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A load distribution problem

Load matrix

In parallel computing, the load can be
spatially located. The computation
should be distributed accordingly.

Applications

Particles in Cell (stencil)

Sparse Matrices

Direct Volume Rendering

Metrics

Load balance

Communication

Stability
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Different kinds of partition

Uniform Rectilinear P×Q-way jagged
(th)

m-way jagged hierarchical spiral
(def, heur, th, opt) (heur, opt) (heur, opt)
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Different load balance on 2304 processors

Particles (2050x2050) Uniform (17.5%) Rectilinear (15.1%)

P×Q-way jagged (2.3%) m-way jagged (2.0%) hierarchical (2.7%)
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This talk is about how to generate such
partitions, either optimally or heuristically,
and the type of guarantee we can obtain.
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The Rectangular Partitioning Problem

Definition

Let A be a n1 × n2 matrix of non-negative values. The problem is to
partition the [1, 1]× [n1, n2] rectangle into a set S of m rectangles. The
load of rectangle r = [x , y ]× [x ′, y ′] is L(r) =

∑
x≤i≤x ′,y≤j≤y ′ A[i ][j ]. The

problem is to minimize Lmax = maxr∈S L(r).

Prefix Sum

Algorithms are rarely interested in the value of a particular element but
rather interested in the load of a rectangle. The matrix is given as a 2D
prefix sum array Pr such as Pr [i ][j ] =

∑
i ′≤i ,j ′≤j A[i ′][j ′]. By convention

Pr [0][j ] = Pr [i ][0] = 0.
We can now compute the load of rectangle r = [x , y ]× [x ′, y ′] as
L(r) = Pr [x ′][y ′]− Pr [x − 1][y ′]− Pr [x ′][y − 1] + Pr [x − 1][y − 1].
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In One Dimension

Optimal : Nicol’s algorithm [Nic94] (improved by [PA04])

Based on parametric search.
Complexity: O((m log n

m )2).

Heuristic : Direct Cut [MP97]

Greedy algorithm.
Complexity: O(m log n

m ).

Guarantees : Lmax(DC ) ≤
∑

i′ A[i ′]
m + maxi A[i ].

(More details in Section 2.2)
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Simulation Setting

Classes (Some inspired by [MS96])

Processors

Simulation are perform with different number of processors: most squared
numbers up to 10,000.

Metric

Load imbalance is the presented metric : Lmax∑
i,j A[i ][j]

m

− 1.
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Rectilinear Partitioning
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Nicol’s Algorithm [Nic94]: RECT-NICOL

The algorithm

RECT-NICOL is an iterative heuristic. At each iteration the partition in one
dimension is refined by using a 1D algorithm.
Complexity:

O(n1n2) iterations (around 10 in practice)

1 iteration : O(Q(P log n1
P )2 + P(Q log n2

Q )2).

Other algorithms

The problem of finding the optimal Rectilinear Partitioning is
NP-Complete. Therefore, other algorithms which mainly focuses on
theoretical properties. The guarantees are unsuitable. The algorithms are
computationally expensive (n10

1 ) and difficult to implement (rely on linear
programming or present numerical instability).

(See Section 3.1 for more details)
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P×Q-way Jagged Partitioning
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A P×Q-way Jagged Heuristic: JAG-PQ-HEUR

∑ ∑ ∑ ∑ ∑ ∑ ∑

P×Q Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.

Treat all stripes.
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A P×Q-way Jagged Heuristic: JAG-PQ-HEUR

∑

∑
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P×Q Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.

Treat all stripes.
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A P×Q-way Jagged Heuristic: JAG-PQ-HEUR

P×Q Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.

Treat all stripes.

Complexity :
O((P log n1

P )2 + P × (Q log n2
Q )2).
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How good is that ?

Theorem (Theorem 1 in Section 3.2.1)

If there are no zero in the array, JAG-PQ-HEUR is a
(1 + ∆ P

n1
)(1 + ∆ Q

n2
)-approximation algorithm where ∆ = maxA

minA , P < n1,
Q < n2.

Proof.

Based on the guarantee of 1D heuristics.

Theorem (Theorem 2 in Section 3.2.1)

The approximation ratio is minimized by P =
√
m n1

n2
.
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An optimal P×Q-way jagged partitioning : JAG-PQ-OPT

A Dynamic Programming Formulation


Lmax(n1,P) = min1≤k<n1 max(Lmax(k − 1,P − 1), 1D(k, n1,Q))
Lmax(0,P) = 0
Lmax(n1, 0) = +∞,∀n1 ≥ 1

O(n1P) Lmax functions to evaluate. (Each is O(k).)

O(n2
1) 1D functions to evaluate. (Each is O((Q log n2

Q )2).)

