
GPU accelerated maximum cardinality
matching algorithms for bipartite graphs

Bora Uçar

CNRS and LIP, ENS Lyon, France

Europar 2013, 26–30 Auguest, 2013, Aachen, Germany

Joint work with:

Mehmet Deveci

Ümit V. Çatalyürek Kamer Kaya
BMI (and ECE for MD & UVÇ),

The Ohio State University

1/19 Matrix scaling

Bipartite graphs and matchings

G = (R ∪ C ,E) is a bipartite graph with
the vertex set R ∪ C where R ∩ C = ∅,
and all edges contain one vertex in R other
in C .

A matching M in a graph G is a subset of
edges E where a vertex in R ∪ C is in at
most one edge in M.

Perfect matching all vertices in R or C are
matched, e.g.,
(r1, c3), (r2, c1), (r3, c5), (r4, c2), (r5, c4).

Augmenting paths

4

r1 c1

r2 c2

r3 c3

r4 c4

r5 c5

r1 c1

r2 c2

r3 c3

r4 c4

r5 c5

Augmenting
path

r4 c2 r5 c4 r2 c1 r1 c3

r4 c2 r5 c4 r2 c1 r1 c3

7/8/13 Matrix Transversals on GPUs

Problem: Find a matching of maximum cardinality.

2/19 Matrix scaling

Outline

Matrices, bipartite graphs and matchings

Motivation: Given an n × n sparse matrix A,
find a permutation of the columns so that the
diagonal of the permuted matrix is zero free.

1 Take the associated bipartite graph
GA = (R ∪ C ,E)

R corresponds to the set of rows, C to
the set of columns
(ri , cj) ∈ E iff aij 6= 0.

2 Compute a perfect matching in GA.

3 Permute columns according to the
matching.

A =

1 2 3 4 5

1
2
3
4
5

0

GA =

Augmenting paths

4

r1 c1

r2 c2

r3 c3

r4 c4

r5 c5

r1 c1

r2 c2

r3 c3

r4 c4

r5 c5

Augmenting
path

r4 c2 r5 c4 r2 c1 r1 c3

r4 c2 r5 c4 r2 c1 r1 c3

7/8/13 Matrix Transversals on GPUs

AP =

3 1 5 2 4

1
2
3
4
5

0The permuted form can be used to detect reducibility of A; if so
substantial savings are possible while solving the associated linear system.

3/19 Matrix scaling

Augmenting paths

Alternating path: A path in G is M-alternating if its edges are alternatively in
M and not in M.

Augmenting path: An M-alternating path P is called M-augmenting if the

start and end vertices of P are both unmatched.Augmenting paths

4

r1 c1

r2 c2

r3 c3

r4 c4

r5 c5

r1 c1

r2 c2

r3 c3

r4 c4

r5 c5

Augmenting
path

r4 c2 r5 c4 r2 c1 r1 c3

r4 c2 r5 c4 r2 c1 r1 c3

7/8/13 Matrix Transversals on GPUs All (exact, deterministic) algorithms are based on augmenting paths:
start with possible empty matching and augment (theorem of Berge).

4/19 Matrix scaling

Algorithms for bipartite mathching

Alg. Description Complexity
DFSB DFS. Forms the basis of many algorithms. O(nτ)
BFSB BFS. Quite common (the algorithm FF in

[Melhorn and Näher,’99]).
O(nτ)

MC21A DFS+Lookahead [Duff,’81] and dmperm in
Matlab [Davis,’06]—the most wide-spread?

O(nτ)

PF Phases of disjoint DFSs [Pothen and Fan,’90]. O(nτ)
HK Shortest disjoint augmenting paths [Hopcroft

and Karp,’73].
O(

√
nτ)

HKDW HK+Disjoint DFS [Duff and Wiberg,’88]. O(
√
nτ)

ABMP Combined DFS and BFS [Alt, Blum, Mehlhorn,

and Paul,’91].
min{O(

√
nτ)

O(n1.5
√
τ/ log n)}

PF+ A simple modification of PF [Duff, Kaya, and

U.,’10].
O(nτ)

PR Push-relabel [Cherkassky, Goldberg, Martin, Se-

tubal, Stolfi,’98]; Bounds on distances to free
vertices.

