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ABSTRACT
Disease-specific module discovery is an important problem
to understand the disease behavior. A successful method to
address this problem is the integration of gene expression
data with the protein-protein interaction (PPI) network.
Many tools have been developed to efficiently perform this
integration. However, these tools focus only on the genes
existing in the PPI network; totally neglecting other genes
that we do not yet have information regarding their inter-
action. In addition, they only make use of the gene expres-
sion data which does not give the true picture about the ac-
tual protein expression levels. In fact, the cell uses different
mechanisms, such as microRNAs, to post-transcriptionally
regulate the proteins without affecting the corresponding
genes expressions. The unprecedented amount of publicly
available disease-related data encourages the development
of new methodologies for a further understanding the dis-
ease behavior.

In this work, we propose a novel workflow Mica, which,
to the best of our knowledge, is the first study integrat-
ing miRNA, mRNA, and PPI network information to suc-
cessfully return disease-specific gene modules. The novelty
of the workflow lies in many directions, including the ad-
justment of mRNA expression with microRNA to better
highlight indirect dependencies between the different genes.
We applied Mica on microRNA-Seq and mRNA-Seq data
sets of 699 invasive ductal carcinoma samples and 150 in-
vasive lobular carcinoma samples from the Cancer Genome
Atlas Project (TCGA). The returned Mica gene modules
unravel new and interesting dependencies between the dif-
ferent genes and miRNAs.

1. INTRODUCTION
n complex diseases, genes do not act in isolation, rather,

they interact together in pathways and modules to perform
the designated function [11]. In addition, their interaction
patterns are changed based on the type of the cell and the
condition [8]. A well-structured characterization and anal-
ysis of such modules have always been intriguing for the
researchers, especially for extremely heterogeneous diseases.
Cancer is such a disease: the derivative tissue differs for
many cancer types. Besides, each cancer type can have many
subtypes. Identifying a biologically correct and valid mod-
ule is important for each cancer type and subtype since the
treatment options and their success rates can significantly

differ [2].
One way to find such modules is to look for clusters of

genes with certain properties, e.g., dense cluster, in different
biological networks, such as the PPI network or the gene co-
expression network. A more efficient method is the integra-
tion of different biological data to better highlight these gene
modules [40]. Following this idea, various techniques that
integrate gene-expression values or p-values with biological
networks to extract such gene modules have been proposed,
e.g., [29, 16, 53]. Such extracted modules are called active
modules since the gene expression data, which is dynami-
cally changing, is integrated with the PPI network, which is
static. Hence, the word active comes from the notion that
these modules are active in certain cells or conditions. Fol-
lowing this track, many other tools have been developed to
better make use of the network structure and other types of
data as well, such as genotypic data. An excellent review
and categorization of these tools was recently provided [40].

Although the gene expression signature-based tools and
algorithms have proven to be flexible in practice, they do
not provide a be-all and end-all solution for the active mod-
ules discovery problem. Today, we have various data types
that can be used to increase the accuracy, but many of the
existing tools and workflows do not exploit such heterogene-
ity. Besides, these tools are usually restricted to the pro-
teins/genes in the networks they use and ignore the other
genes in the gene expression data that we do not yet have
any information regarding their interaction patterns.

MicroRNAs (miRNAs) are small non-coding RNAs that
are used by the cell to post-transcriptionally regulate gene
expression levels [18]. miRNAs inhibit protein synthesis
by either stopping the protein translation or by performing
mRNA degradation. miRNAs constitute an important inhi-
bition technique that has been shown to be very important in
different diseases, specifically, in cancer progression [30]. For
instance, miRNAs were found to be differentially expressed
in breast cancer in addition to successfully classifying estro-
gen and progesterone receptors, and HER2/neu status [4].
Hence, using miRNAs for the active module discovery is a
promising technique to increase the accuracy and success
rate of the cancer treatments.

Most of the works that integrate miRNA and mRNA data
assumes that the miRNA effect on the mRNA is distinguish-
able from the gene expression levels [26, 58]. However, the
protein expression level can be significantly affected by the
miRNA without having any apparent effect on the gene ex-



pression level [1]. [13] suggested another method to inte-
grate miRNA and mRNA by integrating the PPI network
and miRNA-target gene network into one heterogeneous net-
work. They focused on prioritizing the genes using the sug-
gested network. Indeed, such integration would work around
the miRNA-mRNA integration problem. However, by fo-
cusing only in prioritizing genes through the PPI network,
they cannot detect connected modules of genes with indirect
dependencies, e.g., through other genes not in the PPI net-
work or through other genes with no change in expression
at mRNA level.

Even though the techniques using gene expression levels
provide valuable information, they cannot show the whole
picture. Here, we try to exploit another miRNA and mRNA
interaction pattern, which is the inhibition of protein trans-
lation rather than mRNA degradation. We believe that if
the gene expression levels are adjusted based on the expres-
sion levels of the corresponding miRNAs, novel and inter-
esting gene-gene dependencies can be unraveled.

In this work, we propose a workflow Mica which employs
heterogeneous data sources and adopts independent com-
ponent analysis [28] to extract active modules. To unravel
new types of gene-gene dependencies, we provide a novel
data integration technique that adjusts the expression level
of the genes based on the expression level of the correspond-
ing miRNA. These dependencies are then mapped back to
the PPI network to extract the connected modules. Com-
pared to existing active module discovery tools, Mica is less
dependent on the given biological network it uses hence does
not need to ignore the information for the entities which are
not in the network.

There are three types of interactions between a group of
miRNAs and a target gene; synergetic, complementary, and
additive. A synergetic effect implies that all the miRNAs af-
fecting the gene must be expressed together in order to have
mRNA degradation or protein inhibition [9]. Rather, miR-
NAs can act complementary by requiring only one out of the
miRNA set to be expressed [9]. In an additive interaction,
each miRNA alone has an effect while the overall effect is
increased if multiple miRNAs are expressed [51]. Here, we
will focus on the complementary and the additive effects.

The rest of the paper is organized as follows: In Section 2,
we provide a background on the techniques we used in this
work. Our methods and experimental results are presented
in Section 3 and Section 4, respectively. Section 5 concludes
the paper.

2. BACKGROUND
Independent Component Analysis (ICA) is a famous tech-

nique used to solve the Blind Source Separation problem.
Given an input with multiple, linearly mixed sources, it tries
to distinguish the sources by minimizing the statistical de-
pendencies between them [28]. In the context of gene expres-
sion, ICA decomposes an input expression into its possible
expression modes [38]. For an n ×m input gene expression
matrix X, where rows correspond to genes and columns cor-
respond to samples, ICA decomposes X into:

XT = A× S (1)

such that S is a `× n matrix for ` ≤ m. The rows of S are
(statistically) as independent as possible and correspond to
the independent components. The columns of S correspond
to the genes and the entry Scg shows the contribution of a
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Figure 1: Mica: The workflow starts with integrating
miRNA and mRNA data by adjusting the mRNA data using
the miRNA data. Then, ICA is applied on the resulting new
gene-expression matrix. Finally, for each independent com-
ponent obtained by ICA, the largest connected module from
the PPI network is extracted using the significant genes in
the component.

gene g to the component c. A is an m × ` matrix where
its rows correspond to samples. The entry Asc shows the
contribution of each component c for a sample s. Many ap-
proximation algorithms have been proposed to find A and
S in an efficient way, e.g., fastICA [27], JADE [6], and Info-

Max [3]. fastICA tries to identify non-Guassian components
under the assumption that Gaussian components represent
the noise. This algorithm can stuck in a local minima, hence
multiple iterations, thus multiple estimates can be neces-
sary [21, 10].

ICA has been used extensively to cluster different genes
together or for sample classification [38, 33, 19, 49, 45, 17,
44, 54]. All of these studies have shown the efficiency of ICA
in producing biologically relevant results.

