
Partitioning Spatially Located Load with Rectangles

Erik Saule1, Erdeniz Ö. Baş1,2, Ümit V. Çatalyürek1,3

{esaule,erdeniz,umit}@bmi.osu.edu

1Department of Biomedical Informatics
2Department of Computer Science and Engineering
3Department of Electric and Computer Engineering

The Ohio State University

IPDPS 2011

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

:: 1 / 36

http://bmi.osu.edu/hpc

A load distribution problem

Load matrix

In parallel computing, the load can be
spatially located. The computation
should be distributed accordingly.

Applications

Particles in Cell (stencil)

Sparse Matrices

Direct Volume Rendering

Metrics

Load balance

Communication

Stability

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 2 / 36

http://bmi.osu.edu/hpc

Different kinds of partition

Uniform Rectilinear P×Q-way jagged
(th)

m-way jagged hierarchical spiral
(def, heur, th, opt) (heur, opt) (heur, opt)

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 3 / 36

http://bmi.osu.edu/hpc

Different load balance on 2304 processors

Particles (2050x2050) Uniform (17.5%) Rectilinear (15.1%)

P×Q-way jagged (2.3%) m-way jagged (2.0%) hierarchical (2.7%)

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 4 / 36

http://bmi.osu.edu/hpc

This talk is about how to generate such
partitions, either optimally or heuristically,
and the type of guarantee we can obtain.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 5 / 36

http://bmi.osu.edu/hpc

Outline

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
P×Q-way Jagged
m-way Jagged

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up
Conclusion and Perspective

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Introduction:: 6 / 36

http://bmi.osu.edu/hpc

The Rectangular Partitioning Problem

Definition

Let A be a n1 × n2 matrix of non-negative values. The problem is to
partition the [1, 1]× [n1, n2] rectangle into a set S of m rectangles. The
load of rectangle r = [x , y]× [x ′, y ′] is L(r) =

∑
x≤i≤x ′,y≤j≤y ′ A[i][j]. The

problem is to minimize Lmax = maxr∈S L(r).

Prefix Sum

Algorithms are rarely interested in the value of a particular element but
rather interested in the load of a rectangle. The matrix is given as a 2D
prefix sum array Pr such as Pr [i][j] =

∑
i ′≤i ,j ′≤j A[i ′][j ′]. By convention

Pr [0][j] = Pr [i][0] = 0.
We can now compute the load of rectangle r = [x , y]× [x ′, y ′] as
L(r) = Pr [x ′][y ′]− Pr [x − 1][y ′]− Pr [x ′][y − 1] + Pr [x − 1][y − 1].

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Preliminaries::Notation 7 / 36

http://bmi.osu.edu/hpc

In One Dimension

Optimal : Nicol’s algorithm [Nic94] (improved by [PA04])

Based on parametric search.
Complexity: O((m log n

m)2).

Heuristic : Direct Cut [MP97]

Greedy algorithm.
Complexity: O(m log n

m).

Guarantees : Lmax(DC) ≤
∑

i′ A[i ′]
m + maxi A[i].

(More details in Section 2.2)

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Preliminaries::In One Dimension 8 / 36

http://bmi.osu.edu/hpc

Simulation Setting

Classes (Some inspired by [MS96])

Processors

Simulation are perform with different number of processors: most squared
numbers up to 10,000.

Metric

Load imbalance is the presented metric : Lmax∑
i,j A[i][j]

m

− 1.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Preliminaries::Simulation Setting 9 / 36

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
P×Q-way Jagged
m-way Jagged

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up
Conclusion and Perspective

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning:: 10 / 36

http://bmi.osu.edu/hpc

Rectilinear Partitioning

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning:: 11 / 36

http://bmi.osu.edu/hpc

Nicol’s Algorithm [Nic94]: RECT-NICOL

The algorithm

RECT-NICOL is an iterative heuristic. At each iteration the partition in one
dimension is refined by using a 1D algorithm.
Complexity:

O(n1n2) iterations (around 10 in practice)

1 iteration : O(Q(P log n1
P)2 + P(Q log n2

Q)2).

Other algorithms

The problem of finding the optimal Rectilinear Partitioning is
NP-Complete. Therefore, other algorithms which mainly focuses on
theoretical properties. The guarantees are unsuitable. The algorithms are
computationally expensive (n10

1) and difficult to implement (rely on linear
programming or present numerical instability).

(See Section 3.1 for more details)

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Rectilinear Partitioning:: 12 / 36

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
P×Q-way Jagged
m-way Jagged

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up
Conclusion and Perspective

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning:: 13 / 36

http://bmi.osu.edu/hpc

P×Q-way Jagged Partitioning

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 14 / 36

http://bmi.osu.edu/hpc

A P×Q-way Jagged Heuristic: JAG-PQ-HEUR

∑ ∑ ∑ ∑ ∑ ∑ ∑

P×Q Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.