(Some significant implementation optimizations apply)
For a 512x512 matrix and 1000 processors, that’s 512,000+262,144
values. On 64-bit values, that’s 6MB.
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Performance of P×Q-way jagged (PIC-MAG it=30000)
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m-way Jagged Partitioning
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m-way jagged partitioning heuristic: JAG-M-HEUR

Algorithm

Cut in P stripes. Distribute processors in each stripe proportionally to the

stripe’s load : allocj =
⌈∑

i,j A[i ][j]

loadj
(m − P)

⌉
.

Theorem (Theorem 3 in Section 3.2.2)

If there are no zero in A, the approximation ratio of the described
algorithm is m

m−P (1 + ∆ 1
n2

) + m∆
Pn2

(1 + ∆P
n1

).

Proof.

Same kind of proof than for heuristic P×Q jagged partitioning.

Recall that the guarantee of heuristic P×Q jagged partitioning was:
(1 + ∆ P

n1
) + m∆

Pn2
(1 + ∆P

n1
). m-way is better for large m values.
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m-way jagged partitioning heuristic: JAG-M-HEUR
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An optimal m-way partitioning JAG-M-OPT

A Dynamic Programming Formulation


Lmax(n1,m) = min1≤k<n1,1≤x≤m max(Lmax(k − 1,m − x), 1D(k , n1, x))
Lmax(0,m) = 0
Lmax(n1, 0) = +∞, ∀n1 ≥ 1

O(n1m) Lmax functions.

O(n2
1m) 1D functions. (m times more than for P×Q jagged)

(The same kind of optimizations apply.)
For a 512x512 matrix on 1,000 processors. That’s 512,000 + 262,144,000
values, if they are 64-bits, about 2GB (and takes 30 minutes).
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Performance of m-way jagged (PIC-MAG it=30000)
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Hierarchical Bisection Partitioning
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Recursive Bisection [BB87]: HIER-RB

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Allocate half the processors to
each side.

Cut the dimension that
balances the load best.

Complexity: O(m log max n1, n2).

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 25 / 36

http://bmi.osu.edu/hpc


Performance of HIER-RB (PIC-MAG it=30000)
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An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

Lmax(x1, x2, y1, y2,m) = minj min(
minx max(Lmax(x1, x , y1, y2, j), Lmax(x + 1, x2, y1, y2,m − j))
,miny max(Lmax(x1, x2, y1, y , j), Lmax(x1, x2, y + 1, y2,m − j)))

O(n2
1n

2
2m) Lmax functions. (n2

2 times more than m-way jagged)

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000
values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic: HIER-RELAXED

Build the solution according to

Lmax(x1, x2, y1, y2,m) = minj min(

minx max(L(x1,x ,y1,y2)
j , L(x+1,x2,y1,y2)

m−j )

,miny max(L(x1,x2,y1,y)
j , L(x1,x2,y+1,y2)

m−j ))

Ümit V. Çatalyürek
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An Optimal Hierarchical Bisection Algorithm
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Performance of HIER-RELAXED (PIC-MAG it=30000)
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Performance Over the Execution of PIC-MAG (m =6400)
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Ümit V. Çatalyürek
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Relaxed Hierarchical Might Be Unstable (m =400)
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Sparsity (SLAC)
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Runtime on PIC-MAG (it=30000)
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What should I use?

Quality

JAG-M-HEUR and HIER-RELAXED dominates. (Best of two?)

HIER-RELAXED is better in sparse cases (Figure 14).

JAG-M-HEUR ties with HIER-RELAXED on dense cases (Figure 12/13).

But HIER-RELAXED is unstable: it gives very different solutions when
run on similar instances (Figure 11).

Runtime on a 514x514 matrix with 1024 processors (Figure 6)

HIER-RB, JAG-PQ-HEUR, JAG-M-HEUR: a few milliseconds.

HIER-RELAXED, RECT-NICOL: half a second.

JAG-PQ-OPT: a few seconds.

JAG-M-OPT: hours.
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Conclusion and Perspective

Conclusion

Proposed a class of partitioning (m-way jagged).

Proved that most recursively defined classes are polynomial:

.

Proposed two new well-founded heuristics, JAG-M-HEUR and
HIER-RELAXED, which outperform state-of-the-art algorithms.

Theoretically analyzed JAG-M-HEUR and JAG-PQ-HEUR.

Perspective

Better m-way jagged partitioning algorithm. (see arXiv 1104.2566)

Include communication models.

Integration into a real application. (do you have one ?)
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Thank you

Datasets

Thanks to Y. Omelchenko and H. Karimabadi for providing PIC-MAG
data; and R. Lee, M. Shephard, and X. Luo for the SLAC data.

More information

contact : umit@bmi.osu.edu
visit: http://bmi.osu.edu/hpc/ or http://bmi.osu.edu/~umit

Research at HPC lab is funded by
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