3. METHODS
Mica consists of three main parts as shown in Figure 1:

3.1 Data integration
The miRNA and gene expression data are usually inte-

grated by using correlation-based methods with the assump-
tion that the effect of miRNA on mRNA should be apparent
on the gene expression level. Rather than the suppression
of the gene expression, one can also exploit another type
of miRNA effect on mRNA; the inhibition of the protein
translation. Traditional approaches cannot exploit such an
effect since it will not be apparent on the gene expression
level. Our novel integration step is based on this fact. We
use miRNA expression level to adjust the expression level
of the genes. Therefore, if a gene is affected by an miRNA
at the inhibition level, the proposed integration makes the
effect visible on the expression level. For each sample s, we
first calculate the ratio:

βg,s =
|

P
{r: r affects g} Z

−
r,s |P

{r: r affects g} Z
+
r,s

(2)



where Z+
r,s (Z−r,s) is the positive (negative) z-score of miRNA

r in sample s that is experimentally verified to affect gene
g. The z-score is calculated by

Zr,s =
xr,s − µr

σr
(3)

where xr,s is the expression level of miRNA r in sample s,
and µr and σr are the mean and standard deviation of r’s
expression level across all the control samples. The z-score is
divided into positive and negative groups since each group
differently affect gene g. In general, when a miRNA r is
down-regulated, i.e., -ve z-score, then the expression of g
will increase. On the other hand, when r is up-regulated,
i.e., +ve z-score, then the expression of g will decrease. Ac-
cordingly, the final gene expression is calculated as follows:

e′g,s = βg,s × eg,s (4)

where eg,s and e′g,s are the original and adjusted expression
levels of gene g.

For data integration, (4) is applied to each gene-sample
pair. Only the absolute significant z-scores, i.e., the ones
greater than a threshold tR, are taken into account. To
avoid noise, only the miRNAs with an absolute z-score at
least tR in more than 10% of the samples are kept. Addi-
tionally, βg,s must be > tR or < 1

tR
in order to modify eg,s.

Such a constraint is meant to make sure that either the up-
regulated group of miRNAs or the down-regulated group of
miRNAs has a larger effect on g.

As mentioned previously, a group of miRNAs can affect
the same gene in a synergetic, complementary, or additive
way. Our integration equation (4) is additive and partially
complementary, i.e., the gene expression level will be af-
fected more if several miRNAs affect it on a sample (addi-
tive). When only a single miRNA is active in the sample, it
will still affect the expression level (complementary). At the
end, our goal is to better highlight the dependency between
different genes rather than finding exact protein expression
values; there are many unknown factors affecting the actual
protein expression.

3.2 ICA on gene expression values
After the data integration step, the adjusted gene expres-

sion values are then fed to the ICA for which the R version
of the fastICA algorithm is used [27]. To avoid local min-
imas and unreliable independent component estimates, we
follow the method in [10]: we run fastICA κ times and ob-
tain different independent component estimates at each run.
Then, the Pearson correlation coefficients between the com-
ponents from different estimates are computed to distinguish
the most similar ones. We constructed a k-partite similarity
graph G = (V,E) where V = V1 ∪ · · · ∪ Vκ are the set of all
components returned by ICA and Vi is the set of components
obtained in the ith run. The edge set E contains an edge
(c, c′) if the Pearson correlation coefficient between c and c′

is at least 0.9 and they are not obtained in the same run, i.e.,
c ∈ Vi, c′ ∈ Vj , i 6= j. To obtain the final component set, we
partition G to its maximally connected subgraphs. Then for
each connected subgraph C of G with at least κ vertices, we
construct a final representative component by computing the
average of the |C| rows corresponding to the vertices in C.

An important parameter of ICA is the number of compo-
nents ` to be generated; when ` is large ICA will probably
return subcomponent-type structures which are not very in-

teresting [37]. A näıve method is setting ` = m, the number
of samples, which is not useful in our case since we have hun-
dreds of them. We follow another approach [44] based on
an earlier method proposed by [23]. We first apply Singular
Value Decomposition (SVD) to the actual gene expression
matrix to reduce the dimensionality. We do the same for
a randomly permuted version of the same matrix. The ac-
tual variance obtained from each SVD component is used to
draw a curve of the information gain. A similar curve is also
generated for the randomly permuted case. The optimal
number of components would be the point of intersection of
these two curves, i.e., when the information obtained from
the random components is higher than the information ob-
tained from the actual components.

The matrices S and A generated by ICA can be used
to determine which genes are significant in each component
and which components are significant in each sample, re-
spectively. There are different options to pick the significant
components, e.g., [46, 10, 45]. Here, we used a variant of
the correlation method suggest by [45]. Basically, instead of
calculating the correlation between the component weight
across the samples and the type (control/case) of the sam-
ples, the Wilcoxon signed-rank test is used to calculate a
p-value for each component based on its weight distribu-
tion over the controls and cases. The Bonferroni correction
method is then used to correct the p-value. We further com-
pute µ and σ for each component by using its weights in
the control samples. We then compute the z-score for each
component-case sample pair. Hence, a component is signif-
icant for a case, if the corresponding z-score is at least a
threshold tC .

To determine the set of genes related to a component, we
use the z-score threshold based method [46, 49] which was
shown to be effective to return the most important genes for
each component. We calculated the z-score of each gene in a
component by using its weight, µ, and σ that are computed
by using all the gene weights inside this component. Then
for each component, the genes with a z-score at least tG is
considered to be a member of the component.

3.3 Connected module extraction
The connected PPI modules are extracted by mapping the

set of member genes in each component to the PPI network
and extracting the largest connected module. If there is no
connected module or if the largest one is not large enough the
threshold tG used to pick the member genes for each compo-
nent is relaxed to allow more connectivity. However, as the
results will show, each component yield a large connected
module in PPI. In addition, recent studies also showed that
the components generated by ICA (or similar techniques)
are either highly enriched in the PPI network [58] or highly
enriched with signaling pathways [49].

Each component we found after the second step is ex-
pected to generate a connected modules. It is crucial to
define a scoring function to determine which module is the
most important one, i.e., containing important member genes.
Although a large module is preferable, we do not want the
modules to be too large. Therefore, after determining the
member genes in each component c, the following scoring
function is used:

scr(c) =

P
g∈c Zcgp
|c|

(5)



where |c| is the number of member genes in c. We used
p
|c|

instead of |c| since we want to give a higher score to larger
modules. A gene g will have a high Zcg value if it is signifi-
cant for c. Therefore, if a connected module contains many
important genes the module is considered to be important.

4. RESULTS
We implemented our proposed workflow Mica in R and

used the available implementation of the fastICA algorithm.
To demonstrate the effectiveness of the proposed workflow,
that is, the added benefits of early integration of microRNA
datasets, we compared the modules obtained by our work-
flow Mica against the ones obtained using ICA and DE-

GAS [53], using the original gene expression values. DEGAS is
a set-cover based algorithm known for its efficiency in de-
tecting dysregulated pathways. It tries to detect a module
with at least k differentially expressed (DE) genes shared be-
tween most of the samples. We tuned the DEGAS parameters
to detect the best module according to a measure provided
by the tool based on how far the size of the module is from
a randomly generated subnetwork of k genes. We set the
maximum number of modules for DEGAS to 5. Still, it re-
turned a single module in the experiments. In the rest of
the text, DEGAS output modules are referred to as degas,
ICA modules as ica, and Mica modules as mica.

We carried out the experiments on two datasets for two
breast-cancer subtypes: invasive lobular carcinoma (ILC)
and Invasive ductal carcinoma (IDC) datasets . Both datasets
are from TCGA (https://tcga-data.nci.nih.gov/tcga/) and
they both contain RNA-Seq and miRNA-Seq data. High
throughput sequencing data was used in our experiments
since it can provide a complete image about all the miRNAs
and mRNAs in the cell without requiring any a-priori in-
formation. The main aim of using two different subtypes of
the same disease is to understand how different techniques
are able to detect modules specific to each subtype.

