GPU accelerated maximum cardinality
matching algorithms for bipartite graphs

Bora Ucgar

CNRS and LIP, ENS Lyon, France

Europar 2013, 26-30 Auguest, 2013, Aachen, Germany

Joint work with:

Mehmet Deveci
Umit V. Catalyurek Kamer Kaya
BMI (and ECE for MD & UVC(),
The Ohio State University

1/19 Matrix scaling

Bipartite graphs and matchings

e G=(RUC,E) is a bipartite graph with
the vertex set RU C where RN C = 0),
and all edges contain one vertex in R other
in C.

@ A matching M in a graph G is a subset of
edges E where a vertex in RU C is in at
most one edge in M.

@ Perfect matching all vertices in R or C are
matched, e.g.,

(r17 C3), (I’27 Cl), (I‘37 C5), (r4, C2), (r5, C4).

Problem: Find a matching of maximum cardinality.

2/19 Matrix scaling

Matrices, bipartite graphs and matchings

Motivation: Given an n X n sparse matrix A,
find a permutation of the columns so that the
diagonal of the permuted matrix is zero free.

@ Take the associated bipartite graph
Ga=(RUC,E)

o R corresponds to the set of rows, C to
the set of columns

o (ri,g) € Eiffa; #0.
@ Compute a perfect matching in Ga.

© Permute columns according to the
matching.

The permuted form can be used to detect reducibility of A; if so

e I S

315 2 4

substantial savings are possible while solving the associated linear system.

3/19 Matrix scaling

Augmenting paths

Alternating path: A path in G is M-alternating if its edges are alternatively in
M and not in M.

Augmenting path: An M-alternating path P is called M-augmenting if the
start and end vertices of P are both unmatched.

o

All (exact, deterministic) algorithms are based on augmenting paths:
start with possible empty matching and augment (theorem of Berge).

4/19 Matrix scaling

Algorithms

for bipartite mathching

Alg. Description Complexity

DFSB DFS. Forms the basis of many algorithms. O(nr)

BFSB BFS. Quite common (the algorithm FF in | O(n7)
[Melhorn and Niher,'99]).

MC21A DFS-+Lookahead [Duff'81] and dmperm in | O(n7)
Matlab [Davis, 06]—the most wide-spread?

PF Phases of disjoint DFSs [Pothen and Fan,’90]. O(nT)

HK Shortest disjoint augmenting paths [Hopcroft | O(+/nT)
and Karp,’73].

HKDW HK+Disjoint DFS [Duff and Wiberg,'88]. O(+/nT)

ABMP Combined DFS and BFS [Alt, Blum, Mehlhorn, | min{O(y/nT)
and Paul,'91]. O(HI'B\/T/ log n)}

PF+ A simple modification of PF [Duff, Kaya, and | O(nT)
U.,'10].

PR Push-relabel [Cherkassky, Goldberg, Martin, Se- | O(y/nT)
tubal, Stolfi,'98]; Bounds on distances to free
vertices.

PseudoFlow | Prefixes and suffixes of augmenting paths | O(n7)
[Hochbaum’98 and Chandran and Hochbaum'll]

Matrix scaling

Some recent parallelization studies

@ Undirected graph

o weighted, unweighted, approximate, GPU, MPI, external memory:
Brin, Osipov, Sanders, Schulz, Sitchinava, Session F2, (EuroPar'13).

o weighted, unweighted, heuristic, GPU: Fagginger Auer and
Bisseling'12.

o weighted, GPU, multicore: Halappanavar, Feo, Villa, Tumeo, and
Pothen'12.

o weighted, greedy, multicore: Catalyiirek, Deveci, Kaya, U.'12.

@ Bipartite graph
o weighted, GPU: Vasconcelos and Rosenhahn'09.

o unweighted, multicor: Azad, Halappanavar, Rajamanickam, Boman,
Khan, Pothen’'12.

We propose: bipartite unweighted, GPU.

6/19 Matrix scaling

Ga =

Proposed algorithms

@ Based on HK and HKDW: Use BFS to locate a set of shortest
augmenting paths, augment along a maximal set of them using DFS.