O(
√
nτ)

PseudoFlow Prefixes and suffixes of augmenting paths
[Hochbaum’98 and Chandran and Hochbaum’11]

O(nτ)

5/19 Matrix scaling

Some recent parallelization studies

Undirected graph

weighted, unweighted, approximate, GPU, MPI, external memory:
Brin, Osipov, Sanders, Schulz, Sitchinava, Session F2, (EuroPar’13).
weighted, unweighted, heuristic, GPU: Fagginger Auer and
Bisseling’12.
weighted, GPU, multicore: Halappanavar, Feo, Villa, Tumeo, and
Pothen’12.
weighted, greedy, multicore: Çatalyürek, Deveci, Kaya, U.’12.

Bipartite graph

weighted, GPU: Vasconcelos and Rosenhahn’09.
unweighted, multicor: Azad, Halappanavar, Rajamanickam, Boman,
Khan, Pothen’12.

We propose: bipartite unweighted, GPU.

6/19 Matrix scaling

Outline

GA =

Augmenting paths

4

r1 c1

r2 c2

r3 c3

r4 c4

r5 c5

r1 c1

r2 c2

r3 c3

r4 c4

r5 c5

Augmenting
path

r4 c2 r5 c4 r2 c1 r1 c3

r4 c2 r5 c4 r2 c1 r1 c3

7/8/13 Matrix Transversals on GPUs

AP =

3 1 5 2 4

1
2
3
4
5

0

Proposed algorithms

Based on HK and HKDW: Use BFS to locate a set of shortest
augmenting paths, augment along a maximal set of them using DFS.

HKDW adds one more DFS step to augment along the remaining
paths (not shortest).

Keep the BFS part; the DFS part does not propose efficiency.

Overall description

HK: Find a set of shortest augmenting paths, alternate along all of
them (some of them will be realized)

HKDW: Find the set of augmenting paths, alternate along all of
them (some of them will be realized).

The worst case running time complexity increases, O(nτ) instead of
O(
√
nτ). We trade that to achieve fine-grained parallelism.

7/19 Matrix scaling

Proposed algorithms: Main one, similar to HKDW
Augmenting-path based GPU algorithm

4 Deveci et al.

each kernel call, even though actual work is done for a portion of the vertices.
Therefore, the GPU algorithm di↵ers from a multi-core algorithm in which a
shared data structure is used with atomic operations.

The overall structure of the first GPU-based algorithm is given in Algo-
rithm 1, APsB. It largely follows the common structure of most of the existing
sequential algorithms and corresponds to HK. It performs a combined BFS start-
ing from all unmatched columns to find unmatched rows, thus locating augment-
ing paths. Some of those augmentations are then realized using a function called
Alternate (will be described later). The parallelism is exploited inside the
InitBfsArray, BFS, Alternate, and FixMatching functions. Algorithm 1
is given the adjacency list of the bipartite graph with its number of rows and
columns. Any prior matching is given in rmatch and cmatch arrays as follows:
rmatch[r] = c and cmatch[c] = r, if the row r is matched to the column c;
rmatch[r] = �1, if r is unmatched; cmatch[c] = �1, if c is unmatched.

Algorithm 1: Shortest augmenting paths (APsB)

Data: cxadj, cadj, nc, nr, rmatch, cmatch
1 augmenting path found true;
2 while augmenting path found do
3 bfs level L0;
4 InitBfsArray(bfs array, cmatch, L0);
5 vertex inserted true;
6 while vertex inserted do
7 predecessor Bfs(bfs level, bfs array, cxadj, cadj, nc, rmatch,
8 vertex inserted, augmenting path found);
9 if augmenting path found then

10 break;

11 bfs level bfs level + 1;

12 hcmatch, rmatchi Alternate (cmatch, rmatch, nc, predecessor);
13 hcmatch, rmatchi FixMatching (cmatch, rmatch);

The outer loop of Algorithm 1 iterates until no more augmenting paths are
found, thereby guaranteeing a maximum matching. The inner loop is responsi-
ble from completing the breadth-first-search of the augmenting paths. A single
iteration of this loop corresponds to a level of BFS. The inner loop iterates until
all shortest augmenting paths are found. Then, the edges in these shortest aug-
menting paths are alternated inside Alternate function. Unlike the sequential
HK algorithm, APsB does not find a maximal set of augmenting paths.

By removing the lines 9 and 10 of Algorithm 1, another matching algorithm is
obtained. This method will continue with the BFSs until all possible unmatched
rows are found; it can be therefore considered as the GPU implementation of
the HKDW algorithm. This variant is called APFB.