The ILC dataset has 106 control samples and 153 case
samples. All of the 259 samples have gene expression in-
formation. Out of the 153 cases, only 150 contain miRNAs
expression data as well. Therefore, only the 150 cases are
used in our experiments. The IDC dataset shares the 106
control samples with the ILC. It also has 714 case samples
with gene expression information, however, only 699 case
samples, which also have miRNA expression information,
are used in our experiments.

The PPI network used for the module extraction was ob-
tained from the BioGRID (http://thebiogrid.org ) database
(rel. 3.2.104). It contains 139, 539 interactions between
18, 170 proteins. The experimentally validated miRNA-target
interactions used in data integration are obtained from miR-
TarBase (rel. 4.5) [25].

The number of runs κ for ICA is set to 100 while tR thresh-
old is set to 4 and tC and tG are set to 2. We set the threshold
high since we only want to keep the values that would have
a potential of being important.

The qualities of the output modules are verified using dif-
ferent methods, including, pathway enrichment analysis, GO
enrichment analysis, disease ontology (DO) enrichment anal-
ysis, and finally using the evidence in the literature on the
importance of the modules/genes. Enrichment analysis is
performed using ReactomePA [56], FunDo [41], and cluster-
Profiler [57].

Table 1: Size of the modules obtained using Mica and ICA.
# is the component number, S is the number of samples a
component covers, |c| is the size of the component, |c|ppi is
the number of genes that are both in the component and the
PPI network, N and E are the number of nodes and edges,
respectively, for the largest connected module in the PPI,
and scr(c) is the score of the largest connected module.

(a) ICA

# S |c| |c|ppi N E scr(c)
1 55 754 657 221 348 39.43
2 18 34 31 2 1 3.35
3 54 279 267 103 143 25.33
4 28 703 641 274 510 50.70
5 4 542 448 116 141 28.80
6 7 349 320 116 337 26.68
7 2 204 176 30 29 12.81

(b) Mica

# S |c| |c|ppi N E scr(c)
1 103 501 475 164 272 55.63
2 49 284 242 21 21 12.71
3 67 1007 879 339 585 49.51
4 30 455 446 283 506 52.41
5 68 931 876 541 1535 66.91
6 9 889 752 253 354 46.04
7 3 790 738 410 1297 51.04

4.1 Results on ILC data
The Mica modules are meaningfully different from ICA

modules. Table 1 shows the number of samples they cover,
the size of each component, the number of member genes
in the PPI network, the size of the largest connected mod-
ule, and the score. In general, for each of ICA and Mica
components, there is a large connected module in the PPI
network. Interestingly, Mica modules have higher scores
than ICA modules in addition to being more common across
the samples.

We also use DEGAS on the ILC dataset for comparison pur-
poses. The degas module consists of 347 genes with 730 in-
teractions between them and the number of DE genes in this
module is 200. The quality, i.e., the module size p-value, is
0.19 which can be considered large. We tried different op-
tions for DEGAS to get a better module, however, this is the
best module we obtained.

Statistical analysis of the obtained components:
An important step is to first ensure that the obtained Mica
components, hence the active modules, cannot be obtained
from a random matrix. Therefore, we set our null hypoth-
esis to be that the t-score calculated for each component
from its weight across the case and control samples in the A
matrix can be obtained if we have a random input matrix.
Accordingly, we generated 1000 random matrix by randomly
permuting the modified gene expression values for each gene
across the case and control samples. Afterwards, we applied
Mica on the random matrices and calculated the t-score for
the randomly generated components. For each 1000 run, we
only kept the max/min t-score value. Finally, using the t-
scores from the random runs, we generated the distribution
for the random t-scores and compared our actual t-scores
against. The random t-score distribution and the compo-
nents t-score values are shown in Figure 2. Clearly, the
components cannot randomly gain such a high t-score (i.e.,
p-value = 0). Therefore, the null hypothesis is rejected.

Classification using modified and original gene ex-
pression: It is important to ensure that the modified gene
expression data better differentiate between case and control
samples. To this end, a comparison between the predication
accuracy using Mica modules on the modified gene expres-
sion data and ICA and DEGAS modules on the original data
was carried out. Basically, for Mica modules, a Support
Vector Machine (SVM) was trained on each module sep-
arately, with the genes in each module used as the input



−10 −5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

t−score

mica1
mica2
mica3
mica4
mica5
mica6
mica7

(a) Random t-score distribution

●

●

MICA ICA DEGAS

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

A
U

C

(b) Prediction performance

Figure 2: Performance evaluation of Mica modules. a)
Mica modules t-scores in comparison to t-scores from a ran-
dom run. b) Mica modules prediction performance after a
10-fold cross validation in comparison to ICA and DEGAS.

features. Afterwards, a voting was performed between the
modules to determine the output classification. The same
was applied on ICA but with the original data. For DEGAS, no
voting was required since it only has one module. The results
for a 10-fold cross validation is shown in Figure 2. In general,
Mica and ICA obtain a better classification accuracy than
DEGAS, with Mica being more stable across the different runs
and obtaining an AUC value of 1 in almost all of the runs.

Active modules analysis: The next step is to see which
genes exist in each active module, how the different active
modules overlap, and the enrichment of each module with
important GO annotations. Interestingly, there was not a
large overlap between Mica, ICA, and DEGAS; degas over-
laps with 12% of mica5 while ica4 overlaps with 17% of
mica6. Nevertheless, there were some similarities in the
top enriched GO annotations (i.e., with corrected p-value
< 10−15). Among the top similar ones are: translational
elongation between ica6 and mica7, and positive regula-
tion of biological process between ica4 and mica6, cellular
macromolecule metabolic process in mica1 and degas, and
organelle organization between mica4 and degas. On the
other hand, the top different ones included protein transport
in ica1, cardiovascular system development and extra cel-
lular matrix organization in ica5, response to endoplasmic
reticulum stress in mica2, RNA processing and splicing in
mica3, and cell cycle and cell cycle process in mica5.

Since we are working with active modules that are going
to be further used to extract important pathways, we further
performed pathway enrichment analysis to better evaluate
the quality of the active modules. The results are shown
in Table 2. Similar to GO annotations, some pathways are
common between Mica, ICA, and DEGAS. For instance, both
degas and mica5 were enriched with the cell cycle path-
way, however, the p-value for degas was much smaller than
the p-value in mica5. Remarkably, mica5 was enriched with
more cell cycle-related pathways, such as, the cell cycle,
mitotic, and check points pathways, with BRCA1 common
among most of these pathways. Mutations in BRCA1 lead
to genetic instability and deficiency in the different cell cy-
cle phases [14]. Additionally, its absence results in breast
cancer formation.