@ HKDW adds one more DFS step to augment along the remaining
paths (not shortest).

@ Keep the BFS part; the DFS part does not propose efficiency.

Overall description

@ HK: Find a set of shortest augmenting paths, alternate along all of
them (some of them will be realized)

o HKDW: Find the set of augmenting paths, alternate along all of
them (some of them will be realized).

@ The worst case running time complexity increases, O(nT) instead of
O(+y/nT). We trade that to achieve fine-grained parallelism.

7/19 Matrix scaling

Proposed algorithms: Main one, similar to HKDW

Algorithm 1: ALL AUGMENTING PATHS (APFB)

Data: cxadj, cadj, nc, nr, rmatch, cmatch

1 augmenting_path_found < true;
2 while augmenting_path_found do
3 bfs_level + Lo; BFS uses alternating paths,
4 INITBFSARRAY (bfs_array, cmatch, Lo); Starts from .unmatched
5 vertex_inserted < true; columns, tries to reach
6 while vertez_inserted do unmatched rows.
7 %Blﬂ‘s(bfs,level7 bfs_array, cxadj, cadj, nc, rmatch,
8 vertex_inserted, augmenting_path_found);
9
10
11 bfs_level < bfs_level + 1;
12 (ecmatch, rmatch) < ALTERNATE (cmatch, rmatch, ne, predecessor);
‘13 | {ematch, rmatch) < FIXMATCHING (cmatch, rmatch);

Needed to avoid atomic operations and locks.

8/19 Matrix scaling

Proposed algorithms: BFS kernel function

The visited column vertex in the current level

4 if bfs_array[col_vertex]| =|bfs_level |then

5 for j from cxadj[col_vertex] to czadjlcol_vertex + 1] do

6 neighbor_row < cadj[jl;

7 col_match < rmatch[neighbor_row];

8 if col_match > —1 then

9 if bfs_arraylcol-match] = Lo —1|/then ..

0)bvertem,ziserted —]true; ‘ Unvisited (mat?hed)
1 bfs_arraylcol_match] + bfs_level + 1; column vertex is
2 predeccesorneighbor_row| < col_vertex; found

3 else

: AT e

5 rmatch[neighbor_row] « —2; Unmatched row
6 predeccesor[neighbor_row] + col_vertex; vertex is found

7 augmenting_path_found < true;

9/19 Matrix scaling

Proposed algorithms: Alternate

Algorithm 3: ALTERNATE

Data: ecmatch, rmatch, nc, nr, predecessor
1 process_vent < getProcessCount(nr);
2 for ¢ from 0 to process_vent — 1 do
3 row_vertex < i X tot_thread_num + tid;
4 if rmatch|row_vertex] = —2 then
5 while row_vertex # —1 do
6 matched_col < predecessor[row_vertex];
7
8
9

matched_row < cmatch[matched_col] ;
if predecessor/matched_row] = matched_col then
| break;

10 cmatch[matched_col] < row_vertex;
11 rmatch[row_vertex] < matched_col;
12 row_vertex < matched_row;

Line 3 ~» coalesced access to the memory.

10/19 Matrix scaling

Proposed algorithms: Fix Matching

Problem 1 Thread t’ Thread t’
Thread t Thread t
Problem 2 Thread t’
cmatch[c,] =r, J
.— — - rmatch[r,] = c, J
This is why
rmatch[r,] = c, 0 we need
Thread t 7" FIXMATCHING

FIXMATCHING:
rmatch[r] < —1 for any r satisfying cmatch[rmatch|r]] # r

11/19 Matrix scaling

Proposed algorithms: BFS kernel modified

...s0 that:

early exits; if an augmenting path found for a column, no more BFS's
continue for the same column.

helps Alternate: mark the start and the end of the augmenting paths (so
that alternate works along correct augmenting paths).

12/19 Matrix scaling

Ga =

@ The sequential HK and PFP implementations Duff, Kaya, and U'11.

@ Multicore implementations P-PFP, P-DBFS, and P-HK from Azad
et al.’12 on 8 threads.

CPU: 2.27GHz dual quad-core Intel Xeon CPUs with 2-way
hyper-threading and 48GB main memory (C++ and OpenMP).