We propose two implementations of the BFS kernel. Algorithm 2 is the first
one. The BFS kernel is responsible from a single level BFS expansion. That is, it

7

ALL (APFB)

7/8/13 Matrix Transversals on GPUs

BFS uses alternating paths,
starts from unmatched
columns, tries to reach
unmatched rows.

Needed to avoid atomic operations and locks.

8/19 Matrix scaling

Proposed algorithms: BFS kernel function 1Augmenting-path based GPU algorithm
Bipartite matching on GPUs 5

Algorithm 2: BFS Kernel Function-1 (GPUBFS)

Data: bfs level, bfs array, cxadj, cadj, nc, rmatch,
vertex inserted, augmenting path found

1 process cnt getProcessCount(nc);
2 for i from 0 to process cnt� 1 do
3 col vertex i⇥ tot thread num + tid;
4 if bfs array[col vertex] = bfs level then
5 for j from cxadj[col vertex] to cxadj[col vertex + 1] do
6 neighbor row cadj[j];
7 col match rmatch[neighbor row];
8 if col match > �1 then
9 if bfs array[col match] = L0 �1 then

10 vertex inserted true;
11 bfs array[col match] bfs level + 1;
12 predeccesor[neighbor row] col vertex;

13 else
14 if col match=�1 then
15 rmatch[neighbor row] �2;
16 predeccesor[neighbor row] col vertex;
17 augmenting path found true;

takes the set of vertices at a BFS level and adds the union of the unvisited neigh-
bors of those vertices as the next level of vertices. Initially, the input bfs array
filled with bfs array[c] = L0 � 1 if cmatch[c] > �1 and bfs array[c] = L0 if
cmatch[c] = �1 by a simple InitBfsArray kernel (L0 denotes BFS start level).

The GPU threads partition the column vertices in a single dimension. Each
thread with id tid is assigned a number of columns which is obtained via the
following function:

getProcessCount(nc) =

⇢
d nc

tot thread nume if tid < nc mod tot thread num,
b nc

tot thread numc otherwise.
Once the number of columns are obtained, the threads traverse their first as-
signed column vertex. The indices of the columns assigned to a thread di↵er
by tot thread num to allow coalesced global memory accesses. Threads traverse
the neighboring row vertices of the current column, if its BFS level is equal to
the current bfs level. If a thread encounters a matched row during the traver-
sal, its matching column is retrieved. If the column is not traversed yet, its
bfs level is marked on bfs array. On the other hand, when a thread encounters
an unmatched row, an augmenting path is found. In this case, the match of the
neighbor row is set to �2, and this information is used by Alternate later.

Algorithm 3 gives the description of the Alternate function. This kernel
alternates the matched edges with the unmatched edges of the augmenting paths
found; some of those paths end up being augmenting ones and some are only par-
tially alternated. Here, each thread is assigned a number of rows. Since rmatch
of an unmatched row (that is also an endpoint of an augmenting path) has been

8 7/8/13 Matrix Transversals on GPUs

The visited column vertex in the current level

Unvisited (matched)
column vertex is
found

Unmatched row
vertex is found

Bipartite matching on GPUs 5

Algorithm 2: BFS Kernel Function-1 (GPUBFS)

Data: bfs level, bfs array, cxadj, cadj, nc, rmatch,
vertex inserted, augmenting path found

1 process cnt getProcessCount(nc);
2 for i from 0 to process cnt� 1 do
3 col vertex i⇥ tot thread num + tid;
4 if bfs array[col vertex] = bfs level then
5 for j from cxadj[col vertex] to cxadj[col vertex + 1] do
6 neighbor row cadj[j];
7 col match rmatch[neighbor row];
8 if col match > �1 then
9 if bfs array[col match] = L0 �1 then

10 vertex inserted true;
11 bfs array[col match] bfs level + 1;
12 predeccesor[neighbor row] col vertex;

13 else
14 if col match=�1 then
15 rmatch[neighbor row] �2;
16 predeccesor[neighbor row] col vertex;
17 augmenting path found true;

takes the set of vertices at a BFS level and adds the union of the unvisited neigh-
bors of those vertices as the next level of vertices. Initially, the input bfs array
filled with bfs array[c] = L0 � 1 if cmatch[c] > �1 and bfs array[c] = L0 if
cmatch[c] = �1 by a simple InitBfsArray kernel (L0 denotes BFS start level).