Pathways that are highly enriched in both Mica and ICA
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Figure 3: Overlap between Important pathways enriched in
both Mica and ICA modules. Orange is for Mica, blue is
for ICA, and green for genes in both. A) Pathways in can-
cer (mica1 and ica5, B) Protein processing in endoplasmic
reticulum (mica2 and ica1, C) Ribosome (mica7 and ica6

).

modules include the pathways in cancer, ribosome, and pro-
tein processing in endoplasmic reticulum pathways. Fig-
ure 3 shows the overlap between Mica and ICA on those
pathways. Pathways in cancer pathway is enriched in both
mica1 and ica5. Remarkably, mica1 contains key breast
cancer genes including ERBB2, MYC, RB1, and NFKB1.
Additionally, mica1 is more common across the samples than
ica5. ERBB2 gene is a growth factor receptor that is over-
expressed in breast cancer and usually related to the aggres-
siveness of the tumor and the resistance to the chemother-
apy [43]. RB1 gene is mutated in breast cancer [22] while the
NFKB1 gene has a major rule in invasive breast cancer [34].
MYC is a multifunctional protein that plays a role in cell cy-
cle progression and cellular transformation. Amplification of
MYC is found to be a frequent event in breast cancer that is
often more associated with the metastatic version of the tu-
mor [47]. The protein processing in endoplasmic reticulum
pathway is another interesting pathway that is enriched in
both mica2 and ica1. The endoplasmic reticulum (ER) is
an essential organelle involved in many important functions
such as protein folding and secretion. In cancer cells, the
unfolded protein response (UPR) and ER-associated degra-
dation (ERAD) pathways, which are parts of the protein
processing in ER pathway, are both activated to help in the
survival and the metastasis of the cancer cells [50]. Interest-
ingly, EDEM1 and SEL1L genes (mica2 are important parts
of the ERAD component in addition to being de-regulated
in cancer cells [50].

Since mica1, mica2, ica1, and ica5 contain interesting
pathways, we further performed disease ontology enrichment
analysis on these modules using FunDO [41]. The top dis-
eases enriched in the modules, after Bonferroni correction,
are: cancer (2.11×10−21) and breast cancer (1.11×10−4) in
mica1, cancer (1.15× 10−3) in mica2, cancer (2.34× 10−12)



Table 2: Pathway enrichment analysis for Mica, ICA, and DEGAS modules on the ILC dataset.

Database Pathway MICA ICA DEGAS
% pval Net % pval Net % pval

Reactome Unfolded Protein Response 23.81 6.78× 10−05 mica2 3.64 8.20× 10−03 ica4

Processing of Capped Intron-Containing Pre-mRNA 5.60 4.21× 10−03 mica1

mRNA Splicing 5.30 4.21× 10−03 mica3

Cell Cycle, Mitotic 18.48 1.19× 10−21 mica5 11.53 7.79× 10−3

Cell Cycle 19.96 7.30× 10−19 mica5 14.12 7.32× 10−3

Mitotic M-M/G1 phases 13.31 3.75× 10−18 mica5

Elastic fibre formation 4.74 4.05× 10−05 mica6 11.21 7.30× 10−11 ica5

Molecules associated with elastic fibres 3.95 2.81× 10−04 mica6

3’ -UTR-mediated translational regulation 8.29 3.77× 10−05 mica7 22.41 8.20× 10−14 ica6

L13a-mediated translational silencing of Ceruloplasmin ex-
pression

8.29 3.77× 10−05 mica7 22.41 8.20× 10−14 ica6

Formation of a pool of free 40S subunits 7.80 3.98× 10−05 mica7 19.83 5.30× 10−12 ica6

Eukaryotic Translation Initiation 8.29 3.98× 10−05 mica7 18.97 3.03× 10−11 ica6

Antigen Presentation: Folding, assembly and peptide loading
of class I MHC

4.52 1.62× 10−06 ica1

Interferon alpha/beta signaling 5.88 7.99× 10−05 ica1

Golgi Cisternae Pericentriolar Stack Reorganization 2.71 5.10× 10−04 ica1

ER-Phagosome pathway 4.98 6.98× 10−04 ica1

PERK regulated gene expression 2.19 3.49× 10−03 ica4

Toll Like Receptor 4 (TLR4) Cascade 5.47 4.25× 10−03 ica4

Cytokine Signaling in Immune system 10.21 4.25× 10−03 ica4

Antigen Presentation: Folding, assembly and peptide loading
of class I MHC

2.55 6.00× 10−03 ica4

Extracellular matrix organization 21.55 5.25× 10−15 ica5

Molecules associated with elastic fibres 9.48 3.27× 10−09 ica5

Integrin cell surface interactions 11.21 2.02× 10−07 ica5

Degradation of collagen 8.62 5.17× 10−06 ica5

Translation 24.13 8.66× 10−14 ica5

Cap-dependent Translation Initiation 22.41 8.66× 10−14 ica6

Eukaryotic Translation Initiation 22.41 8.66× 10−14 ica6

GTP hydrolysis and joining of the 60S ribosomal subunit 21.55 2.74× 10−13 ica6

GTP hydrolysis and joining of the 60S ribosomal subunit 21.55 2.74× 10−13 ica6

Peptide chain elongation 18.10 9.89× 10−11 ica6

Nonsense Mediated Decay Independent of the Exon Junction
Complex

18.10 1.71× 10−10 ica6

Repair synthesis for gap-filling by DNA polymerase in TC-
NER

1.73 7.32× 10−3

Removal of the Flap Intermediate from the C-strand 1.72 7.32× 10−3

Telomere Maintenance 3.75 7.32× 10−3

KEGG Pancreatic cancer 6.70 1.05× 10−04 mica1 6.03 4.15× 10−03 ica5

Pathways in cancer 15.24 1.05× 10−04 mica1 14.66 2.59× 10−03 ica5

Small cell lung cancer 7.31 1.05× 10−04 mica1 7.75 7.07× 10−04 ica5

Chronic myeloid leukemia 6.09 7.01× 10−04 mica1 6.89 1.26× 10−03 ica5

Colorectal cancer 5.49 8.10× 10−04 mica1 5.17 9.87× 10−03 ica5

Bladder cancer 4.27 2.18× 10−03 mica1

Prostate cancer 6.09 2.24× 10−03 mica1

Non-small cell lung cancer 74.27 8.10× 10−03 mica1

Protein processing in endoplasmic reticulum 52.38 4.65× 10−11 mica2 12.22 1.10× 10−08 ica1

Spliceosome 6.19 1.24× 10−03 mica3

Osteoclast differentiation 8.70 1.85× 10−06 mica6

Complement and coagulation cascades 4.74 1.62× 10−03 mica6

Ribosome 7.07 1.76× 10−10 mica7 17.24 3.34× 10−14 ica6

ECM-receptor interaction 11.21 3.83× 10−07 ica6

Focal adhesion 16.28 3.83× 10−07 ica6

TGF-beta signaling pathway 7.76 7.07× 10−04 ica6

Renal cell carcinoma 6.03 4.15× 10−03 ica6

in ica5, and cancer (6.2×10−5) and Melanoma (1.1×10−4)
in ica1. Clearly, mica1 is the most enriched and related
module to cancer in general and breast cancer, in specific.

4.2 Results on IDC data
Invasive Ductal Carcinoma is another famous breast can-

cer subtype. Previous works showed that IDC and ILC act
differently and have different sets of DE genes [59, 55]. Nev-
ertheless, we expect to find some common pathways between
them, even though each pathway might include different sets
of genes [52].

Similar to ILC, we first used the dataset with ICA and

Mica to see how different the output is when the miRNA
data is added. As shown in Table 1, there is a significant
difference between ICA and Mica modules. The Mica pro-
duced more highly scoring modules than ICA. In addition,
Mica produced 66 modules while ICA produced 35 mod-
ules. We further analyzed the highest scoring modules from
the two methods, namely, ica18, ica21, and ica30 from ICA

and mica7, mica15, mica33, mica42, and mica63 from Mica.
Those modules are the highest scoring modules with a score
> 60. By comparing between the modules from ICA and
Mica, we found that the most similar ones are mica42 and
ica30; with 266 genes exist in both. The remaining Mica



Table 3: The components obtained by ICA and Mica. #
is the component number, S is the number of samples a
component covers, |c| is the size of the component, |c|ppi is
the number of genes that are both in the component and the
PPI network, N and E are the number of nodes and edges,
respectively, for the largest connected module in the PPI,
and scr(c) is the score of the largest connected module.