GPU: NVIDIA Tesla C2050 with usable 2.6GB of global memory (14
multiprocessors each containing 32 CUDA cores).

@ gcc-4.4.4, cuda-4.2.9 and -O2 optimization flag.

@ A standard heuristic is used to initialize all algorithms.

The execution times of the GPU algorithms exclude memory copy time
(when included decreases the reported mean speedups across all data set
by at most 6%.)

14/19 Matrix scaling

Experiments: Data set and GPU algorithms

@ 70 large matrices from UFL collection. “O" original set, “RCP" random
row/column permutations.

@ report on those matrices for which one of the sequential algorithms took
more than one second (O_S1, 28 matrices; and RCP_S1, 50 matrices).

@ O_Hardest20 and RCP_Hardest20 that contain the set of 20 matrices on
which the sequential algorithms required the longest runtime.

GPU algorithms

Geometric mean of the runtime (in seconds) on different sets of instances
APFB APsB
GPUBFS[GPUBFS-WR| GPUBFS [GPUBFS-WR
MT] CT|MT CT| MT[] CT[MT CT
0.S1 2.96] 1.89]2.12 1.34] 3.68] 2.88]2.98 2.27
O_Hardest20 |4.28[2.70[3.21 1.93 5.23] 4.14[4.20 3.13
RCP_S1I 3.66]3.24[1.13 1.05] 3.52] 3.33]2.22 2.14
RCP_Hardest20]7.27]5.79|3.37 2.8512.06]10.75[8.17 741

v

15/19 Matrix scaling

Log-scaled speedup profiles

Best identified GPU algorithm and the multicore ones:

1.0

a—r.pF —GPU
—p_PF

o
Y
?
o
b
a

y = P(speedup >= 29
° °
IS S

o

o
°

(a) Original graphs (b) Permuted graphs

@ (x,y): the probability of obtaining at least 2° speedup is y.
@ The speedups wrt the fastest of the seq. algorithms (min(PFP and HK)).

@ GPU algorithm has the best overall speedup (faster than HK in 86% of
the original graphs, while it is faster than PFP on 76% on the permuted
graphs).

16/19 Matrix scaling

Performance profiles

°
%

1.0 10
o i /_;_’_/_

—GPU

np-PF
P-DBFS

—P-HK

3
S

°
=

Fraction of Test Cases
Fraction of test cases

°
N

1)

°
o
°

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

(c) Original graphs (d) Permuted graphs

@ (x,y): with y probability, the corresponding algorithm obtains a
performance that is at most x times worse than the best runtime.

@ The plots clearly mark the GPU algorithm as the fastest in most cases,

@ The GPU algorithm obtains the best performance in 61% of the original
graphs and in 74% of the permuted ones.

17/19 Matrix scaling

Overall speedup

Speedup
o

Z o - J ‘

0_S1 O_Hardest20 RCP_S1 RCP_Hardest20
PFP 4.26 5.58 3.54 9.29
W HK 3.61 3.96 7.40 9.62

Figure: GPU algorithm w.r.t. PFP (left bars) and HK (right bars) algorithms.

@ Average speedup: 3.61 and 3.54 on original and permuted graphs.
@ Hardest instances: 3.96 and 9.29 on original and permuted graphs.
@ Robust running time (execution times for different repetitions)

o For O_S1, the ratios of the standard deviations to the average time
are less than 10%, 18%, and 47% for 20, 5, and 3 graphs.

18/19 Matrix scaling

Concluding remarks

@ GPU implementation of a BFS-based maximum cardinality matching
algorithm for bipartite graphs.

@ The experiments showed that the GPU implementation is faster
than the existing multicore implementations.

@ The speedups achieved with respect to well-known sequential
implementations varied from 0.03 to 629.19, averaging 9.29 w.r.t.

the fastest sequential algorithm on a set of 20 hardest problems.

@ Everything was on the GPU; a limited memory device. Thinking
about what can be done for graphs that does not fit into a GPU.