The GPU threads partition the column vertices in a single dimension. Each
thread with id tid is assigned a number of columns which is obtained via the
following function:

getProcessCount(nc) =

⇢
d nc

tot thread nume if tid < nc mod tot thread num,
b nc

tot thread numc otherwise.
Once the number of columns are obtained, the threads traverse their first as-
signed column vertex. The indices of the columns assigned to a thread di↵er
by tot thread num to allow coalesced global memory accesses. Threads traverse
the neighboring row vertices of the current column, if its BFS level is equal to
the current bfs level. If a thread encounters a matched row during the traver-
sal, its matching column is retrieved. If the column is not traversed yet, its
bfs level is marked on bfs array. On the other hand, when a thread encounters
an unmatched row, an augmenting path is found. In this case, the match of the
neighbor row is set to �2, and this information is used by Alternate later.

Algorithm 3 gives the description of the Alternate function. This kernel
alternates the matched edges with the unmatched edges of the augmenting paths
found; some of those paths end up being augmenting ones and some are only par-
tially alternated. Here, each thread is assigned a number of rows. Since rmatch
of an unmatched row (that is also an endpoint of an augmenting path) has been

9/19 Matrix scaling

Proposed algorithms: AlternateAugmenting-path based GPU algorithm
6 Deveci et al.

Algorithm 3: Alternate

Data: cmatch, rmatch, nc, nr, predecessor
1 process vcnt getProcessCount(nr);
2 for i from 0 to process vcnt� 1 do
3 row vertex i⇥ tot thread num + tid;
4 if rmatch[row vertex] = �2 then
5 while row vertex 6= �1 do
6 matched col predecessor[row vertex];
7 matched row cmatch[matched col] ;
8 if predecessor[matched row] = matched col then
9 break;

10 cmatch[matched col] row vertex;
11 rmatch[row vertex] matched col;
12 row vertex matched row;

Fig. 1. Vertices r1 and c2 are matched; others are not. Two augmenting paths starting
from c1 are possible.

set to �2 in the BFS kernel, only the threads whose row vertices’ matches are
�2 start Alternate. Since there might be several augmenting paths for an un-
matched column, race conditions while writing on cmatch and rmatch arrays are
possible. Such a race condition might cause infinite loops (inner while loop) or
inconsistencies, if care is not taken. We prevent these by checking the predeces-
sor of a matched row (line-8). For example, in Fig. 1, two di↵erent augmenting
paths that end with r2 and r3 are found for c1. If the thread of r2 starts before
the thread of r3 in Alternate, the match of c2 will be updated to r2 (line-10).
Then, r3’s thread will read matched row of c2 as r2 (line-7). This would cause
an infinite loop without the check at line-8. Inconsistencies may occur when the
threads of r2 and r3 are in the same warp. In this case, the if-check will not hold
for both threads, and their row vertices will be written on cmatch (line-10).
Since only one thread will be successful at writing, this will cause an inconsis-
tency. Such inconsistencies are fixed by FixMatching kernel which implements:
rmatch[r] �1 for any r satisfying cmatch[rmatch[r]] 6= r.

Algorithm 4 gives the description of a slightly di↵erent BFS kernel function.
This function takes a root array as an extra argument. Initially, the root array is
filled with root[c] = 0 if cmatch[c] > �1, and root[c] = c if cmatch[c] = �1. This
array holds the root (as the index of the column vertex) of an augmenting path,
and this information is transferred down during BFS. Whenever an augmenting
path is found, the entry in bfs array for the root of the augmenting path is set to
L0�2. This information is used at the beginning of the BFS kernel. No more BFS

9 7/8/13 Matrix Transversals on GPUs

Line 3 ; coalesced access to the memory.

10/19 Matrix scaling

Proposed algorithms: Fix Matching
Augmenting-path based GPU algorithm

10

r1 c1

r2

c2

r3

Thread t’

Thread t

r1 c1

r2

c2

r3

Thread t’

Thread t

Problem 1

Problem 2

r1 c1

r2

c2

r3

Thread t’
cmatch[c2] = r2

rmatch[r2] = c2

rmatch[r3] = c2 Thread t

7/8/13 Matrix Transversals on GPUs

This is why
we need
FIXMATCHING

FixMatching:
rmatch[r]← −1 for any r satisfying cmatch[rmatch[r]] 6= r

11/19 Matrix scaling

Proposed algorithms: BFS kernel modified

...so that:

early exits; if an augmenting path found for a column, no more BFS’s
continue for the same column.

helps Alternate: mark the start and the end of the augmenting paths (so
that alternate works along correct augmenting paths).