(a) ICA

# S |c| |c|ppi N E scr(c)
1 418 533 477 114 140 42.29
2 130 643 556 95 105 24.5
3 201 507 441 130 182 45.78
4 199 660 488 72 92 22.36
5 15 638 542 102 124 30.08
6 278 385 333 69 122 20.86
7 28 388 341 118 179 52.08
8 11 53 49 4 3 4.31
9 0 45 37 2 1 3.14
10 400 370 311 50 53 17.72
11 88 187 169 7 6 6.18
12 130 129 109 4 3 4.37
13 184 492 419 55 69 33.4
14 693 812 659 185 248 40.82
15 64 752 622 117 131 34.5
16 200 119 107 4 3 4.91
17 246 500 450 97 108 41.98
18 87 897 849 391 775 61.95
19 145 263 231 25 25 11.15
20 316 171 158 33 71 14.19
21 123 744 669 303 522 61.43
22 164 315 266 9 8 7.49
23 136 386 343 77 109 46.12
24 201 503 447 112 137 26.47
25 253 423 376 110 153 49.62
26 173 690 601 197 316 44.53
27 29 3 2 2 0 3.4
28 216 145 122 5 4 5.1
29 6 708 612 186 234 34.55
30 513 675 649 454 1851 83.63
31 42 540 457 171 252 33.83
32 38 603 502 111 140 27.59
33 5 228 201 7 6 6.65
34 16 749 588 176 220 45.63
35 554 501 457 84 95 45.25

(b) Mica

# S |c| |c|ppi N E scr(c)
1 324 595 538 154 182 45.82
2 76 571 526 212 329 37.71
3 523 535 473 68 78 35.5
4 308 289 245 22 23 11.28
5 319 679 604 169 249 37.61
6 134 412 376 52 57 18.07
7 296 400 374 147 234 61.78
8 174 655 592 188 266 36.24
9 296 380 329 50 57 19.55
10 294 483 413 99 137 25.97
11 414 661 583 136 176 34.89
12 254 83 68 5 5 4.85
13 516 323 279 34 35 14.67
14 284 55 48 2 1 3.27
15 336 317 267 42 47 59.76
16 255 733 670 299 458 47.19
17 216 542 425 67 86 36.61
18 260 335 296 55 70 19.59
19 319 159 145 58 98 18.6
20 325 623 510 62 66 25.49
21 436 272 258 101 208 58.79
22 20 565 473 54 58 28.33
23 208 543 473 91 113 33.63
24 262 570 512 167 275 34.7
25 309 532 483 184 244 57.42
26 328 403 377 152 243 54.86
27 278 455 389 80 88 31.39
28 262 655 579 162 214 36.99
29 237 341 303 13 13 9.18
30 196 420 369 122 148 28.42
31 257 682 602 202 726 50.76
32 3 212 173 11 10 9.83
33 245 289 280 138 297 79.69
34 362 174 153 6 5 6
35 380 495 433 106 135 31.81
36 160 768 662 286 909 54.72
37 169 534 471 135 199 30.98
38 166 700 619 178 218 36.7
39 132 665 607 197 298 36.41
40 466 378 332 69 78 21.61
41 246 156 153 8 8 6.83
42 544 682 633 348 1063 66.97
43 51 473 397 19 35 12.81
44 209 8 7 7 0 5.84
45 185 634 565 156 202 32.8
46 32 379 317 39 43 15.52
47 214 444 379 53 66 29.8
48 450 248 217 18 17 9.9
49 278 290 247 38 42 15.14
50 170 110 96 6 5 5.78
51 300 4 4 4 0 4.22
52 363 2 2 2 0 3.38
53 179 5 5 5 0 5.05
54 314 581 453 12 14 23.74
55 0 731 618 161 192 48.34
56 361 110 92 4 3 5.26
57 374 289 255 17 20 11.91
58 29 764 594 67 85 28.48
59 496 1 1 1 0 2.46
60 432 1 0 0 0 NA
61 99 535 433 78 104 40.37
62 306 457 425 60 68 20.36
63 242 243 230 101 188 66.43
64 186 565 506 163 222 49.83
65 1 494 444 159 246 58.05

and ICA modules did not have any significant overlap.
By further examining the genes in mica42 and ica30, we

found that both contain BRCA1, BRCA2, BRIP1, BLM,
RAD51, UBE2C, and CKS2. BLM and RAD51 have a tu-
morigenic significance [15], UBE2C and CKS2 are among
the genes that are DE in IDC [39], and BRCA1, BRIP1, and
BRCA2 are known breast cancer mutated 1. On the other
hand mica42 only contains TOP3A, HMG20B, RAD51C,
CDC6, and U2AF1 genes. HMG20B gene interacts directly
with BRCA2. The inhibition, of the interaction between
HMG20B and BRCA2 lead to progression of tumor [32].
TOP3A and BLM genes interact with RMI1 gene forming a
complex that is very important in genome stability [7]. The
mutations in this complex increase the risk of breast can-
cer in addition to other types of cancer [5]. RAD51C gene
was also found to be mutated in breast cancer [35]. The de-
regulation of CDC6 poses a serious risk of carcinogenesis [36]
while U2AF1 is a splicing factor protein that is mutated in
cancer in general [20].

The degas module on IDC data contains 386 genes with
1, 056 interactions and 190 DE genes. Based on the qual-
ity measure, the module has a p-value of 0, i.e., it cannot
be randomly obtained. There are 105 genes exist in de-

gas, ica30, and mica42 including BRIP1, RAD51, BLM,
UBE2C, and CKS2. However, degas did not contain other
cancer related genes including BRCA1, BRCA2, XRCC1,
XRCC2, and RRM2. Additionally, none of the genes exclu-
sively exist in mica42 exist in degas.

In addition to examining the different obtained modules,
we performed classification analysis using the different mod-
ules and datasets to ensure that the adjusted gene expression
data better correlate with the disease behavior. Similar to
the ILC dataset, a SVM was trained on the active mod-
ules obtained from each tool separately. Then, a 10-fold
cross validation was performed using the original data for
ICA and DEGAS and modified gene expression data for Mica.
The three tools almost performed the same with Mica hav-
ing the least error of 0.0013. The error for ICA and DEGAS

was 0.0038 and 0.0063, respectively.
To better evaluate ICA, DEGAS, and Mica modules, we

further performed pathway enrichment analysis, as shown
in Table 5. There are a lot of pathways common between
mica42, mica30, and degas such as Cell cycle, Tolemere
maintenance, and DNA strand elongation. However, mica42
alone was enriched with the p53 signaling pathway. Inter-
estingly, there are many important pathways enriched in
mica15 which were not enriched in any other tools, includ-
ing the complement and coagulation cascades, platelet de-
granulation, and Hemostasis pathways. All of these path-
ways are part of the hemostatic system of the cell. Hemo-
static elements are considered important in facilitating the
metastatic potential of breast cancer [31]. Additionally, A
proteomic based study has shown the complement and co-
agulation pathway to be DE in IDC( [48] . Figure 4 shows
the genes in mica15 module. Among the nodes in this net-
work and also in the Hemostasis pathway is the APOA1
gene. APOA1 gene was found DE in IDC samples vs control
samples in a proteomic study [42]. In addition, mutations
in this gene lead to poor outcome for post-surgery breast
cancer patients [24]. Other interesting genes in mica15 are
GADD45A, GADD45B, and GADD45G genes. GADD45
genes are stress sensor genes that are activated in respond
to cell stress and DNA damage. GADD45 genes were found

1http://cancer.sanger.ac.uk/cancergenome/projects/census/



$32%

$32$�

35.$%�

*$''��*
*$''��$

*$''��%
6(53,1*�

)� )��

0$)*
775

&�

.1*�

&3%�

$3&6
$32)

&)+&53

7*0�

3/*

971

$32$�
&�%3$

)*%

)**

)*$

/%3

6(53,1(�0$63�

+3

6(53,1)�

0$63�

&�

3/,1�
$32&�&<3�(�

$32&�

250�

/$0&�
&�%

6$$�=1)���

Figure 4: mica15 module. The red nodes are for the nodes
in the Hemostasis pathway.