Treat all stripes.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 15 / 36

http://bmi.osu.edu/hpc

A P×Q-way Jagged Heuristic: JAG-PQ-HEUR

∑

∑

∑

∑

∑

∑

P×Q Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.

Treat all stripes.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 15 / 36

http://bmi.osu.edu/hpc

A P×Q-way Jagged Heuristic: JAG-PQ-HEUR

P×Q Jagged Partitioning

Sum on columns to generate a
1D problem.

Partition it in P parts.

For the first stripe, sum on rows.

Partition it in Q parts.

Treat all stripes.

Complexity :
O((P log n1

P)2 + P × (Q log n2
Q)2).

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 15 / 36

http://bmi.osu.edu/hpc

How good is that ?

Theorem (Theorem 1 in Section 3.2.1)

If there are no zero in the array, JAG-PQ-HEUR is a
(1 + ∆ P

n1
)(1 + ∆ Q

n2
)-approximation algorithm where ∆ = maxA

minA , P < n1,
Q < n2.

Proof.

Based on the guarantee of 1D heuristics.

Theorem (Theorem 2 in Section 3.2.1)

The approximation ratio is minimized by P =
√
m n1

n2
.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 16 / 36

http://bmi.osu.edu/hpc

An optimal P×Q-way jagged partitioning : JAG-PQ-OPT

A Dynamic Programming Formulation


Lmax(n1,P) = min1≤k<n1 max(Lmax(k − 1,P − 1), 1D(k, n1,Q))
Lmax(0,P) = 0
Lmax(n1, 0) = +∞,∀n1 ≥ 1

O(n1P) Lmax functions to evaluate. (Each is O(k).)

O(n2
1) 1D functions to evaluate. (Each is O((Q log n2

Q)2).)

(Some significant implementation optimizations apply)
For a 512x512 matrix and 1000 processors, that’s 512,000+262,144
values. On 64-bit values, that’s 6MB.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 17 / 36

http://bmi.osu.edu/hpc

Performance of P×Q-way jagged (PIC-MAG it=30000)

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

lo
ad

 im
ba

la
nc

e

number of processors

RECT-NICOL
JAG-PQ-HEUR

JAG-PQ-OPT

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::P×Q-way Jagged 18 / 36

http://bmi.osu.edu/hpc

m-way Jagged Partitioning

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged 19 / 36

http://bmi.osu.edu/hpc

m-way jagged partitioning heuristic: JAG-M-HEUR

Algorithm

Cut in P stripes. Distribute processors in each stripe proportionally to the

stripe’s load : allocj =
⌈∑

i,j A[i][j]

loadj
(m − P)

⌉
.

Theorem (Theorem 3 in Section 3.2.2)

If there are no zero in A, the approximation ratio of the described
algorithm is m

m−P (1 + ∆ 1
n2

) + m∆
Pn2

(1 + ∆P
n1

).

Proof.

Same kind of proof than for heuristic P×Q jagged partitioning.

Recall that the guarantee of heuristic P×Q jagged partitioning was:
(1 + ∆ P

n1
) + m∆

Pn2
(1 + ∆P

n1
). m-way is better for large m values.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged 20 / 36

http://bmi.osu.edu/hpc

m-way jagged partitioning heuristic: JAG-M-HEUR

Algorithm

Cut in P stripes. Distribute processors in each stripe proportionally to the

stripe’s load : allocj =
⌈∑

i,j A[i][j]

loadj
(m − P)

⌉
.

Theorem (Theorem 3 in Section 3.2.2)

If there are no zero in A, the approximation ratio of the described
algorithm is m

m−P (1 + ∆ 1
n2

) + m∆
Pn2

(1 + ∆P
n1

).

Proof.

Same kind of proof than for heuristic P×Q jagged partitioning.

Recall that the guarantee of heuristic P×Q jagged partitioning was:
(1 + ∆ P

n1
) + m∆

Pn2
(1 + ∆P

n1
). m-way is better for large m values.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged 20 / 36

http://bmi.osu.edu/hpc

An optimal m-way partitioning JAG-M-OPT

A Dynamic Programming Formulation


Lmax(n1,m) = min1≤k<n1,1≤x≤m max(Lmax(k − 1,m − x), 1D(k , n1, x))
Lmax(0,m) = 0
Lmax(n1, 0) = +∞, ∀n1 ≥ 1

O(n1m) Lmax functions.