12/19 Matrix scaling

Outline

GA =

Augmenting paths

4

r1 c1

r2 c2

r3 c3

r4 c4

r5 c5

r1 c1

r2 c2

r3 c3

r4 c4

r5 c5

Augmenting
path

r4 c2 r5 c4 r2 c1 r1 c3

r4 c2 r5 c4 r2 c1 r1 c3

7/8/13 Matrix Transversals on GPUs

AP =

3 1 5 2 4

1
2
3
4
5

0

Experiments

The sequential HK and PFP implementations Duff, Kaya, and U’11.

Multicore implementations P-PFP, P-DBFS, and P-HK from Azad
et al.’12 on 8 threads.

CPU: 2.27GHz dual quad-core Intel Xeon CPUs with 2-way
hyper-threading and 48GB main memory (C++ and OpenMP).

GPU: NVIDIA Tesla C2050 with usable 2.6GB of global memory (14
multiprocessors each containing 32 CUDA cores).

gcc-4.4.4, cuda-4.2.9 and -O2 optimization flag.

A standard heuristic is used to initialize all algorithms.

The execution times of the GPU algorithms exclude memory copy time
(when included decreases the reported mean speedups across all data set
by at most 6%.)

14/19 Matrix scaling

Experiments: Data set and GPU algorithms

Data

70 large matrices from UFL collection. “O” original set, “RCP” random
row/column permutations.

report on those matrices for which one of the sequential algorithms took
more than one second (O S1, 28 matrices; and RCP S1, 50 matrices).

O Hardest20 and RCP Hardest20 that contain the set of 20 matrices on
which the sequential algorithms required the longest runtime.

GPU algorithms

Geometric mean of the runtime (in seconds) on different sets of instances

Experiments – best variant

14

8 Deveci et al.

4 Experiments

The proposed implementations are compared against the sequential HK and
PFP implementations [8], and against the multicore implementations P-PFP,
P-DBFS, and P-HK obtained from [1]. The CPU implementations are tested on
a computer with 2.27GHz dual quad-core Intel Xeon CPUs with 2-way hyper-
threading and 48GB main memory. The algorithms are implemented in C++
and OpenMP. The GPU implementations are tested on NVIDIA Tesla C2050
with usable 2.6GB of global memory. C2050 is equipped with 14 multiprocessors
each containing 32 CUDA cores, totaling 448 CUDA cores. The implementa-
tions are compiled with gcc-4.4.4, cuda-4.2.9 and -O2 optimization flag. For the
multicore algorithms, 8 threads are used. A standard heuristic (called the cheap
matching, see [8]) is used to initialize all algorithms. We compare the runtime of
the matching algorithms after this common initialization. The execution times
of the GPU algorithms exclude memory copy time. But including memory copy
time decreases the reported mean speedups across all data set by at most 6%.

The two main algorithms APFB and APsB can use di↵erent BFS kernel
functions (GPUBFS and GPUBFS-WR). Moreover, these algorithms can have
two versions (i) CT: uses a constant number of threads with fixed number of
grid and block size (256⇥ 256) and assigns multiple vertices to each thread; (ii)
MT: tries to assign one vertex to each thread. The number of threads used in the
second version is chosen as MT = min(nc, #threads) where nc is the number of
columns, and #threads is the maximum number of threads of the architecture.
Therefore, we have eight GPU-based algorithms.

We used 70 di↵erent matrices from variety of classes at UFL matrix collec-
tion [6]. We also permuted the matrices randomly by rows and columns and
included them as a second set (labeled RCP). These permutations usually ren-
der the problems harder for the augmenting-path-based algorithms [8]. For both
sets, we report the performance for a smaller subset which contains those matri-
ces in which at least one of the sequential algorithms took more than one second.
We call these sets O S1 (28 matrices) and RCP S1 (50 matrices). We also have
another two subsets called O Hardest20 and RCP Hardest20 that contain the set
of 20 matrices on which the sequential algorithms required the longest runtime.

Table 1. Geometric mean of the runtime (in seconds) of the GPU algorithms on
di↵erent sets of instances.