Table 4: DO enrichment analysis for ICA, DEGAS, and Mica.

name DO Corrected p-value
mica7 cancer 5.38× 10−7

mica15 liver cancer, systematic infection,
metastatic to brain

4.67×10−9, 1.16×10−8,
6.66× 10−8

mica33 cancer 5.2× 10−5

mica42 cancer, breast cancer 6.21×10−35, 5.72×10−7

mica63 cancer 2.30× 10−4

ica18 breast cancer, cancer 4.59×10−6, 6.21×10−35

ica21 cancer 1.36× 10−5

ica30 cancer, breast cancer 2.78×10−33,1.96×10−6

degas cancer, breast cancer 1.78×10−14, 3.14×10−4

down-regulated in cancer. Additionally, they are considered
as potential therapeutic targets in cancer [12].

The DO enrichment analysis using FunDO is showed in
Table 4. In general, Mica and MICA modules are significantly
enriched with cancer and breast cancer genes than DEGAS,
with Mica better enriched with breast cancer and cancer
than ICA. Additionally, mica15 is enriched with metastatic
to brain disease genes with APOA1 among those genes.

5. CONCLUSIONS
The unprecedented amount of publicly available disease-

related data encourages the development of new methodolo-
gies and algorithms for a better analysis and further under-
standing the disease behavior. In this work, we proposed
a new workflow, Mica, that successfully integrates miRNA
data, mRNA data, and PPI network in a novel way to obtain
active modules which can serve as powerful biomarkers.

The experimental results show that the modules found by
Mica are more disease-related while unraveling new depen-
dencies between the genes which were hidden via previous
techniques. Albeit the simplicity of the proposed workflow,
Mica successfully includes many novel ideas, including how
we adjust the gene expression levels with the miRNA ex-
pression to mimic the protein expression level and how we
work on the genes first to get the related ones and map
them to the PPI network rather than working only on the
genes existing in the PPI. To the best of our knowledge, this
is the first study that integrates miRNA, mRNA, and PPI
network information for active module extraction. Further-
more, Mica provides information regarding which modules
are active in which set of samples, hence, making it easier
to understand the disease behavior for different patients.

The results obtained from IDC and ILC datasets show the
ability of Mica to generate disease specific modules. Still,
there are some pathways common between IDC and ILC,
such as the cell cycle pathway with BRCA1 and BRCA2
retrieved with Mica in both datasets.

Further improvements for Mica would add more value and
more understanding for the results. For instance, it would
be more beneficial to extract a smaller module of 10 or 20

genes from each module that can be further used as a mod-
ule biomarker. Additionally, each module can be broken into
smaller ones and each can be considered as a possible path-
way. Hence, we can further understand how the different
pathways interact together. Pathways extraction can also
benefit from adding directionality information to the PPI
network. We are planning to tackle all such improvements
in our future work.
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[13] Y. Cun and H. Fröhlich. Network and data integration
for biomarker signature discovery via network
smoothed t-statistics. PloS one, 8(9):e73074, 2013.

[14] C.-X. Deng. Brca1: cell cycle checkpoint, genetic
instability, dna damage response and cancer evolution.
Nucleic acids research, 34(5):1416–1426, 2006.



[15] S.-l. Ding, J.-C. Yu, S.-T. Chen, et al. Genetic variants
of blm interact with rad51 to increase breast cancer
susceptibility. Carcinogenesis, 30(1):43–49, 2009.

[16] M. T. Dittrich, G. W. Klau, A. Rosenwald, et al.
Identifying functional modules in protein-protein
interaction networks: an integrated exact approach.
Bioinf., 24(13):i223–i231, 2008.

[17] J. M. Engreitz, B. J. Daigle, J. J. Marshall, and R. B.
Altman. Independent component analysis: Mining
microarray data for fundamental human gene
expression modules. Journal of biomed. info.,
43(6):932–944, 2010.

[18] M. R. Fabian, N. Sonenberg, and W. Filipowicz.
Regulation of mRNA translation and stability by
microRNAs. Ann. review of bioch., 79:351–379, 2010.

[19] A. Frigyesi, S. Veerla, D. Lindgren, and M. Höglund.
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Database Pathway MICA ICA DEGAS
% pval Name % pval Name % pval

KEGG Complement and coagulation cascades 42.86 1.17× 10−23 mica15

Staphylococcus aureus infection 14.29 2.97× 10−5 mica15

DNA replication 6.32 6.68× 10−17 mica42 5.51 1.13× 10−18 ica30

Cell cycle 11.21 6.68× 10−17 mica42 10.13 1.13× 10−18 mica30 6.22 3.04× 10−4

Mismatch repair 3.16 5.53× 10−07 mica42 3.30 1.11× 10−10 ica30

Nucleotide excision repair 3.45 1.62× 10−4 mica42 3.3 9.57× 10−6 mica30

Homologous recombination 2.59 3.57× 10−04 mica42 2.64 6.97× 10−06 ica30

Base excision repair 2.59 1.65× 10−03 mica42 2.64 5.46× 10−05 ica30

p53 signaling pathway 3.45 7.86× 10−03 mica42

Spliceosome 6.60 8.20× 10−04 ica21

Oocyte meiosis 4.63 1.43× 10−03 ica30

Reactome Formation of Fibrin Clot (Clotting Cascade) 16.67 2.68× 10−8 mica15

Complement cascade 16.67 3.60× 10−8 mica15

Platelet degranulation 21.43 6.66× 10−08 mica15

Common Pathway 11.90 6.66× 10−08 mica15

Response to elevated platelet cytosolic Ca2+ 21.43 7.88× 10−8 mica15

Chylomicron-mediated lipid transport 9.52 7.98× 10−06 mica15

Platelet activation, signaling and aggregation 23.81 9.16× 10−06 mica15

Intrinsic Pathway 9.52 2.81× 10−05 mica15

Retinoid metabolism and transport 11.90 4.16× 10−05 mica15

Terminal pathway of complement 7.14 5.70× 10−5 mica15

Lipoprotein metabolism 9.52 6.14× 10−5 mica15

Hemostasis 30.95 6.80× 10−05 mica15

Visual phototransduction 11.9 1.29× 10−4 mica15

Dissolution of Fibrin Clot 7.14 1.29× 10−4 mica15

Diseases associated with visual transduction 11.90 1.29× 10−04 mica15

Platelet Aggregation (Plug Formation) 9.52 3.18× 10−04 mica15

p130Cas linkage to MAPK signaling for integrins 7.14 3.97× 10−04 mica15

GRB2:SOS provides linkage to MAPK signaling for Intergrins 7.14 3.97× 10−04 mica15

Lectin pathway of complement activation 4.76 4.20× 10−4 mica15

Lipid digestion, mobilization, and transport 9.52 4.27× 10−4 mica15

Integrin alphaIIb beta3 signaling 7.14 2.07× 10−3 mica15

Transport of gamma-carboxylated protein precursors from the
endoplasmic reticulum to the Golgi apparatus