19/19 Matrix scaling

Further information

Thank you for your attention.

http://perso.ens-1lyon.fr/bora.ucar

20/19 Matrix scaling

http://perso.ens-lyon.fr/bora.ucar

Actual running time

Original graphs Permuted graphs

Matrix name GPUJ[P-DBFS PEFP HK||GPU[P-DBFS| PFP

roadNet-CA 0.34 0.53 0.95 2.48[] 0.39 1.88] 3.05] 4.89
delaunay _n23 0.96 1.26 2.68 1.11]] 0.90 5.56| 3.27] 14.34
coPapersDBLP 0.42 6.27 3.11 1.62{| 0.38 1.25/ 0.29 1.26
kron_g500-logn21 0.99 1.50 5.37 4.73(] 3.71 4.01] 64.29] 16.08
amazon-2008 0.11 0.18 6.11 1.85[] 0.41 1.37] 61.32] 4.69
delaunay n24 1.98 2.41 6.43 2.22|] 1.86 12.84] 6.92] 35.24
as-Skitter 0.49 1.89 7.79 3.56[] 3.27 5.74[472.63] 29.63
amazon0505 0.18 22.70 9.05 1.87|| 0.24 15.23| 17.59] 2.23
wikipedia-20070206| 1.09 5.24] 11.98 6.52|] 1.05 5.99] 9.74] 5.73
Hamrle3 1.36 2.70 0.04 12.61|| 3.85 7.39| 37.71] 57.00

hugetrace-00020 7.90] 393.13] 15.95] 15.02]] 1.52 9.97| 8.68] 38.27
hugebubbles-00000 [13.16 3.55| 19.81 5.56]] 1.80 10.91] 10.03] 38.97

wb-edu 33.82 8.61 3.38| 20.35[[17.43 20.10[9.49| 51.14
rgg_n_2_24_s0 3.68 2.25] 25.40 0.12(] 2.20 12.50[5.72] 31.78
patents 0.88 0.84| 92.03] 16.18[| 0.91 0.97[101.76] 18.30
italy_osm 5.86 1.20 1.02| 122.00][| 0.70 3.97| 6.24] 18.34
soc-LiveJournall 3.32 14.35| 243.91| 21.16{| 3.73 7.141343.94| 20.71
ljournal-2008 2.37 10.30] 360.31| 17.66]| 6.90 7.58(176.69| 23.45
europe_osm 57.53] 11.21| 14.15[1911.56]| 7.21 37.93] 68.18[197.03
com-livejournal 4.58 22.46(2879.36] 34.28|| 5.88 17.19]165.32] 29.40

Except six among the original graphs and another two among the permuted
graphs, the GPU algorithm is faster than the best sequential algorithm. It is
also faster than the multicore ones in all, except five original graphs.

21/19 Matrix scaling

References

[
B
B
B
B
B
B

Deveci, M., Kaya, K., Catalyiirek, U. V., and Ucar, B.:

A push-relabel-based maximum cardinality matching algorithm on GPUs,

ICPP2013

Azad, A., Halappanavar, M., Rajamanickam, S., Boman, E.G., Khan, A., Pothen, A.:

Multithreaded algorithms for maximum matching in bipartite graphs. In:
26th IPDPS. pp. 860-872. IEEE (2012)

Duff, I.S., Kaya, K., Ugar, B.

Design, implementation, and analysis of maximum transversal algorithms.
ACM TOMS 38(2), 13 (2011)

Fagginger Auer, B., Bisseling, R.:

A GPU algorithm for greedy graph matching.
Facing the Multicore-Challenge Il pp. 108-119 (2012)

Halappanavar, M., Feo, J., Villa, O., Tumeo, A., Pothen, A.:

Approximate weighted matching on emerging manycore and multithreaded architectures.
Int. J. High Perform. C. 26(4), 413-430 (2012)

Kaya, K., Langguth, J., Manne, F., Ugar, B.:

Push-relabel based algorithms for the maximum transversal problem.
Comput. Oper. Res. 40(5), 1266-1275 (2012)

Vasconcelos, C., Rosenhahn, B.:

Bipartite graph matching computation on GPU.
In: Energy Minimization Methods in Computer Vision and Pattern Recognition. pp. 42-55. (2009)