O(n2
1m) 1D functions. (m times more than for P×Q jagged)

(The same kind of optimizations apply.)
For a 512x512 matrix on 1,000 processors. That’s 512,000 + 262,144,000
values, if they are 64-bits, about 2GB (and takes 30 minutes).

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged 21 / 36

http://bmi.osu.edu/hpc

Performance of m-way jagged (PIC-MAG it=30000)

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

lo
ad

 im
ba

la
nc

e

number of processors

RECT-NICOL
JAG-PQ-HEUR

JAG-M-HEUR
JAG-M-OPT

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Jagged Partitioning::m-way Jagged 22 / 36

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
P×Q-way Jagged
m-way Jagged

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up
Conclusion and Perspective

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection:: 23 / 36

http://bmi.osu.edu/hpc

Hierarchical Bisection Partitioning

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection:: 24 / 36

http://bmi.osu.edu/hpc

Recursive Bisection [BB87]: HIER-RB

Algorithm

m processors to partition a
rectangle.

Cut to balance the load evenly.

Allocate half the processors to
each side.

Cut the dimension that
balances the load best.

Complexity: O(m log max n1, n2).

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 25 / 36

http://bmi.osu.edu/hpc

Performance of HIER-RB (PIC-MAG it=30000)

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

lo
ad

 im
ba

la
nc

e

number of processors

RECT-NICOL
JAG-PQ-HEUR

JAG-M-HEUR
HIER-RB

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Recursive Bisection 26 / 36

http://bmi.osu.edu/hpc

An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

Lmax(x1, x2, y1, y2,m) = minj min(
minx max(Lmax(x1, x , y1, y2, j), Lmax(x + 1, x2, y1, y2,m − j))
,miny max(Lmax(x1, x2, y1, y , j), Lmax(x1, x2, y + 1, y2,m − j)))

O(n2
1n

2
2m) Lmax functions. (n2

2 times more than m-way jagged)

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000
values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic: HIER-RELAXED

Build the solution according to

Lmax(x1, x2, y1, y2,m) = minj min(

minx max(L(x1,x ,y1,y2)
j , L(x+1,x2,y1,y2)

m−j)

,miny max(L(x1,x2,y1,y)
j , L(x1,x2,y+1,y2)

m−j))

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Dynamic Programming 27 / 36

http://bmi.osu.edu/hpc

An Optimal Hierarchical Bisection Algorithm

A Dynamic Programming Formulation

Lmax(x1, x2, y1, y2,m) = minj min(
minx max(Lmax(x1, x , y1, y2, j), Lmax(x + 1, x2, y1, y2,m − j))
,miny max(Lmax(x1, x2, y1, y , j), Lmax(x1, x2, y + 1, y2,m − j)))

O(n2
1n

2
2m) Lmax functions. (n2

2 times more than m-way jagged)

For a 512x512 matrix and 1000 processors, that’s 68,719,476,736,000
values. On 64-bit values, that’s 544TB.

The Relaxed Hierarchical Heuristic: HIER-RELAXED

Build the solution according to

Lmax(x1, x2, y1, y2,m) = minj min(

minx max(L(x1,x ,y1,y2)
j , L(x+1,x2,y1,y2)

m−j)

,miny max(L(x1,x2,y1,y)
j , L(x1,x2,y+1,y2)

m−j))

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Dynamic Programming 27 / 36

http://bmi.osu.edu/hpc

Performance of HIER-RELAXED (PIC-MAG it=30000)

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

lo
ad

 im
ba

la
nc

e

number of processors

RECT-NICOL
JAG-PQ-HEUR

JAG-M-HEUR
HIER-RB

HIER-RELAXED

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Hierarchical Bisection::Dynamic Programming 28 / 36

http://bmi.osu.edu/hpc

Outline of the Talk

1 Introduction

2 Preliminaries
Notation
In One Dimension
Simulation Setting

3 Rectilinear Partitioning
Nicol’s Algorithm

4 Jagged Partitioning
P×Q-way Jagged
m-way Jagged

5 Hierarchical Bisection
Recursive Bisection
Dynamic Programming

6 Final thoughts
Summing up
Conclusion and Perspective

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts:: 29 / 36

http://bmi.osu.edu/hpc

Performance Over the Execution of PIC-MAG (m =6400)

 0.01

 0.1

 1

 0 5000 10000 15000 20000 25000 30000 35000

lo
ad

 im
ba

la
nc

e

iteration

RECT-NICOL
JAG-PQ-HEUR

JAG-M-HEUR
HIER-RB

HIER-RELAXED

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 30 / 36

http://bmi.osu.edu/hpc

Relaxed Hierarchical Might Be Unstable (m =400)