4.76 4.06× 10−3 mica15

Creation of C4 and C2 activators 4.76 4.06× 10−3 mica15

Removal of aminoterminal propeptides from gamma-
carboxylated proteins

4.76 4.65× 10−3 mica15

Gamma-carboxylation of protein precursors 4.76 4.65× 10−3 mica15

Amyloids 9.52 5.11× 10−3 mica15

Integrin cell surface interactions 9.52 5.14× 10−3 mica15

Gamma-carboxylation, transport, and amino-terminal cleav-
age of proteins

4.76 6.03× 10−3 mica15

HDL-mediated lipid transport 4.76 6.86× 10−3 mica15

Binding and Uptake of Ligands by Scavenger Receptors 4.76 8.30× 10−3 mica15

Scavenging of Heme from Plasma 4.76 8.30× 10−3 mica15

Regulation of Complement cascade 4.76 8.30× 10−3 mica15

mRNA Splicing 9.42 1.52× 10−04 mica33 6.60 7.65× 10−05 ica21

mRNA Splicing - Major Pathway 9.42 1.52× 10−4 mica33 6.6 7.65× 10−5 mica21

Processing of Capped Intron-Containing Pre-mRNA 9.42 1.52× 10−4 mica33 6.6 9.06× 10−5 mica21

mRNA Processing 10.14 1.52× 10−04 mica33 6.93 2.45× 10−04 ica21

Cell Cycle, Mitotic 32.76 3.86× 10−52 mica42 31.28 4.26× 10−64 ica30 17.62 4.74× 10−13

Cell Cycle 35.06 4.67× 10−49 mica42 33.26 7.77× 10−59 mica30 21.76 3.46× 10−16

Mitotic M-M/G1 phases 23.28 3.79× 10−39 mica42 20.48 9.30× 10−41 mica30 13.73 4.74× 10−13

Mitotic Prometaphase 13.79 3.81× 10−27 mica42 12.56 5.37× 10−31 mica30 7.51 1.88× 10−8

DNA strand elongation 7.18 3.92× 10−25 mica42 5.95 6.16× 10−26 ica30 2.59 1.45× 10−04

Resolution of Sister Chromatid Cohesion 12.07 1.57× 10−22 mica42 11.45 9.46× 10−28 ica30 6.74 2.29× 10−07

M Phase 16.67 1.69× 10−22 mica42 15.2 7.73× 10−25 mica30 11.4 5.22× 10−10

DNA Replication 10.92 3.10× 10−21 mica42 8.59 2.57× 10−18 mica30 5.7 3.70× 10−6

Activation of the pre-replicative complex 6.32 1.20× 10−19 mica42 5.07 9.03× 10−19 mica30 2.33 1.01× 10−3

G2/M Checkpoints 7.47 1.66× 10−19 mica42 6.39 2.02× 10−20 mica30 4.4 7.13× 10−8

S Phase 11.21 3.69× 10−19 mica42 10.57 4.78× 10−23 mica30 6.74 4.03× 10−7

Mitotic G1-G1/S phases 11.78 1.30× 10−18 mica42 10.13 1.68× 10−18 mica30 6.74 4.94× 10−6

Synthesis of DNA 9.77 1.80× 10−18 mica42 7.71 7.13× 10−16 mica30 5.44 4.36× 10−6

Mitotic Metaphase and Anaphase 13.51 2.96× 10−17 mica42 13 3.69× 10−21 mica30 9.33 8.39× 10−8

Mitotic Anaphase 13.22 1.35× 10−16 mica42 12.78 1.56× 10−20 mica30 9.33 8.17× 10−8

Activation of ATR in response to replication stress 6.32 1.64× 10−16 mica42 5.29 1.56× 10−16 mica30 3.63 1.94× 10−6

G1/S Transition 9.77 6.96× 10−16 mica42 8.37 9.68× 10−16 mica30 6.48 3.82× 10−7

Separation of Sister Chromatids 12.36 1.84× 10−15 mica42 12.11 1.03× 10−19 mica30 8.55 4.86× 10−7

Telomere C-strand (Lagging Strand) Synthesis 4.6 4.39× 10−15 mica42 3.96 1.78× 10−16 mica30

Chromosome Maintenance 9.77 1.40× 10−14 mica42 8.81 7.82× 10−16 mica30 5.96 2.29× 10−5

Extension of Telomeres 4.6 3.55× 10−14 mica42 3.96 2.32× 10−15 mica30

Unwinding of DNA 3.16 1.78× 10−13 mica42 2.42 3.05× 10−12 mica30 1.55 2.68× 10−4

E2F mediated regulation of DNA replication 5.17 3.40× 10−13 mica42 3.96 2.55× 10−11 mica30 2.07 8.80× 10−3



Cell Cycle Checkpoints 9.48 4.77× 10−13 mica42 8.15 1.15× 10−12 mica30 8.03 1.94× 10−9

Lagging Strand Synthesis 4.02 6.05× 10−13 mica42 3.52 1.96× 10−14 mica30

Leading Strand Synthesis 3.45 6.05× 10−13 mica42 2.64 1.40× 10−11 ica30

Polymerase switching 3.45 6.05× 10−13 mica42 2.64 1.40× 10−11 ica30

Polymerase switching on the C-strand of the telomere 3.45 6.05× 10−13 mica42 2.64 1.40× 10−11 mica30

DNA Repair 8.62 3.75× 10−12 mica42 8.15 2.16× 10−14 ica30

DNA Replication Pre-Initiation 6.90 2.29× 10−11 mica42 5.51 8.67× 10−10 ica30 4.4 7.74× 10−05

M/G1 Transition 6.90 2.29× 10−11 mica42 5.51 8.67× 10−10 ica30 4.40 7.74× 10−05

Gap-filling DNA repair synthesis and ligation in TC-NER 3.16 4.05× 10−10 mica42 2.86 6.15× 10−12 mica30

Gap-filling DNA repair synthesis and ligation in GG-NER 3.16 4.05× 10−10 mica42 2.86 6.15× 10−12 mica30

G0 and Early G1 3.74 3.16× 10−9 mica42 3.08 5.41× 10−9 mica30

Repair synthesis for gap-filling by DNA polymerase in TC-
NER

2.87 4.86× 10−9 mica42 2.64 5.77× 10−11 mica30

Repair synthesis of patch 27-30 bases long by DNA poly-
merase

2.87 4.86× 10−9 mica42 2.64 5.77× 10−11 mica30

Condensation of Prometaphase Chromosomes 2.59 7.26× 10−9 mica42 1.76 1.63× 10−6 mica30 1.55 4.81× 10−4

G1/S-Specific Transcription 2.87 1.17× 10−8 mica42 2.2 1.36× 10−7 mica30 1.55 2.64× 10−3

Processive synthesis on the lagging strand 2.59 1.35× 10−7 mica42 2.42 2.11× 10−9 mica30

DNA replication initiation 1.72 2.31× 10−7 mica42 1.32 9.12× 10−7 mica30

Telomere C-strand synthesis initiation 1.72 2.31× 10−07 mica42 1.32 9.12× 10−07 ica30

Telomere Maintenance 5.17 2.68× 10−07 mica42 4.41 4.87× 10−07 ica30 3.63 1.01× 10−03

Fanconi Anemia pathway 3.16 8.48× 10−07 mica42 2.86 1.23× 10−07 ica30

Removal of the Flap Intermediate 2.30 1.37× 10−06 mica42 2.20 2.13× 10−08 ica30

Global Genomic NER (GG-NER) 3.45 1.75× 10−06 mica42 3.08 4.60× 10−07 ica30

Regulation of DNA replication 4.6 6.64× 10−6 mica42 3.3 4.84× 10−4 mica30 4.15 7.20× 10−5

Removal of licensing factors from origins 4.6 6.64× 10−6 mica42 3.3 4.84× 10−4 mica30 4.15 7.20× 10−5

Nucleosome assembly 4.31 1.03× 10−5 mica42 3.52 4.33× 10−5 mica30 4.4 4.74× 10−6

Deposition of New CENPA-containing Nucleosomes at the
Centromere

4.31 1.03× 10−5 mica42 3.52 4.33× 10−5 mica30 4.4 4.74× 10−6

Phosphorylation of Emi1 1.44 2.04× 10−05 mica42 1.10 5.57× 10−05 ica30

Cyclin A/B1 associated events during G2/M transition 2.01 2.40× 10−5 mica42 1.98 4.72× 10−7 mica30 2.07 9.42× 10−6