APFB APsB
GPUBFS GPUBFS-WR GPUBFS GPUBFS-WR
MT CT MT CT MT CT MT CT

O S1 2.96 1.89 2.12 1.34 3.68 2.88 2.98 2.27
O Hardest20 4.28 2.70 3.21 1.93 5.23 4.14 4.20 3.13
RCP S1 3.66 3.24 1.13 1.05 3.52 3.33 2.22 2.14
RCP Hardest20 7.27 5.79 3.37 2.85 12.06 10.75 8.17 7.41

Table 1 compares the proposed GPU implementations on di↵erent sets. As
we see from the table, using a constant number of threads (CT) always increases

7/8/13 Matrix Transversals on GPUs

The GPU implementations are compiled with CUDA 4.2.9 with –O2 optimization flag,
and executed on NVIDIA Tesla C2050 with 14 multiprocessors each having 32 CUDA
cores (448 in total) and 2.6 GBs of memory.

70 UFL matrices are chosen: O is the original matrix set, RCP is row/column
permuted versions. We used the matrices for which at least one algorithm
requires more than one second (PFP or HK) – 28 matrices are in O_S1 and
50 matrices are in RCP_S1.

15/19 Matrix scaling

Log-scaled speedup profiles

Best identified GPU algorithm and the multicore ones:

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

0# 1# 2# 3# 4# 5#

y"
="
P(
sp
ee
du

p"
>=
"2

x)"

x"

GPU"
P1PF"
P1DBFS"
P1HK"
PFP"

(a) Original graphs

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

0# 1# 2# 3# 4# 5#

y"
="
P(
sp
ee
du

p"
>=
"2

x)"

x"

GPU"
P1PF"
P1DBFS"
P1HK"
HK"

(b) Permuted graphs

(x , y): the probability of obtaining at least 2x speedup is y .

The speedups wrt the fastest of the seq. algorithms (min(PFP and HK)).

GPU algorithm has the best overall speedup (faster than HK in 86% of
the original graphs, while it is faster than PFP on 76% on the permuted
graphs).

16/19 Matrix scaling

Performance profiles

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

Fr
ac
1o

n#
of
#T
es
t#C

as
es
#

GPU$
P%PF$
P%DBFS$
P%HK$

(c) Original graphs

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

Fr
ac
1o

n#
of
#te

st
#c
as
es
#

GPU$
P%PF$
P%DBFS$
P%HK$

(d) Permuted graphs

(x , y): with y probability, the corresponding algorithm obtains a
performance that is at most x times worse than the best runtime.

The plots clearly mark the GPU algorithm as the fastest in most cases,

The GPU algorithm obtains the best performance in 61% of the original
graphs and in 74% of the permuted ones.

17/19 Matrix scaling

Overall speedup

O_S1% O_Hardest20% RCP_S1% RCP_Hardest20%
PFP% 4.26% 5.58% 3.54% 9.29%

HK% 3.61% 3.96% 7.40% 9.62%

0%

2%

4%

6%

8%

10%

12%

Sp
ee
du

p&

Figure: GPU algorithm w.r.t. PFP (left bars) and HK (right bars) algorithms.

Average speedup: 3.61 and 3.54 on original and permuted graphs.

Hardest instances: 3.96 and 9.29 on original and permuted graphs.

Robust running time (execution times for different repetitions)

For O S1, the ratios of the standard deviations to the average time
are less than 10%, 18%, and 47% for 20, 5, and 3 graphs.

18/19 Matrix scaling

Concluding remarks

GPU implementation of a BFS-based maximum cardinality matching
algorithm for bipartite graphs.

The experiments showed that the GPU implementation is faster
than the existing multicore implementations.

The speedups achieved with respect to well-known sequential
implementations varied from 0.03 to 629.19, averaging 9.29 w.r.t.
the fastest sequential algorithm on a set of 20 hardest problems.

Everything was on the GPU; a limited memory device. Thinking
about what can be done for graphs that does not fit into a GPU.

19/19 Matrix scaling

Further information

Thank you for your attention.

http://perso.ens-lyon.fr/bora.ucar

20/19 Matrix scaling

http://perso.ens-lyon.fr/bora.ucar

Actual running time

Bipartite matching on GPUs 11

O_S1% O_Hardest20% RCP_S1% RCP_Hardest20%
PFP% 4.26% 5.58% 3.54% 9.29%

HK% 3.61% 3.96% 7.40% 9.62%

0%

2%

4%

6%

8%

10%

12%

Sp
ee
du

p&

Fig. 5. Overall speedup of the proposed GPU algorithm w.r.t. PFP (left bars) and HK
(right bars) algorithms.

the original graphs and another two among the permuted graphs, the GPU al-
gorithm is faster than the best sequential algorithm. It is also faster than the
multicore ones in all, except five original graphs.