 0.01

 0.1

 0 5000 10000 15000 20000 25000 30000 35000

lo
ad

 im
ba

la
nc

e

iteration

RECT-NICOL
JAG-PQ-HEUR

JAG-M-HEUR
HIER-RB

HIER-RELAXED

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 31 / 36

http://bmi.osu.edu/hpc

Sparsity (SLAC)

 0.001

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

lo
ad

 im
ba

la
nc

e

number of processors

RECT-NICOL
JAG-PQ-HEUR

JAG-M-HEUR
HIER-RB

HIER-RELAXED

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 32 / 36

http://bmi.osu.edu/hpc

Runtime on PIC-MAG (it=30000)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

tim
e

(s
)

number of processors

RECT-NICOL
JAG-PQ-HEUR

JAG-PQ-OPT
JAG-M-HEUR

JAG-M-OPT
HIER-RB

HIER-RELAXED

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 33 / 36

http://bmi.osu.edu/hpc

What should I use?

Quality

JAG-M-HEUR and HIER-RELAXED dominates. (Best of two?)

HIER-RELAXED is better in sparse cases (Figure 14).

JAG-M-HEUR ties with HIER-RELAXED on dense cases (Figure 12/13).

But HIER-RELAXED is unstable: it gives very different solutions when
run on similar instances (Figure 11).

Runtime on a 514x514 matrix with 1024 processors (Figure 6)

HIER-RB, JAG-PQ-HEUR, JAG-M-HEUR: a few milliseconds.

HIER-RELAXED, RECT-NICOL: half a second.

JAG-PQ-OPT: a few seconds.

JAG-M-OPT: hours.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Summing up 34 / 36

http://bmi.osu.edu/hpc

Conclusion and Perspective

Conclusion

Proposed a class of partitioning (m-way jagged).

Proved that most recursively defined classes are polynomial:

.

Proposed two new well-founded heuristics, JAG-M-HEUR and
HIER-RELAXED, which outperform state-of-the-art algorithms.

Theoretically analyzed JAG-M-HEUR and JAG-PQ-HEUR.

Perspective

Better m-way jagged partitioning algorithm. (see arXiv 1104.2566)

Include communication models.

Integration into a real application. (do you have one ?)

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Conclusion and Perspective 35 / 36

http://bmi.osu.edu/hpc

Thank you

Datasets

Thanks to Y. Omelchenko and H. Karimabadi for providing PIC-MAG
data; and R. Lee, M. Shephard, and X. Luo for the SLAC data.

More information

contact : umit@bmi.osu.edu
visit: http://bmi.osu.edu/hpc/ or http://bmi.osu.edu/~umit

Research at HPC lab is funded by

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Conclusion and Perspective 36 / 36

http://bmi.osu.edu/hpc/
http://bmi.osu.edu/~umit
http://bmi.osu.edu/hpc

Marsha Berger and Shahid Bokhari.
A partitioning strategy for nonuniform problems on multiprocessors.
IEEE Transaction on Computers, C36(5):570–580, 1987.

Serge Miguet and Jean-Marc Pierson.
Heuristics for 1d rectilinear partitioning as a low cost and high quality
answer to dynamic load balancing.
In HPCN Europe ’97: Proceedings of the International Conference and
Exhibition on High-Performance Computing and Networking, pages
550–564, London, UK, 1997. Springer-Verlag.

Fredrik Manne and Tor Sørevik.
Partitioning an array onto a mesh of processors.
In PARA ’96: Proceedings of the Third International Workshop on
Applied Parallel Computing, Industrial Computation and Optimization,
pages 467–477, London, UK, 1996. Springer-Verlag.

David Nicol.
Rectilinear partitioning of irregular data parallel computations.
Journal of Parallel and Distributed Computing, 23:119–134, 1994.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Conclusion and Perspective 36 / 36

http://bmi.osu.edu/hpc

Ali Pinar and Cevdet Aykanat.
Fast optimal load balancing algorithms for 1d partitioning.
Journal of Parallel and Distributed Computing, 64:974–996, 2004.

Ümit V. Çatalyürek
Ohio State University, Biomedical Informatics

HPC Lab http://bmi.osu.edu/hpc
2D partitioning

Final thoughts::Conclusion and Perspective 36 / 36

http://bmi.osu.edu/hpc

	Introduction
	Preliminaries
	Notation
	In One Dimension
	Simulation Setting

	Rectilinear Partitioning
	Nicol's Algorithm

	Jagged Partitioning
	PQ-way Jagged
	m-way Jagged

	Hierarchical Bisection
	Recursive Bisection
	Dynamic Programming

	Final thoughts
	Summing up
	Conclusion and Perspective