Nucleotide Excision Repair 3.74 2.40× 10−05 mica42 3.30 1.33× 10−05 ica30

Transcription-coupled NER (TC-NER) 3.45 3.60× 10−05 mica42 3.08 1.46× 10−05 ica30

Orc1 removal from chromatin 4.02 1.03× 10−4 mica42 2.86 3.86× 10−3 mica30 3.89 1.82× 10−4

Switching of origins to a post-replicative state 4.02 1.03× 10−4 mica42 2.86 3.86× 10−3 mica30 3.89 1.82× 10−4

Nuclear Envelope Breakdown 2.01 1.09× 10−4 mica42 1.54 4.41× 10−4 mica30 1.55 3.78× 10−3

Assembly of the pre-replicative complex 3.74 1.66× 10−4 mica42 2.64 5.40× 10−3 mica30 3.63 2.66× 10−4

Inhibition of replication initiation of damaged DNA by
RB1/E2F1

1.72 2.02× 10−4 mica42 1.32 6.39× 10−4 mica30

Cyclin B2 mediated events 1.15 2.65× 10−4 mica42 1.1 1.10× 10−5 mica30 1.3 2.00× 10−5

Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1
complex

1.15 2.65× 10−4 mica42 1.1 1.10× 10−5 mica30 1.04 8.63× 10−4

APC/C-mediated degradation of cell cycle proteins 4.31 4.54× 10−4 mica42 3.74 6.24× 10−4 mica30 4.66 7.87× 10−5

Regulation of mitotic cell cycle 4.31 4.54× 10−4 mica42 3.74 6.24× 10−4 mica30 4.66 7.87× 10−5

E2F-enabled inhibition of pre-replication complex formation 1.44 5.67× 10−4 mica42 1.32 1.07× 10−4 mica30

Homologous Recombination Repair 1.72 7.34× 10−4 mica42 1.98 2.04× 10−6 mica30

Homologous recombination repair of replication-independent
double-strand breaks

1.72 7.34× 10−4 mica42 1.98 2.04× 10−6 mica30

Processive synthesis on the C-strand of the telomere 1.44 9.48× 10−4 mica42 1.54 1.33× 10−5 mica30

Double-Strand Break Repair 2.01 1.17× 10−3 mica42 2.42 1.54× 10−6 mica30

Activation of NIMA Kinases NEK9, NEK6, NEK7 1.15 1.49× 10−3 mica42 0.88 3.18× 10−3 mica30

G2/M DNA damage checkpoint 1.44 1.49× 10−3 mica42 1.32 3.94× 10−4 mica30

Kinesins 2.59 1.51× 10−3 mica42 2.64 8.91× 10−5 mica30 2.59 1.48× 10−3

Base Excision Repair 1.72 1.95× 10−3 mica42 1.32 6.00× 10−3 mica30

Resolution of Abasic Sites (AP sites) 1.72 1.95× 10−3 mica42 1.32 6.00× 10−3 mica30

CDC6 association with the ORC:origin complex 1.15 2.68× 10−3 mica42

G2/M DNA replication checkpoint 0.86 3.22× 10−3 mica42 0.88 1.31× 10−4 mica30 0.78 8.80× 10−3

Removal of the Flap Intermediate from the C-strand 1.15 7.17× 10−3 mica42 1.32 1.07× 10−4 mica30

G2 Phase 0.86 7.52× 10−3 mica42

Removal of DNA patch containing abasic residue 1.44 8.20× 10−3 mica42

Resolution of AP sites via the multiple-nucleotide patch re-
placement pathway

1.44 8.20× 10−3 mica42

Regulation of APC/C activators between G1/S and early
anaphase

3.45 8.57× 10−3 mica42 4.15 4.81× 10−4

Post-transcriptional Silencing By Small RNAs 1.79 1.49× 10−06 ica18

Pre-NOTCH Transcription and Translation 2.05 1.77× 10−05 ica18

Cohesin Loading onto Chromatin 1.53 1.41× 10−03 ica18

Pre-NOTCH Expression and Processing 2.05 3.32× 10−3 ica18

Small Interfering RNA (siRNA) Biogenesis 1.28 8.16× 10−03 ica18

Mitotic Telophase/Cytokinesis 1.53 8.16× 10−03 ica18

RNA Polymerase II Transcription Termination 3.3 2.18× 10−3 mica21

Cleavage of Growing Transcript in the Termination Region 3.3 2.18× 10−3 mica21

Post-Elongation Processing of the Transcript 3.3 2.18× 10−3 mica21

RNA Polymerase II Transcription 5.28 2.18× 10−3 mica21

Mitotic G2-G2/M phases 6.83 2.74× 10−11 mica30

G2/M Transition 6.39 3.70× 10−10 mica30



Centrosome maturation 5.07 1.26× 10−7 mica30

Recruitment of mitotic centrosome proteins and complexes 5.07 1.26× 10−7 mica30

Loss of Nlp from mitotic centrosomes 3.96 2.04× 10−6 mica30

Loss of proteins required for interphase microtubule organiza-

tion̊aÊfrom the centrosome

3.96 2.04× 10−6 mica30

Establishment of Sister Chromatid Cohesion 1.54 1.33× 10−5 mica30

Interactions of Rev with host cellular proteins 2.42 9.41× 10−5 mica30

Recruitment of NuMA to mitotic centrosomes 1.98 2.24× 10−4 mica30

Rev-mediated nuclear export of HIV-1 RNA 2.2 2.26× 10−4 mica30

Homologous DNA pairing and strand exchange 0.88 1.51× 10−3 mica30

Presynaptic phase of homologous DNA pairing and strand ex-
change

0.88 1.51× 10−3 mica30

Nuclear import of Rev protein 1.98 1.52× 10−3 mica30

mRNA 3’-end processing 1.98 3.01× 10−3 mica30

Post-Elongation Processing of Intron-Containing pre-mRNA 1.98 3.01× 10−3 mica30

Transport of Mature Transcript to Cytoplasm 1.76 3.68× 10−3 mica30

Polo-like kinase mediated events 0.66 5.53× 10−3 mica30

Transport of Mature mRNA derived from an Intron-
Containing Transcript

1.54 6.81× 10−3 mica30

Recruitment of repair and signaling proteins to double-strand
breaks

0.88 9.29× 10−3 mica30

Interactions of Vpr with host cellular proteins 1.76 9.87× 10−3 mica30

APC/C:Cdc20 mediated degradation of mitotic proteins 3.89 5.18× 10−4

Cdc20:Phospho-APC/C mediated degradation of Cyclin A 3.89 5.18× 10−4

Activation of APC/C and APC/C:Cdc20 mediated degrada-
tion of mitotic proteins

3.89 5.93× 10−4

Meiotic Recombination 3.89 1.48× 10−3

Cyclin A:Cdk2-associated events at S phase entry 3.37 1.48× 10−3

Cyclin E associated events during G1/S transition 3.11 4.76× 10−3

Packaging Of Telomere Ends 2.59 5.17× 10−3

APC/C:Cdh1 mediated degradation of Cdc20 and other
APC/C:Cdh1 targeted proteins in late mitosis/early G1

3.37 5.75× 10−3

Meiosis 4.4 6.10× 10−3

p53-Independent G1/S DNA damage checkpoint 2.59 8.80× 10−03

p53-Independent DNA Damage Response 2.59 8.80× 10−3

Ubiquitin Mediated Degradation of Phosphorylated Cdc25A 2.59 8.80× 10−3

G1/S DNA Damage Checkpoints 2.85 9.81× 10−3

Table 5: Pathway enrichment analysis for ICA, DEGAS, and Mica.