Table 2. The actual runtime of each algorithm for the O Hardest20 set.

Original graphs Permuted graphs
Matrix name GPU P-DBFS PFP HK GPU P-DBFS PFP HK
roadNet-CA 0.34 0.53 0.95 2.48 0.39 1.88 3.05 4.89
delaunay n23 0.96 1.26 2.68 1.11 0.90 5.56 3.27 14.34
coPapersDBLP 0.42 6.27 3.11 1.62 0.38 1.25 0.29 1.26
kron g500-logn21 0.99 1.50 5.37 4.73 3.71 4.01 64.29 16.08
amazon-2008 0.11 0.18 6.11 1.85 0.41 1.37 61.32 4.69
delaunay n24 1.98 2.41 6.43 2.22 1.86 12.84 6.92 35.24
as-Skitter 0.49 1.89 7.79 3.56 3.27 5.74 472.63 29.63
amazon0505 0.18 22.70 9.05 1.87 0.24 15.23 17.59 2.23
wikipedia-20070206 1.09 5.24 11.98 6.52 1.05 5.99 9.74 5.73
Hamrle3 1.36 2.70 0.04 12.61 3.85 7.39 37.71 57.00
hugetrace-00020 7.90 393.13 15.95 15.02 1.52 9.97 8.68 38.27
hugebubbles-00000 13.16 3.55 19.81 5.56 1.80 10.91 10.03 38.97
wb-edu 33.82 8.61 3.38 20.35 17.43 20.10 9.49 51.14
rgg n 2 24 s0 3.68 2.25 25.40 0.12 2.20 12.50 5.72 31.78
patents 0.88 0.84 92.03 16.18 0.91 0.97 101.76 18.30
italy osm 5.86 1.20 1.02 122.00 0.70 3.97 6.24 18.34
soc-LiveJournal1 3.32 14.35 243.91 21.16 3.73 7.14 343.94 20.71
ljournal-2008 2.37 10.30 360.31 17.66 6.90 7.58 176.69 23.45
europe osm 57.53 11.21 14.15 1911.56 7.21 37.93 68.18 197.03
com-livejournal 4.58 22.46 2879.36 34.28 5.88 17.19 165.32 29.40

5 Concluding remarks

We proposed a parallel GPU implementation of a BFS-based maximum cardinal-
ity matching algorithm for bipartite graphs. We compared the performance of the
proposed implementation against sequential and multicore algorithms on various
datasets. The experiments showed that the GPU implementation is faster than

Except six among the original graphs and another two among the permuted

graphs, the GPU algorithm is faster than the best sequential algorithm. It is

also faster than the multicore ones in all, except five original graphs.

21/19 Matrix scaling

References

Deveci, M., Kaya, K., Çatalyürek, Ü. V., and Uçar, B.:

A push-relabel-based maximum cardinality matching algorithm on GPUs,
ICPP2013.

Azad, A., Halappanavar, M., Rajamanickam, S., Boman, E.G., Khan, A., Pothen, A.:

Multithreaded algorithms for maximum matching in bipartite graphs. In:
26th IPDPS. pp. 860–872. IEEE (2012)

Duff, I.S., Kaya, K., Uçar, B.:

Design, implementation, and analysis of maximum transversal algorithms.
ACM TOMS 38(2), 13 (2011)

Fagginger Auer, B., Bisseling, R.:

A GPU algorithm for greedy graph matching.
Facing the Multicore-Challenge II pp. 108–119 (2012)

Halappanavar, M., Feo, J., Villa, O., Tumeo, A., Pothen, A.:

Approximate weighted matching on emerging manycore and multithreaded architectures.
Int. J. High Perform. C. 26(4), 413–430 (2012)

Kaya, K., Langguth, J., Manne, F., Uçar, B.:

Push-relabel based algorithms for the maximum transversal problem.
Comput. Oper. Res. 40(5), 1266–1275 (2012)

Vasconcelos, C., Rosenhahn, B.:

Bipartite graph matching computation on GPU.
In: Energy Minimization Methods in Computer Vision and Pattern Recognition. pp. 42–55. (2009)

22/19 Matrix scaling

