitioning.

@ Proved that most recursively defined classes are polynomial:

0 =l e sml) B

@ Proposed two new well-founded heuristics which outperform
state-of-the-art algorithm.

@ Theoretically analyzed two heuristics.

Perspective

o Better m-way jagged partitioning algorithm.
@ Integration into real physic simulation codes.

@ Include communication models.
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Thank you
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visit: http://bmi.osu.edu/hpc/
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